Gruppenarbeit #4

Modelle der Mengenlehre WS 2020/21 · Universität Hamburg Prof. Dr. Benedikt Löwe

In dieser Gruppenarbeit betrachten Sie normale und nicht-normale Operationen auf Kardinalzahlen. Zunächst erinnern wir uns an den Satz aus der Vorlesung:

Theorem. Eine Ordinalzahleperation F heißt normal, falls für alle $\alpha < \beta$ gilt, daß $F(\alpha) < F(\beta)$ und für alle Limesordinalzahlen λ gilt, daß $F(\lambda) = \bigcup_{\xi < \lambda} F(\xi)$. Jede normale Ordinalzahleperation hat beliebig große Fixpunkte, also η , so daß $F(\eta) = \eta$.

(1) Wir hatten uns in der Vorlesung die normalen Ordinalzahloperationen $\xi \mapsto \aleph_{\xi}$ und $\xi \mapsto \beth_{\xi}$ angesehen; deren Fixpunkte heißen Aleph-Fixpunkte und Beth-Fixpunkte. Sei κ eine reguläre Kardinalzahl. Zeigen Sie, daß es Aleph-Fixpunkte und Beth-Fixpunkte mit Konfinalität κ gibt.

[*Hinweis*. Sei φ_{ξ} der ξ te Aleph-Fixpunkt. Zeigen Sie, daß $\operatorname{cf}(\varphi_{\xi}) = \operatorname{cf}(\xi)$ und ebenso für die Beth-Fixpunkte.]

- (2) Zeigen Sie, daß eine Kardinalzahl κ genau dann ein starker Limes ist, falls es eine Limesordinalzahl λ gibt, so daß $\kappa = \beth_{\lambda}$. (Vergleichen Sie dies mit der Situation bei der Aleph-Operation.)
- (3) Betrachten Sie die Operation $\xi \mapsto \varphi_{\xi}$ aus dem Hinweis zu (1). Uberlegen Sie sich, daß dies eine normale Ordinalzahloperation ist und somit beliebig große Fixpunkte hat.
- (4) Wir wollen Fixpunkte der Operation $\xi \mapsto \varphi_{\xi}$ Hyper-Aleph-Fixpunkte nennen. Zeigen Sie, daß jede unerreichbare Kardinalzahl ein Hyper-Aleph-Fixpunkt ist.

[Hinweis. Überlegen Sie sich, daß $cf(\varphi_{\alpha+1}) = \aleph_0$ für alle α und verwenden Sie den Hinweis für (1).]

- (5) Sei ϱ_{ξ} die ξ te reguläre Kardinalzahl. Ist die Operation $\xi \mapsto \varrho_{\xi}$ normal?
- (6) Zeigen Sie, daß eine Kardinalzahl κ genau dann schwach unerreichbar ist, wenn sie Fixpunkt der Operation ϱ ist, also $\kappa = \varrho_{\kappa}$.
- (7) Sei σ_{ξ} die ξ te singuläre Kardinalzahl. Also

$$\sigma_0 = \aleph_{\omega} = \aleph_{\omega \cdot (1+0)} \qquad \sigma_1 = \aleph_{\omega \cdot 2} = \aleph_{\omega \cdot (1+1)}$$

$$\sigma_2 = \aleph_{\omega \cdot 3} = \aleph_{\omega \cdot (1+2)} \qquad \dots$$

$$\sigma_{\omega} = \aleph_{\omega \cdot \omega} = \aleph_{\omega \cdot (1+\omega)}$$

Können Sie im allgemeinen beweisen, daß $\sigma_{\alpha} = \aleph_{\omega \cdot (1+\alpha)}$? Was ist der Zusammenhang zwischen dieser Frage, der Normalität der Operation $\xi \mapsto \sigma_{\xi}$ und schwach unerreichbaren Kardinalzahlen?

(8) Nehmen Sie an, daß es unbeschränkt viele unerreichbare Kardinalzahlen gibt; also: für alle κ gibt es eine unerreichbare Kardinalzahl, die größer als κ ist. Sei ι_{ξ} die ξ te unerreichbare Kardinalzahl. Kann man (in ZFC) beweisen, daß die (nicht normale) Operation $\xi \mapsto \iota_{\xi}$ Fixpunkte hat?