DEF: \((P, \leq)\) is a partial order. We say that \(G\) is a **generic filter** if
\[\forall D : D \in \mathcal{D}\]
\[\text{iff } \forall p \in G, \exists q \in p \text{ s.t. } q \leq p \]
\[\text{iff } q \in G \text{ and } p \trianglerighteq q \text{ then } p \in G \]
\[\forall D \in \mathcal{D}, \ G \cap D \neq \emptyset.\]

What is \(\{D : D \in \mathcal{D}\}\)? It is a family of **dense subsets** of \(P\), i.e.,
\(D \subseteq P\) is **dense** iff \(\forall p \in P \exists q \in D\) s.t. \(q \leq p\).
COWEN FORCING: \(P \) is simply the set of finite sequences of 0’s and 1’s.

\[t \leq s \iff t \text{ extends } s \]

REMARK: \(D_m := \{ t \in 2^\omega : |t| \geq m \} \) is DENSE
DEF: let S be the partial order consisting of perfect trees ordered by inclusion, i.e., $T \leq S \iff T \subseteq S$.
Lemma: \(S \) preserves \(\mathfrak{M}_1 \).

Proof: aim: Given \(A \in \mathcal{M}(G) \) countable seq. of ordinals \(\exists B \in \mathcal{M} \) countable seq. of ordinals s.t. \(B \geq A \).

\(F : \omega \to \text{On} \) and \(\text{ran}(F) = A \).

Fix \(p \in S \). aim: Build \(q \in S, q \leq p \) and \(B \in \mathcal{M} \) s.t. \(q \upharpoonright \text{ran}(F) \leq B \).
pick P^{-0}, P^{-1}

and take $q^0 = P^{-0}, b_0 \in A, q^1 \downarrow F(0) = b_0^0$

$q^2 = P^{-1}, b_1 \in A, q^2 \downarrow F(0) = b_2^0$

$p^0 = q^0 \cup q^1 \in \mathcal{S}$ and $\text{stem}(p^0) = s$

$B_0 = \{b_0, b_1\}$
\[P_{s_0}^0 = q^0, b_0 \quad q^0 \rightarrow F(b_0) = b_2 \]
\[P_{s_1}^0 = q^3, b_1 \quad q^3 \rightarrow F(b_1) = b_3 \]
\[P_{s_0}^1 = q^2, b_1 \quad q^2 \rightarrow F(b_1) = b_2 \]
\[P_{s_1}^1 = q^3, b_3 \quad q^3 \rightarrow F(b_3) = b_3 \]

\[P_1 = q^0, q^3, q^2, q^3 \quad \text{and} \quad B_1 = \{ b_0, b_1, b_3 \} \]
By induction, we proceed analogously, and we get

\{ P^m : m \in \mathbb{N} \} of trees in \mathcal{S} s.t.

1. $P^{m+1} \leq P^m$
2. P^{m+1} and P^m have the same Kth-splitmaker, for $K \leq m+1$

And so $\bigcap_{m=1}^\infty P_m = q \in \mathcal{S}$

Further let $B = \bigcup_{m=1}^\infty B_m$

Claim:

$q \vdash \text{Rom}(F) \leq B$

$q \vdash F(0) = b_0 \vee F(a) = b_j^0$

$q \vdash \forall j \leq 3, F(j) = b_j^3$

$\vdash \forall j \leq 3$
S_i: Family consisting of perfect trees, ordered by \preceq.

Last time: We proved that S preserves \mathbb{N}_1.

Today: S is ω-bounding.

\[\forall x \in \mathcal{W}^\omega \exists y \in \mathcal{W}^\omega \text{ s.t. } \forall m \in \mathbb{N} \quad (x(m) \equiv y(m)). \]
Proof: Let $s \leq \text{stem}(p)$. Pick

\[q^0 \leq p^t_0 \quad \text{and} \quad b \in w \quad \text{st} \quad q^0 \mid b \cdot x(a) = b^0 \]
\[q^1 \leq p^t_1 \quad \text{and} \quad b \in w \quad \text{st} \quad q^1 \mid b \cdot x(a) = b^1 \]

Let $p^0 = q^0 \cup q^1$. NB: $p^0 \mid x(a) \in \{b^0, b^1\}$

\[Y(a) = \max\{b^0, b^1\} + 1 \]

We can analogously add $p^m \leq p^{m-1}$ st. $p^m \mid x(a) \in \{b^j : j < 2^m\}$

\[Y(m) = \max\{b^j : j < 2^m\} + 1 \]
As last time, put \(p = \bigcap p_m \in S \) and
\[
P \Vdash \forall m \in \omega \, (x(m) < y(m)).
\]

Other example:

Miller Forcing \(\mathcal{M} := \) poset consisting of perfect trees \(p \in \mathcal{P}^\omega \)
s.t. \(A \) step, \(\mathcal{E} \) splitting \(\rightarrow \) infinitely
many new \(\sigma \).
M preserves N_1. (by the "seven" proof or by S).

But: M is not w-bewildering.

Proof: It is enough to show that, for every $x \in w^* \cap M$

\[D_{x,m} := \{ p \in M : \exists k > m \text{ s.t. } (\text{stem}(p)) > k \land \text{stem}(p)(k) > x(k) \} \]

is dense.
Fix x_0^w, m_0^w

Choose $p_t \in P$.

May 21, 2014
Silver forcing $V := \text{post counting of \text{uniform perfect trees in } \omega}$

\mathbb{V} preserves PFA_ω and

is PFA_ω-benign.
LAYER FORCING L:

- L preserves \mathcal{M}_2,

- L adds a dominating real.

\[\text{Defining } \exists \omega, \exists x, \forall n < \omega, \forall y \in M \forall \omega (y(n) \leq x(n)). \]
Proof: We have to check that, for every $x \in x^u \cap M$,

$$D_y := \{ p < \Pi : \forall m > |\text{st}(p)| \forall t \in P \}
\begin{array}{l}
\quad (t(m) > y(m))
\end{array}$$

is dense.
What we do is to remove all the nodes of P which are to the left of Y.
Remark: All tree-brugs which we have seen are \mathcal{N}_3-preserving.

- We want to see an example of a tree-brug which is not \mathcal{N}_3-preserving.
Take $P = \omega_3^\omega$.

$(\omega_3 = \aleph_3)$

Note that for every $\alpha < \omega_3$, for any m, either $\delta_m : \{ \rho \in P : \exists k \geq m \text{ s.t. } \chi_k(\rho) \cap M \neq \emptyset \}$ is dense.
Generalized Stacks Forensics
(perfect tree in 2^k, with k countable).

Requirement:
$\forall x \in P$, $\{ \alpha < k : x \alpha \in \text{splitting} \}$ is a club.