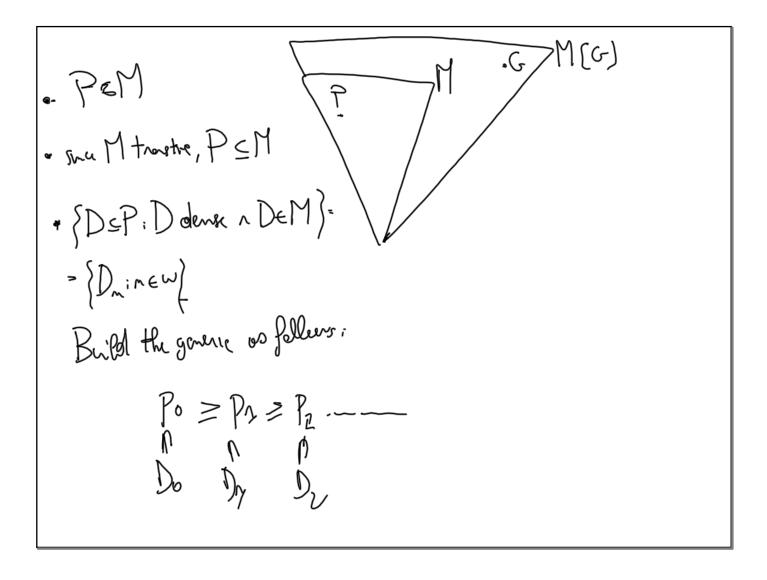
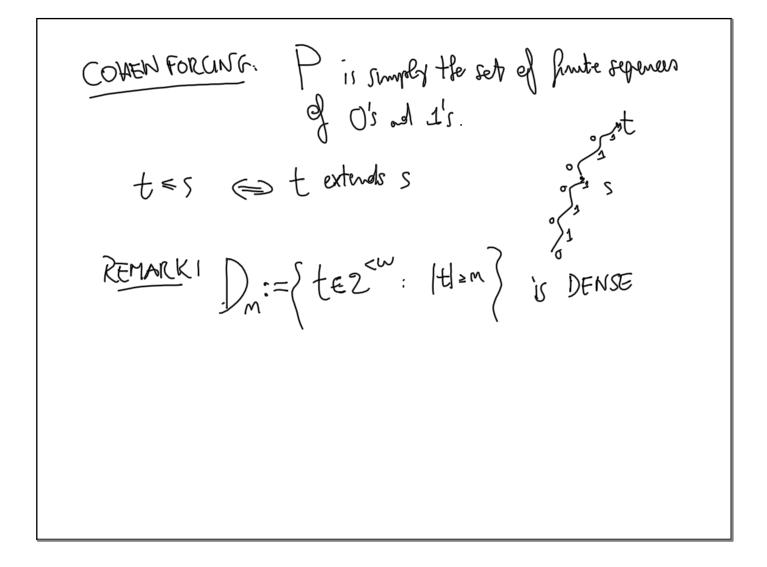
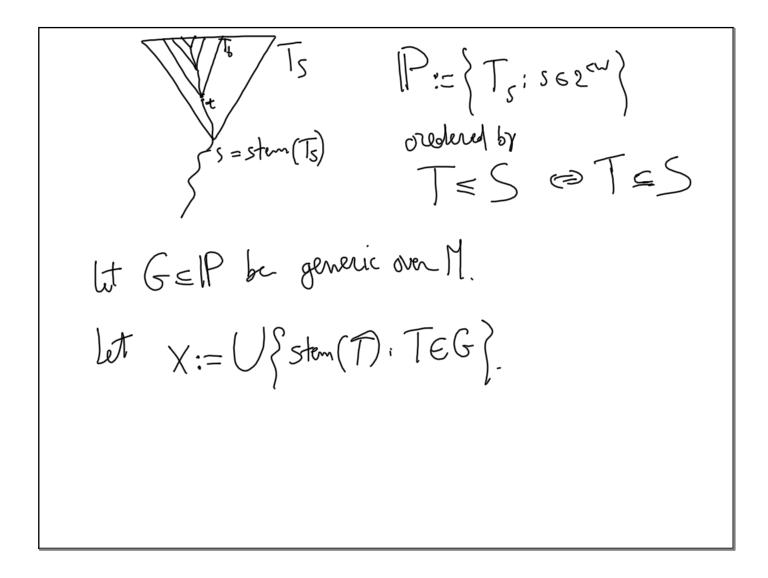
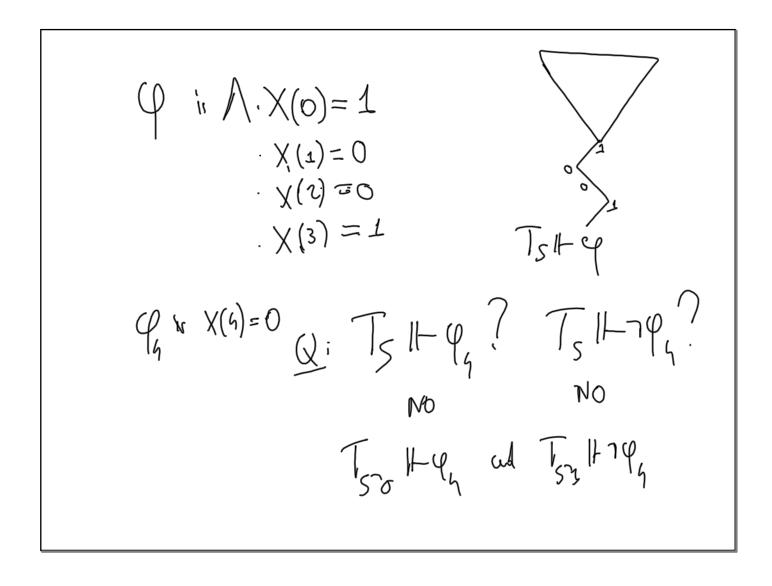
REE-FORCING In ZFC, we an olvers benild a model fra finte frogunent of ZFC. Morrow, by LS, we can consider countable trasitive madel of ZFC* (~ This denotes the first frequent).





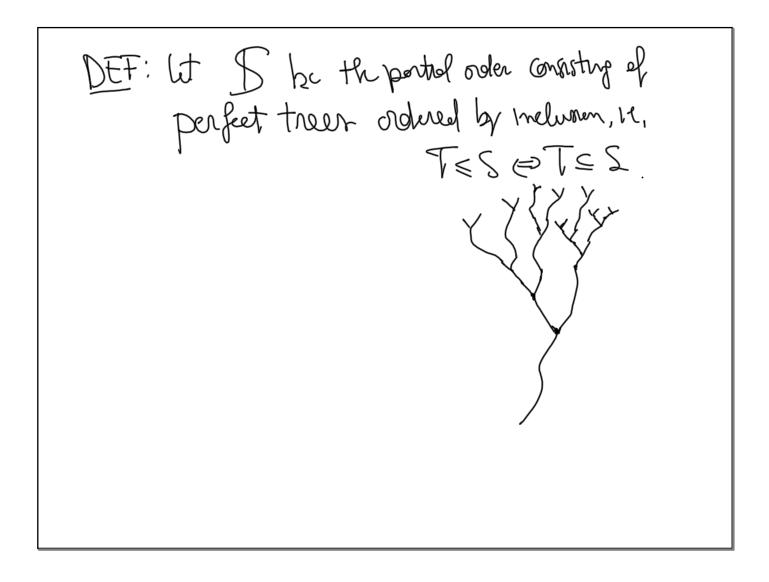




$$T_{S} \Vdash (1,0,0,1) \leq \chi$$

$$T_{S0} \Vdash (1,0,0,1,0) \leq \chi$$

$$T_{S1} \Vdash (1,0,0,1,1) \leq \chi$$



• pick
$$P_{S^{n}0}$$
, $P_{S^{n}1}$
 $ad + to Ke $Q^{o} \leq P_{S^{n}0}$, $b_{0} \in 0$, $d_{1}Q^{o} \neq F(a) = b_{0}^{o}$
 $Q^{a} \leq P_{S^{n}1}$, $b_{1}^{o} \in 0$, $d_{1}Q^{2} \neq F(a) = b_{1}^{o}$
 $P^{o}_{...} = Q^{o} \cup Q^{a} \in \mathcal{B}$ and $Sten(P_{...}) = S$
 $\mathcal{B}_{0} := \{b_{0}, b_{1}\}$$

 $P_{s_{0}}^{\circ} \ge q^{\circ}, b_{0}^{\circ} \qquad q^{\circ} \Vdash F(s) = b_{0}^{\circ} \qquad (1 + F(s)) = b_{0}^{\circ} \qquad (1 + F($ $P^{1} = q^{2} u q^{2} u q^{2} u q^{3} a d B^{1} = \{b^{3}, b^{3}, b^{3}$

By noticely, we proceed coolspansly and we get

$$\{P^n: n \in W\}$$
 of these in S st:
 $P^{n+1} \leq P^n$
 $P^{n+1} ad P^n$ have the same Kth-spectraler,
 $P^n \in M$ for $K \leq m+2$
And so $\bigcap_{m \in W} P_n = : q \in S$
Further $G \neq B = \bigcup_{m \in W} B_m$
CLAIM:
 $Q \mid |- TGM(F) \leq B$
 $Q \mid |- TGM(F) \leq B$
 $Q \mid |- F(0) = b_0 \vee F(s) = b_2$
 $Q \mid |- F(0) = b_1^2$
 $Q \mid |- F(s) = b_2^3$
 $Q \mid |- F(s) = b_1^3$
 $Q \mid |- F(s) = b_1^3$