Gruppenarbeit #10

Modelle der Mengenlehre WS 2020/21 · Universität Hamburg Prof. Dr. Benedikt Löwe

Wir setzen nun unsere Überlegungen zu abzählbaren Skolemhüllen aus Gruppenarbeit #8 fort. Wiederum ist κ eine unerreichbare Kardinalzahl und $\mathfrak{V} := (\mathbf{V}_{\kappa}, \in)$. Wir bilden die abzählbare Skolemhülle $H := H^{\mathfrak{V}}(\varnothing)$ innerhalb von \mathbf{V}_{κ} , so daß $\mathfrak{H} := (H, \in) \prec \mathfrak{V} \models \mathsf{ZFC}$.

Wir hatten bereits gesehen, daß $\aleph_1 \in H$ und daß $\delta := \sup(\aleph_1 \cap H)$ eine abzählbare nicht definierbare Ordinalzahl ist (insbesondere ist $\delta \notin H$).

- (1) Da δ abzählbar ist, gibt es konfinale Funktionen $g:\omega\to\delta$. Überlegen Sie sich, daß diese Funktionen nicht in H liegen können.
- (2) Überlegen Sie sich, daß \aleph_2 , \aleph_3 , \aleph_ω , \aleph_{ω_1} allesamt Elemente von H sind und daß für alle $\alpha < \omega_1$ gilt, daß $\aleph_\alpha \in H$ genau dann, wenn $\alpha \in H$. Insbesondere ist für $\delta \leq \beta < \omega_1$ die Kardinalzahl \aleph_β nicht in H.
- (3) Betrachten Sie $Y := \aleph_2 \cap H$. Dies ist eine abzählbare Menge von Ordinalzahlen und somit ist $\eta := \sup Y \cap H < \aleph_2$. Zeigen Sie, daß $\eta > \omega_1 + \delta$.
- (4) Da $\eta < \aleph_2$ gibt es konfinale Funktionen $g : \omega_1 \to \eta$. Überlegen Sie sich, daß diese Funktionen nicht in H liegen können.
- (5) Zeigen Sie, daß Y sehr große Lücken aufweist: es gibt $\xi_1, \xi_2 < \eta$, so daß das offene Intervall $(\xi_1, \xi_2) := \{\alpha < \omega_2; \xi_1 < \alpha < \xi_2\}$ überabzählbar ist und keine Elemente von Y enthält.
- (6) Uberlegen Sie sich, daß die Werte von δ und η von der in der Konstruktion der Skolemhülle verwendeten Skolemfunktion abhängen. Sei f eine Skolemfunktion und $\mathfrak{H}_f := (H_f, \in)$ die mit Hilfe von f definierte abzählbare Skolemhülle von \emptyset . Angenommen, wir haben $\mathfrak{H} = \mathfrak{H}_f$ für eine beliebig vorgegebene Skolemfunktion; wie können Sie die Skolemfunktion f zu einer Funktion f' modifizieren, so daß im Modell $\mathfrak{H}_{f'}$ die Werte von δ und η anders sind?
- (7) Uberlegen Sie sich, daß für jedes f gilt, daß $\lambda_f := \sup H_f \cap \kappa < \kappa$, aber daß das Supremum aller λ_f gerade gleich κ ist.
- (8) Nach dem Satz von Mostowski gibt es eine transitive Menge T, so daß $(T, \in) \cong \mathfrak{H}$. Überlegen Sie sich, daß $T \subseteq \mathbf{V}_{\kappa}$ und daß für alle $\alpha > \omega$ gilt, daß $\mathbf{V}_{\alpha}^{T} \subsetneq \mathbf{V}_{\alpha}$.
- (9) Seien $\delta^* := \text{o.t.}(\delta \cap H)$ und $\eta^* := \text{o.t.}(\eta \cap H)$. Zeigen Sie, daß $(T, \in) \models \delta^* = \aleph_1 \wedge \eta^* = \aleph_2$.
- (10) Falls $A \in \mathbf{V}_{\kappa}$ und Sie bilden die Skolemhülle $H_A := H^{\mathfrak{V}}(A)$, so existiert eine transitive Menge T_A mit $(T_A, \in) \cong (H_A, \in)$ und es gilt $T_A \subseteq \mathbf{V}_{\kappa}$. Was können Sie in diesem Fall über δ und η sagen? (Bei geeigneter Wahl von A kann gelten, daß $\delta = \aleph_1$ und $\eta = \aleph_2$.)