Gödel's Fixed Point Lemma in the Land of Sets

We work in HF and assume that all formulas of our language are objects in $\mathbf{H F}$, i.e., $\mathbf{F m l} \subseteq \mathbf{H F}$. As usual, if $a \in \mathbf{H F}$ and φ is a formula in one free variable x, we write

$$
\mathbf{H F} \models \varphi(a): \Longleftrightarrow \mathbf{H F} \frac{a}{x} \models \varphi,
$$

i.e., for all valuables v such that $v(x)=a$, we have that $\mathbf{H F}, v \models \varphi$.

Lemma (Gödel). If φ is a formula in one free variable x, then there is a sentence σ such that

$$
\mathbf{H F} \models \sigma \Longleftrightarrow \mathbf{H F} \models \varphi(\sigma) .
$$

Proof. If x is a variable and $w \in \mathbf{H F}$, there is a concrete formula that states that x is equal to w, defined by recursion on the rank of w in the von Neumann hierarchy. Let us write is ${ }_{w}(x)$ for that formula. Now for any formula ξ with one free variable x and $w \in \mathbf{H F}$, we let $\xi[w]:=\exists x\left(\xi \wedge\right.$ is $\left._{w}(x)\right)$. Clearly,

$$
\begin{equation*}
\mathbf{H F} \models \xi[w] \Longleftrightarrow \mathbf{H F} \models \xi(w) \Longleftrightarrow \mathbf{H F} \frac{w}{x} \models \xi \tag{}
\end{equation*}
$$

This operation is called the substitution operation: we are syntactically substituting the set w for the variable x in the formula ξ.

Since $\mathrm{Fml} \subseteq \mathbf{H F}$, we can substitute any formula η for the variable x; in particular, we can substitute the formula ξ itself, i.e., form $\xi[\xi]$. We have that $\mathbf{H F} \models \xi[\xi]$ if and only if the formula ξ applies to the object $\xi \in \mathbf{H F} .{ }^{1}$

Let φ be the formula in the statement of the lemma (in one free variable x) and define a formula $\widehat{\varphi}$, again in one free variable x, expressing " x is a formula in one free variable and $\varphi[x[x]]$ ". So, $\widehat{\varphi}$ holds of a formula ξ if and only if the sentence $\xi[\xi]$ satisfies the formula φ.

Finally, we now form the sentence $\sigma:=\widehat{\varphi}[\widehat{\varphi}]$ and prove that it satisfies the statement of the lemma:

$$
\begin{aligned}
\mathbf{H F} \models \sigma & \Longleftrightarrow \mathbf{H F} \models \widehat{\varphi}[\widehat{\varphi}] \\
& \Longleftrightarrow \mathbf{H F} \models \widehat{\varphi}(\widehat{\varphi}) \quad \text { by }\left(^{*}\right) \\
& \Longleftrightarrow \mathbf{H F} \models \varphi[\widehat{\varphi}[\widehat{\varphi}] \quad \text { by definition of } \widehat{\varphi} \\
& \Longleftrightarrow \mathbf{H F} \models \varphi\left(\widehat{\varphi}[\widehat{\varphi}] \quad \text { by }\left(^{*}\right)\right. \\
& \Longleftrightarrow \mathbf{H F} \models \varphi(\sigma) .
\end{aligned}
$$

q.e.d.

Applying Gödel's Fixed Point Lemma to the formula $\varphi(x):=\neg \exists v(\mathrm{O}(x, v) \wedge v \in \operatorname{Proof}(\mathcal{R}, S))$ gives us the Gödel sentence ψ with the property that

$$
\mathbf{H F} \models \psi \Longleftrightarrow \mathbf{H F} \models \text { " } \psi \text { is not provable". }
$$

The Gödel sentence cannot be false since this would imply that it's provable, hence true. So it must be true. But by (\dagger), it is not provable.

[^0]
[^0]: ${ }^{1}$ As an example in the style of Frege and Russell, think of the formula ξ expressing "has an even number of symbols"; then $\xi[\xi]$ is the sentence stating that the formula describing the property of having an even number of symbols has itself an even number of symbols.

