Modelle der Mengenlehre WS 2020/21 · Universität Hamburg Prof. Dr. Benedikt Löwe

In der Vorlesung hatten wir Lévy-Paare kennengelernt: ein Paar (α, β) heißt $L\acute{e}vy$ -Paar, falls $\mathbf{V}_{\alpha} \prec \mathbf{V}_{\beta}$. Wir hatten bewiesen: wenn κ unerreichbar ist, so gibt es ein (sogar viele) λ , so daß (λ, κ) ein Lévy-Paar ist und es gibt Lévy-Paare (λ, λ') , bei denen weder die obere noch die untere Lévy-Zahl unerreichbar sind.

Der folgende Auszug stammt aus dem Artikel A simple maximality principle von Joel David Hamkins (Journal of Symbolic Logic 68:2 (2003), 527–550:

Let me motivate the first lemma by mentioning that if there is an inaccessible cardinal κ , then by the proof of the downward Lowenheim-Skolem Theorem, one can find a closed unbounded set $C \subseteq \kappa$ of cardinals δ with $V_{\delta} \prec V_{\kappa}$. The structure V_{κ} , therefore, is a model of ZFC with a cardinal δ such that V_{δ} is an elementary substructure of the universe. Axiomatizing this situation, let the expression " $V_{\delta} \prec V$ " represent the scheme, in the language with an additional constant symbol for δ , which asserts of any statement φ in the language of set theory that

for every
$$x \in V_{\delta}$$
, if $V_{\delta} \models \varphi[x]$, then $\varphi(x)$.

Each such assertion in this scheme is first order, since one need only refer to satisfaction in a set structure, V_{δ} , and this is provided by Tarski's definition of the satisfaction relation. The little argument just given shows that if there is an inaccessible cardinal, then there is a model of ZFC satisfying the scheme $V_{\delta} \prec V$; indeed, since the club C provides whole towers of such δ , the consistency strength of $V_{\delta} \prec V$ is easily seen to be strictly less than the consistency of the existence of an inaccessible cardinal.

The really amazing thing, however, is that in fact $\operatorname{ZFC} + V_{\delta} \prec V$ is equiconsistent with ZFC. One might incorrectly guess that if ZFC holds in V and the scheme $V_{\delta} \prec V$ holds, then V knows that V_{δ} is a model of ZFC; but this conclusion would confuse the 'external' ZFC with the 'internal' ZFC of the model. What follows is only that V_{δ} satisfies any particular instance of an axiom of ZFC but not the formula asserting that V_{δ} satisfies the entire scheme ZFC. This subtle distinction is crucial, in view of the following elementary fact.⁶

Lemma 5.4 If ZFC is consistent, then so is ZFC + $V_{\delta} \prec V$.

Proof: Assume that ZFC is consistent; so it has a model M. By the Lévy Reflection Theorem, every finite subcollection of the theory ZFC + $V_{\delta} \prec V$ is modeled in some rank initial segment of M, and therefore is consistent. So the whole theory is consistent.

- (1) Lesen Sie den kurzen Textauszug.
- (2) Überlegen Sie sich, daß der erste Satz von Hamkins genau die Ergebnisse beschreibt, die wir in der Vorlesung gesehen haben. Hier heißt die Menge C abgeschlossen (closed), falls für alle Limesordinalzahlen $\lambda < \kappa$ gilt: wenn C unbeschränkt in λ ist, so ist $\lambda \in C$.
- (3) Lesen Sie den skizzenhaften Beweis von Lemma 5.4.
- (4) Hamkins verwendet hier den sogenannten $L\acute{e}vyschen$ Reflektionssatz, den wir uns in der Vorlesung später noch genauer ansehen werden. In der üblichen Formulierung lautet er (z.B. Jech, Set Theory, Theorem 12.14:

Lévyscher Reflektionssatz. Sei x eine Menge und Φ eine endliche Menge von Formeln. Dann gibt es eine transitive Menge $X \supseteq x$, so daß für alle $\varphi \in \Phi$ und alle $x_1, ..., x_n \in X$ gilt

$$\varphi(x_1,...,x_n) \iff (X,\in) \models \varphi(x_1,...,x_n).$$

Überlegen Sie sich zunächst, warum dieser Satz impliziert, daß man stets annehmen kann, daß $X = \mathbf{V}_{\alpha}$ für ein geeignetes α .

(5) Formulieren Sie den skizzenhaften Beweis von Lemma 5.4 so präzise wie möglich unter Verwendung von (4).