Def Assume \(A, B \) are sets. Define
\[
\begin{align*}
A & \models B & \iff & A \setminus B \text{ and } B \setminus A \text{ are finite} \\
A & \preceq B & \iff & A \setminus B \text{ is finite}
\end{align*}
\]

Remark \((\mathcal{P}(w), \preceq^*)\) is a preorder
\((\mathcal{P}(w)/\sim^*, \preceq^*)\) is a partial order.
Def: Let F be a family of sets. A set A is a **pseudo-intersection** of F iff $A =^* F$ for all $F \in F$, and $|A| \geq \omega$.

Def: $(T_\alpha \mid \alpha < \lambda)$ is called a tower if

1. $T_\alpha \in [\omega]^{\omega}$ for all $\alpha < \lambda$,
2. $T_\beta \subseteq^* T_\alpha$ for all $\alpha < \beta < \lambda$,
3. $\{T_\alpha \mid \alpha < \lambda\}$ does not have any pseudo-intersection.

Set $t := \min \{ \lambda \in \text{Ord} \mid \text{there is a tower } (T_\alpha \mid \alpha < t) \text{ of length } \lambda \}$

and call it the **tower number**.
Prop \(\hat{\tau} \) is a regular uncountable cardinal.

Proof: \(\hat{\tau} \) is not singular, since cofinal subsequence of a tower is a tower as well.

\[\hat{\tau} = c \cdot (\hat{\tau}) \]

Let \((T_n \mid n < \omega) \) be a sequence fulfilling (1) and (2). Show that it fails on (3).

Define \(x_0 \in T_0 \).

If \(x_m \) for \(m < n \) is defined, then take \(x_n \in \bigcap_{m<n} T_m \) (is inf.) \(x_n \neq x_m \) for \(m < n \).

\[\{ x_n \mid n < \omega \} \preceq T_n \] for all \(n < \omega \). □
Fact: $\text{MA}(k) \Rightarrow 2^k = 2^\omega$.

Thm: If $w \leq k < \omega$ then $2^k = 2^\omega$.

Proof: $2^\omega \leq 2^k$ is clear.

Show $2^k \leq 2^\omega$.

We construct $(T_s \mid s \in 2^k)$ along the full binary tree 2^k of height $k+1$ with the properties:

1. $T_s \in [\omega]^w$ for all $s \in 2^k$,

2. If s_1 initial segment of s_2, then $T_{s_1} \preceq^* T_{s_2}$,

3. If neither s_1 extends s_2, nor s_2 extends s_1, then $T_{s_1} \cap T_{s_2}$ is finite.
Given a sequence with the above properties then
\[s_1, s_2 \in \mathbb{X} \]
\[|T_{s_1} \cap T_{s_2}| < \omega \]
In particular, \(T_{s_1} \neq T_{s_2} \)
\[\mathbb{X} \rightarrow \omega \mathbb{N} \]
\[\Rightarrow \mathbb{X} \leq \mathbb{2}^\mathbb{N} \]

Construct \((T_s | s \in \mathbb{X}) \) by induction:
\[T_\emptyset := \omega \]
If \(T_s \) defined set \(T_{s^{<\lambda}} \) and \(T_{s^{\lambda}} \)
\[\text{as arbitrary infinite subsets of } T_s \]
which are disjoint.
If length of \(s \) is a limit \(\lambda \)
then \(\lambda < \mathfrak{t} \) and set \(T_s \)
\[\text{as pseudo-intersection of } \bigcap_{\alpha < \lambda} T_{s_{\alpha}} \]
Cor: \(t \leq \text{cof}(2^\omega) \)

Proof: \(k < \text{cof}(2^\omega) = \text{cof}(2^\omega) \) for \(k \leq t \). \(\square \)

Def. \(f, g \in \omega^\omega \). Define \(f \leq^* g : \iff |\{ n \mid g(n) < f(n)\}| < \omega \)

- Let \(B \subseteq \omega^\omega \).
- \(B \) is unbounded \(: \iff \) for all \(g \in \omega^\omega \) there is \(f \in B \) s.t. \(f \neq g \).
- \(b := \min \{ |B| \mid B \subseteq \omega^\omega \text{ is an unbounded family} \} \)

Fact \(t \leq b \)
Prop
Suppose \(\lambda < t \) and \((T_\lambda I | x < \lambda)\) a decreasing \(\leq^* \)-chain, \(T_\lambda \subseteq Q \) all dense.

Then there is \(X \subseteq Q \) s.t. \(X \preceq T_\lambda \forall x \lambda \) and \(X \) is dense in \(Q \).

Proof: For every interval \(I \) with rational endpoints consider \((T_\lambda \cap I | x < \lambda)\), \(T_\lambda \cap I \) inf. Since \(\lambda < t \) take \(y_I \subseteq I \) s.t.

\[y_I \subseteq T_\lambda \cap I \forall x < \lambda, \ |y_I| \geq \omega \]

Let \((y_{x_I} \cap I | x < \omega) \) be an enumeration of \(y_I \).

For \(x < \lambda \) let \(f_x(\cdot) \subseteq I \omega \) s.t.

\[y_{x_I} \subseteq T_\lambda \quad \forall \ n \geq f_x(\cdot) \]

\(\forall \ I \) rational Interval \(? \rightarrow \omega \)

\[\{ f_x(\cdot) \ \mid \ x < \lambda \} \quad t \leq t \leq b \]

\[\Rightarrow \ there \ is \ g: \ |I| \rightarrow \omega \]

s.t. \(f_x \leq g \)

\[X := \{ y_{x_I, n} \mid n \geq g(\lambda) \} \]

\(X \) is dense

\[X \preceq T_\lambda \]

If \(x \in X \cup T_\lambda \) then \(x = y_{x_n} \) with \(n < f_x(\lambda) \)

\[x \in X \Rightarrow n \geq g(\lambda) \]

Can happen only finitely many times. \(\square \)
Fact \[\exists \delta \leq \text{add}(\mathcal{M}) = \min \{ |\mathcal{I}| \mid \text{there are meager sets } M_i, i \in \mathcal{I} \text{ s.t. } \bigcup M_i \text{ is not meager} \} \]

Fact \[d(\omega_n) = \pm(\text{Club}(\omega), c^*) \]
Prop. \(t \leq \text{add}(M) \)

Proof: Let \(k < t \), show \(k \leq \text{add}(M) \).

Enough to show: If \(\bigcap C_{\alpha} \) is open dense, then \(M_{\alpha} \) is meager.

\[
C_{\alpha} = \bigcap_{\delta < \alpha} C_{\delta} \text{ is dense.}
\]

\[
M_{\alpha} \subset R \setminus C_{\alpha}^1
\]

\[
UM_{\alpha} \subset U(R \setminus C_{\alpha}) = R \setminus \bigcap C_{\alpha} = R \setminus \bigcap C_{\alpha}^1
\]

\[\blacksquare\]
Consider open dense

Define \((T_\alpha \mid \alpha \leq k)\) dense subset of \(\mathbb{R}\)

\[T_0 := \mathbb{R} \]

If \((T_\alpha \mid \alpha < \lambda)\) a limit set \(\\lambda < \lambda \leq k\) and \(T_\alpha\) dense in \(\mathbb{R}\).

If \((T_\alpha \mid \alpha \leq \beta)\) set \(T_{\beta+1} := T_\beta \cap C_\beta\).

\(T_{\beta+1}\) is dense.

For \(\alpha < k\) let

\[f_\alpha : T_\alpha \to \mathbb{R}, \quad f_\alpha (t) := \left\{ \begin{array}{ll} \text{some } \eta \text{ with } (t - \frac{1}{n}, t + \frac{1}{n}) \subseteq C_{\eta} & \text{if there is one} \\ 0 & \text{otherwise} \end{array} \right. \]

\(T_\alpha \subseteq T_{\alpha+1} = T_\alpha \cap C_\alpha \subseteq C_\alpha\)

Take \(g : T_k \to \mathbb{R}\) with \(f_\alpha \leq g\) \(\forall \alpha < k\)

since \(k < t \leq b\)
Define $F \in T_k$ finite

$$U_F := \bigcup_{t \in T_k \setminus F} \left(+ \frac{1}{y(a)} , t + \frac{1}{y(a)} \right)$$

U_F open

and dense since $T_k \subseteq U_F$

$$\bigcap_{F \subseteq T_k} U_F$$

comeager

Notice:

$$\bigcap_{F \subseteq T_k} U_F \subseteq \bigcap_{a \in \mathbb{N}} C_{g,a}$$

For every $a \in \mathbb{N}$ there are only finitely many $t \in T_k \setminus C_{g,a}$ and $t \in T_k$ with $y(a) < \phi_x(t)$.
NEW FOUNDATIONS
Extensionality
Comprehension

\{ z \mid z \in x \}

\forall x, y, z (x \in y \land y \in z \Rightarrow x \in z)

x \in y \land y \in z \Rightarrow x \in z