Determinacy and Supercompactness of \aleph_1

Noah Abou El Wafa

16 April 2020
Strongly Compact and Supercompact cardinals

Recall that $\mathcal{P}_\kappa(A) := \{a \subseteq A : a \text{ injects into } \kappa \text{ and } |a| < \kappa\}$. An ultrafilter \mathcal{U} on $\mathcal{P}_\kappa(A)$ is

▶ fine if $\{a \in \mathcal{P}_\kappa(A) : x \in a\} \in \mathcal{U}$ for all $x \in A$.

▶ normal if for every collection $\langle A_x : x \in A \rangle$ with $A_x \in \mathcal{U}$

$$\triangle_{x \in A} A_x := \{a \in \mathcal{P}_\kappa(A) : a \in \bigcap_{x \in a} A_x\} \in \mathcal{U}.$$
Strongly Compact and Supercompact cardinals

Recall that $\mathcal{P}_\kappa(A) := \{ a \subseteq A : a \text{ injects into } \kappa \text{ and } |a| < \kappa \}$. An ultrafilter U on $\mathcal{P}_\kappa(A)$ is

- **fine** if $\{ a \in \mathcal{P}_\kappa(A) : x \in a \} \in U$ for all $x \in A$.
- **normal** if for every collection $\langle A_x : x \in A \rangle$ with $A_x \in U$

$$\bigtriangleup_{x \in A} A_x := \{ a \in \mathcal{P}_\kappa(A) : a \subseteq \bigcap_{x \in a} A_x \} \in U.$$

Definition

Let κ be a cardinal and A a set. We say κ is

- **A-strongly compact** if there is a fine, κ-complete ultrafilter on $\mathcal{P}_\kappa(A)$.
- **A-supercompact** if there is a fine, normal, κ-complete ultrafilter on $\mathcal{P}_\kappa(A)$.
Suslin cardinals

Recall $\theta = \sup\{\nu : \mathbb{R} \text{ surjects onto } \nu\}$.

A set $X \subseteq \mathbb{R}$ is λ-Suslin if there is some tree T on $\omega \times \lambda$ such that

$$X = p[T] := \{x \in \mathbb{R} : T_x \text{ is ill-founded}\}$$

Definition

A cardinal λ is a *Suslin cardinal* if there is a λ-Suslin set, that is not γ-Suslin for any $\gamma < \lambda$.

Note that any Suslin cardinal is less than θ.
\mathbb{R}-supercompactness of \aleph_1 under $\text{AD}_\mathbb{R}$

For $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R})$ consider the game

\[
\begin{array}{cccccc}
I & & a_0 & a_2 & a_4 & \ldots & a_i \in \mathcal{P}_\omega(\mathbb{R}) \\
\| & a_1 & a_3 & a_5 & \quad & \quad &
\end{array}
\]

where player II wins if $\bigcup_{i<\omega} a_i \in A$.
\mathbb{R}-supercompactness of \aleph_1 under $\text{AD}_\mathbb{R}$

For $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R})$ consider the game

\begin{align*}
I & \quad a_0 \quad a_2 \quad a_4 \quad \ldots \quad a_i \in \mathcal{P}_\omega(\mathbb{R}) \\
II & \quad a_1 \quad a_3 \quad a_5
\end{align*}

where player II wins if $\bigcup_{i<\omega} a_i \in A$.

$\mathcal{U} = \{ A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R}) : \text{player II has a winning strategy in this game} \}$
R-supercompactness of \aleph_1 under AD_R

For $A \subseteq P_{\omega_1}(\mathbb{R})$ consider the game

$$
\begin{array}{ccccccc}
I & a_0 & a_2 & a_4 & \ldots & a_i & \in P_\omega(\mathbb{R}) \\
II & a_1 & a_3 & a_5 & \\
\end{array}
$$

where player II wins if $\bigcup_{i<\omega} a_i \in A$.

$\mathcal{U} = \{ A \subseteq P_{\omega_1}(\mathbb{R}) : \text{player II has a winning strategy in this game} \}$

Theorem (Solovay, 1978)

(AD_R) \mathcal{U} is a normal measure. Hence \aleph_1 is $<\theta$-supercompact.
Question: How much supercompactness of \aleph_1 do we get from various weakenings of $AD_{\mathbb{R}}$?
The Harrington-Kechris result

Theorem (Harrington, Kechris, 1981)

(AD) Suppose λ is below a Suslin cardinal, then \aleph_1 is λ-supercompact.
AD$^+$ and supercompactness of \aleph_1

By λ-determinacy we mean the assertion that for any continuous function $f : \lambda^\omega \to \mathbb{R}$ and any $A \subseteq \mathbb{R}$ the game $G(f^{-1}(A))$ played on λ with payoff set $f^{-1}(A)$ is determined.
AD$^+$ and supercompactness of \aleph_1

By λ-determinacy we mean the assertion that for any continuous function $f : \lambda^\omega \to \mathbb{R}$ and any $A \subseteq \mathbb{R}$ the game $G(f^{-1}(A))$ played on λ with payoff set $f^{-1}(A)$ is determined.

Definition

AD$^+$ is the conjunction of the following:

- $\text{DC}_\mathbb{R}$
- λ-determinacy for $\lambda < \theta$
- every set of reals is ∞-Borel

Note that AD$^+ \rightarrow$ AD and AD$^+ \Rightarrow$ DC\mathbb{R}, however AD$^+ \rightarrow$ AD$^+$ is still open.
AD$^+$ and supercompactness of \aleph_1

By λ-determinacy we mean the assertion that for any continuous function $f : \lambda^\omega \to \mathbb{R}$ and any $A \subseteq \mathbb{R}$ the game $G(f^{-1}(A))$ played on λ with payoff set $f^{-1}(A)$ is determined.

Definition

AD$^+$ is the conjunction of the following:

- DC$^\mathbb{R}$
- λ-determinacy for $\lambda < \theta$
- every set of reals is ∞-Borel

Note that AD$^+ \rightarrow$ AD and AD$^\mathbb{R} +$ DC \rightarrow AD$^+$. However

$$AD^\mathbb{R} \rightarrow AD^+$$

is still open.
The reason we are interested in AD^+ is that

$$L(\mathbb{R}) \models \text{AD} \rightarrow \text{AD}^+. $$
The reason we are interested in AD^+ is that

$$L(\mathbb{R}) \models \text{AD} \rightarrow \text{AD}^+.$$

Theorem

(AD^+) Suppose λ is a Suslin cardinal, then \aleph_1 is λ-supercompact.
AD$^+$ and supercompactness of \aleph_1

The reason we are interested in AD$^+$ is that

$$L(\mathbb{R}) \models \text{AD} \rightarrow \text{AD}^+. $$

Theorem

(AD$^+$) Suppose λ is a Suslin cardinal, then \aleph_1 is λ-supercompact.

So assuming AD, \aleph_1 is λ-supercompact in $L(\mathbb{R})$.
The supercompact measure on \aleph_1

Let λ be an ordinal. For $A \subseteq \mathcal{P}_{\omega_1}(\lambda)$ consider the game

\[
\begin{array}{ccccccc}
& a_0 & a_2 & a_4 & \ldots & a_i & \in \mathcal{P}_\omega(\lambda) \\
I & a_1 & a_3 & a_5 \\
II & & & & & & \\
\end{array}
\]

where player II wins if $\bigcup_{i<\omega} a_i \in A$.

$U = \{ A \subseteq \mathcal{P}_{\omega_1}(\lambda) : \text{player II has a winning strategy in this game} \}$

Under ZF this U is always a filter. The AD$^+$ proof shows this is a normal measure on \aleph_1 (for λ a Suslin cardinal).
The supercompact measure on \mathfrak{N}_1

Let λ be an ordinal. For $A \subseteq \mathcal{P}_{\omega_1}(\lambda)$ consider the game

$$
\begin{array}{cccc}
| & a_0 & a_2 & a_4 & \ldots & a_i & \in \mathcal{P}_\omega(\lambda) \\
\hline
I & a_1 & a_3 & a_5 \\
\end{array}
$$

where player II wins if $\bigcup_{i<\omega} a_i \in A$.

$$\mathcal{U} = \{ A \subseteq \mathcal{P}_{\omega_1}(\lambda) : \text{player II has a winning strategy in this game} \}$$
The supercompact measure on \aleph_1

Let λ be an ordinal. For $A \subseteq \mathcal{P}_{\omega_1}(\lambda)$ consider the game

<table>
<thead>
<tr>
<th>I</th>
<th>a_0</th>
<th>a_2</th>
<th>a_4</th>
<th>...</th>
<th>a_i \in $\mathcal{P}_{\omega}(\lambda)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td></td>
<td>a_1</td>
<td>a_3</td>
<td>a_5</td>
<td></td>
</tr>
</tbody>
</table>

where player II wins if $\bigcup_{i<\omega} a_i \in A$.

$U = \{A \subseteq \mathcal{P}_{\omega_1}(\lambda) : \text{player II has a winning strategy in this game}\}$

\triangleright Under ZF this U is always a filter
The supercompact measure on \aleph_1

Let λ be an ordinal. For $A \subseteq \mathcal{P}_{\omega_1}(\lambda)$ consider the game

<table>
<thead>
<tr>
<th>I</th>
<th>a_0</th>
<th>a_2</th>
<th>a_4</th>
<th>\ldots</th>
<th>$a_i \in \mathcal{P}_\omega(\lambda)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>a_1</td>
<td>a_3</td>
<td>a_5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where player II wins if $\bigcup_{i<\omega} a_i \in A$.

$\mathcal{U} = \{ A \subseteq \mathcal{P}_{\omega_1}(\lambda) : \text{player II has a winning strategy in this game} \}$

- Under ZF this \mathcal{U} is always a filter
- The AD$^+$ proof shows this is a normal measure on \aleph_1 (for λ a Suslin cardinal)
The filter \mathcal{U}

Proposition

$(\text{ZF} + \text{DC})$ Every set in \mathcal{U} contains a club set.
The filter \mathcal{U}

Proposition

$(ZF + DC)$ Every set in \mathcal{U} contains a club set.

$\quad\quad\quad$ \implies $(DC + AD^+)$ For λ a Suslin cardinal the club (ultra-)filter on $\mathcal{P}_{\omega_1}(\lambda)$ is a supercompact measure on \aleph_1
The filter \mathcal{U}

Proposition

$(\text{ZF} + \text{DC})$ Every set in \mathcal{U} contains a club set.

\blacktriangleright $(\text{DC} + \text{AD}^+) \text{ For } \lambda \text{ a Suslin cardinal the club (ultra-)filter on } \mathcal{P}_{\omega_1}(\lambda) \text{ is a supercompact measure on } \aleph_1$

Theorem (Woodin, 1983)

$(\text{ZF} + \text{DC})$ If \mathcal{V} is a supercompact measure on \aleph_1 then $\mathcal{U} \subseteq \mathcal{V}$.
The filter \mathcal{U}

Proposition
$(ZF + DC)$ Every set in \mathcal{U} contains a club set.

\Rightarrow $(DC + AD^+)$ For λ a Suslin cardinal the club (ultra-)filter on $\mathcal{P}_{\omega_1}(\lambda)$ is a supercompact measure on \aleph_1

Theorem (Woodin, 1983)
$(ZF + DC)$ If \mathcal{V} is a supercompact measure on \aleph_1 then $\mathcal{U} \subseteq \mathcal{V}$.

Corollary
$(DC + AD^+)$ If λ is a Suslin cardinal, \aleph_1 is λ-supercompact and the club filter is the unique λ-supercompact measure on \aleph_1.
AD and Strong Compactness of \aleph_1

Theorem

(AD) If $\lambda < \theta$ then \aleph_1 is λ-strongly compact.