Determinacy and Supercompactness of \aleph_1

Noah Abou El Wafa

16 April 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Strongly Compact and Supercompact cardinals

Recall that $\mathcal{P}_{\kappa}(A) := \{a \subseteq A : a \text{ injects into } \kappa \text{ and } |a| < \kappa\}$. An ultrafilter \mathcal{U} on $\mathcal{P}_{\kappa}(A)$ is

• fine if $\{a \in \mathcal{P}_{\kappa}(A) : x \in a\} \in \mathcal{U}$ for all $x \in A$.

▶ *normal* if for every collection $\langle A_x : x \in A \rangle$ with $A_x \in U$

$$\triangle_{x\in A} A_x := \{a \in \mathcal{P}_{\kappa}(A) : a \in \bigcap_{x\in a} A_x\} \in \mathcal{U}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Strongly Compact and Supercompact cardinals

Recall that $\mathcal{P}_{\kappa}(A) := \{a \subseteq A : a \text{ injects into } \kappa \text{ and } |a| < \kappa\}$. An ultrafilter \mathcal{U} on $\mathcal{P}_{\kappa}(A)$ is

• fine if $\{a \in \mathcal{P}_{\kappa}(A) : x \in a\} \in \mathcal{U}$ for all $x \in A$.

▶ *normal* if for every collection $\langle A_x : x \in A \rangle$ with $A_x \in U$

$$riangle_{x\in A} A_x := \{a \in \mathcal{P}_\kappa(A) : a \in \bigcap_{x\in a} A_x\} \in \mathcal{U}.$$

Definition

Let κ be a cardinal and A a set. We say κ is

- A-strongly compact if there is a fine, κ-complete ultrafilter on P_κ(A).
- A-supercompact if there is a fine, normal, κ-complete ultrafilter on P_κ(A).

Suslin cardinals

Recall $\theta = \sup\{\nu : \mathbb{R} \text{ surjects onto } \nu\}.$

A set $X \subseteq \mathbb{R}$ is λ -Suslin if there is some tree T on $\omega \times \lambda$ such that

 $X = p[T] := \{x \in \mathbb{R} : T_x \text{ is ill-founded}\}$

Definition

A cardinal λ is a *Suslin cardinal* if there is a λ -Suslin set, that is not γ -Suslin for any $\gamma < \lambda$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Note that any Suslin cardinal is less than θ .

$\mathbb R\text{-supercompactness}$ of \aleph_1 under $\mathsf{AD}_{\mathbb R}$

For $A\subseteq\mathcal{P}_{\omega_1}(\mathbb{R})$ consider the game

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where player II wins if $\bigcup_{i < \omega} a_i \in A$.

\mathbb{R} -supercompactness of \aleph_1 under $\mathsf{AD}_{\mathbb{R}}$

For $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R})$ consider the game

where player II wins if $\bigcup_{i < \omega} a_i \in A$.

 $\mathcal{U} = \{A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R}) : \text{player II has a winning strategy in this game}\}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$\mathbb R\text{-supercompactness}$ of \aleph_1 under $\mathsf{AD}_{\mathbb R}$

For $A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R})$ consider the game

where player II wins if $\bigcup_{i < \omega} a_i \in A$.

 $\mathcal{U} = \{A \subseteq \mathcal{P}_{\omega_1}(\mathbb{R}) : \text{player II has a winning strategy in this game}\}$

Theorem (Solovay, 1978) (AD_R) This U is a normal measure. Hence \aleph_1 is $< \theta$ -supercompact.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Question: How much supercompactness of \aleph_1 do we get from various weakenings of $AD_{\mathbb{R}}$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The Harrington-Kechris result

Theorem (Harrington, Kechris, 1981)

(AD) Suppose λ is below a Suslin cardinal, then \aleph_1 is λ -supercompact.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

By λ -determinacy we mean the assertion that for any continuous function $f : \lambda^{\omega} \to \mathbb{R}$ and any $A \subseteq \mathbb{R}$ the game $G(f^{-1}(A))$ played on λ with payoff set $f^{-1}(A)$ is determined.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

By λ -determinacy we mean the assertion that for any continuous function $f : \lambda^{\omega} \to \mathbb{R}$ and any $A \subseteq \mathbb{R}$ the game $G(f^{-1}(A))$ played on λ with payoff set $f^{-1}(A)$ is determined.

Definition

 AD^+ is the conjunction of the following:

- \blacktriangleright DC_R
- λ -determinacy for $\lambda < \theta$
- \blacktriangleright every set of reals is ∞ -Borel

By λ -determinacy we mean the assertion that for any continuous function $f : \lambda^{\omega} \to \mathbb{R}$ and any $A \subseteq \mathbb{R}$ the game $G(f^{-1}(A))$ played on λ with payoff set $f^{-1}(A)$ is determined.

Definition

AD⁺ is the conjunction of the following:

► DC_R

- λ -determinacy for $\lambda < \theta$
- every set of reals is ∞ -Borel

Note that $AD^+ \rightarrow AD$ and $AD_{\mathbb{R}} + DC \rightarrow AD^+$. However

$$\mathsf{AD}_{\mathbb{R}}\to\mathsf{AD}^+$$

is still open.

The reason we are interested in AD^+ is that

 $L(\mathbb{R}) \vDash \mathsf{AD} \to \mathsf{AD}^+.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The reason we are interested in AD^+ is that

 $L(\mathbb{R}) \vDash \mathsf{AD} \to \mathsf{AD}^+.$

Theorem (AD⁺) Suppose λ is a Suslin cardinal, then \aleph_1 is λ -supercompact.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The reason we are interested in AD^+ is that

$$L(\mathbb{R}) \vDash \mathsf{AD} \to \mathsf{AD}^+.$$

Theorem (AD⁺) Suppose λ is a Suslin cardinal, then \aleph_1 is λ -supercompact.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

So assuming AD, \aleph_1 is λ -supercompact in $L(\mathbb{R})$.

Let λ be an ordinal. For $A \subseteq \mathcal{P}_{\omega_1}(\lambda)$ consider the game

where player II wins if $\bigcup_{i < \omega} a_i \in A$.

Let λ be an ordinal. For $A \subseteq \mathcal{P}_{\omega_1}(\lambda)$ consider the game

where player II wins if $\bigcup_{i < \omega} a_i \in A$.

 $\mathcal{U} = \{A \subseteq \mathcal{P}_{\omega_1}(\lambda) : \text{player II has a winning strategy in this game}\}$

Let λ be an ordinal. For $A \subseteq \mathcal{P}_{\omega_1}(\lambda)$ consider the game

where player II wins if $\bigcup_{i < \omega} a_i \in A$.

 $\mathcal{U} = \{A \subseteq \mathcal{P}_{\omega_1}(\lambda) : \text{player II has a winning strategy in this game}\}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Under ZF this U is always a filter

Let λ be an ordinal. For $A \subseteq \mathcal{P}_{\omega_1}(\lambda)$ consider the game

where player II wins if $\bigcup_{i < \omega} a_i \in A$.

 $\mathcal{U} = \{A \subseteq \mathcal{P}_{\omega_1}(\lambda) : \text{player II has a winning strategy in this game}\}$

- Under ZF this U is always a filter
- The AD⁺ proof shows this is a normal measure on ℵ₁ (for λ a Suslin cardinal)

The filter ${\boldsymbol{\mathcal U}}$

Proposition (ZF + DC) Every set in U contains a club set.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The filter \mathcal{U}

Proposition

(ZF + DC) Every set in U contains a club set.

• (DC + AD⁺) For λ a Suslin cardinal the club (ultra-)filter on $\mathcal{P}_{\omega_1}(\lambda)$ is a supercompact measure on \aleph_1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The filter ${\boldsymbol{\mathcal U}}$

Proposition

(ZF + DC) Every set in U contains a club set.

• (DC + AD⁺) For λ a Suslin cardinal the club (ultra-)filter on $\mathcal{P}_{\omega_1}(\lambda)$ is a supercompact measure on \aleph_1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$\label{eq:constraint} \begin{array}{l} \mbox{Theorem (Woodin, 1983)} \\ \mbox{(ZF + DC) If \mathcal{V} is a supercompact measure on \aleph_1 then $\mathcal{U} \subseteq \mathcal{V}.} \end{array}$

The filter $\ensuremath{\mathcal{U}}$

Proposition

(ZF + DC) Every set in U contains a club set.

• (DC + AD⁺) For λ a Suslin cardinal the club (ultra-)filter on $\mathcal{P}_{\omega_1}(\lambda)$ is a supercompact measure on \aleph_1

Theorem (Woodin, 1983)

 $(\mathsf{ZF} + \mathsf{DC})$ If \mathcal{V} is a supercompact measure on \aleph_1 then $\mathcal{U} \subseteq \mathcal{V}$.

Corollary

(DC + AD⁺) If λ is a Suslin cardinal, \aleph_1 is λ -supercompact and the club filter is the unique λ -supercompact measure on \aleph_1 .

AD and Strong Compactness of \aleph_1

Theorem (AD) If $\lambda < \theta$ then \aleph_1 is λ -strongly compact.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ