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1 Formal Languages & Grammars

1.1 Notation & preliminaries

We fix any set X. If n is a natural number (note that we include 0 in the natural numbers),
then Xn is the set of n-tuples of elements of X; we call these objects X-strings of length n
(usually denoted by letters such as α, β, γ, σ, and τ). In the usual set-theoretic representa-
tion, n = {0, 1, ..., n− 1} and a string of length n is a function from the set n into X. Note
thatX0 only contains the empty sequence which we shall denote by ε. We writeX∗ for the set
of all X-strings1 and write |α| = n if α ∈ Xn (or equivalently, dom(α) = n = {0, ..., n− 1});
the number |α| is called the length of α. Since strings are functions, we can use the usual
notation for function restriction to denote their initial segments, i.e., if α ∈ Xn and k ≤ n,
then α↾k is the unique initial segment of α of length k.

If α, β ∈ X∗, we can concatenate them in the usual way and write αβ for the concatenated
string. If α has length n and β has length m, then αβ has length n+m:

αβ(k) :=

{
α(k) if k < n and
β(ℓ) if k = n+ ℓ and ℓ < m.

If x ∈ X, we use the notation xn for the string of length n consisting only of the symbol x.
Similarly, if α ∈ X∗, we write αn for the concatenation of n copies of the string α (formally,
we can define this by recursion as α0 := ε, αn+1 := αnα). We often (slightly incorrectly)
confuse x ∈ X with the string of length 1 consisting of the element x. So, if we write αx, we
mean the string α with an extra element x appended at the end; if we write xα, we mean the
string α prefixed by an element x. If Y, Z ⊆ X∗, we write Y Z := {αβ ; α ∈ Y and β ∈ Z};
if Y = {α}, we abbreviate this to αZ and if Z = {β}, we write Y β.

Given any function f : X → Y , we can recursively extend it to a function f̂ : X∗ → Y ∗

by

f̂(ε) := ε,

f̂(αx) := f̂(α)f(x) (for α ∈ X∗ and x ∈ X).

We often re-use the notation f for the extended function if no confusion is possible, i.e., we
write f : X∗ → Y ∗ instead of f̂ .

1The notation X∗ is sometimes called the Kleene star after the American logician Stephen Cole Kleene
(1909-1994); more about this in § 2.6.
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As usual, we say that a set X is countable if there is a surjection from N onto X,2 it
is infinite if there is an injection from N into X. A set is called uncountable if it is not
countable.3 Clearly, if X ⊆ Y , X is countable and Y is uncountable, they are not the same,
so Y \X ̸= ∅. Moreover, from the Part IA course Numbers & Sets, we know that the union
of two countable sets is countable, therefore Y \X cannot even be countable. The following
results are simple applications of techniques learned in Numbers & Sets :

Proposition 1.1. If X is countable and non-empty, then X∗ is infinite and countable.

Proof. Let x ∈ X (this exists since X is non-empty). The map n 7→ xn is an injection from
N into X∗, so X∗ is infinite.

Since X is countable, there is a surjection π : N → X. Let pi be the ith prime number
(i.e., p0 = 2, p1 = 3, p2 = 5, etc.). If k ∈ N is arbitrary, we can use its unique prime
factorisation

k =
∏
i∈N

pni
i .

Consider the sequence (n1, ..., nn0) (i.e., take the number of factors of 2 in k as the length
of the sequence and then take the factors of the next n0 primes as the representatives of
the elements of the sequence). Now assign the sequence (π(n1), .., π(nn0)) to k. This clearly
defines a surjection from N onto X∗. q.e.d.

Proposition 1.2 (Cantor’s Theorem). If X is infinite, then the power set of X, i.e., the set
of all subsets of X, denoted by ℘(X), is uncountable.

Proof. Let i : N → X be an injection. Suppose that π : N → ℘(X) is a function. We shall
show that it is not a surjection. Define D := {i(n) ; i(n) /∈ π(n)} and claim that D is not in
the range of π. Assume otherwise, then there is some d ∈ N such that D = π(d). But then
i(d) ∈ D = π(d) if and only if i(d) /∈ π(d). Contradiction! q.e.d.

Proposition 1.3. If X is countable, then the set of finite subsets of X is countable.

Proof. Let π : N → X be the surjection witnessing countability of X. By Proposition 1.1
we know that X∗ is countable, so it’s enough to show that there is a surjection from X∗ to
the set of finite subsets of X. If α ∈ X∗, let f(α) := ran(α) be the set of all elements of
X occurring in α. If F ⊆ X is any finite set and x ∈ F , find the minimal nx such that
π(nx) = x. Then {nx ; x ∈ F} is a finite set of natural numbers of the same size as F . Or-
der these by size, e.g., n0 < n1 < ... < nk. Define α by α(i) := π(ni). Then f(α) = F . q.e.d.

2If X ̸= ∅, there is an injection from X into N if and only if there is a surjection from N onto X.
3This definition is not the standard definition of “infinite” that will be presented in Part II Logic & Set

Theory, but it is equivalent to it under the assumption of the axiom of choice.
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1.2 Rewrite systems

Suppose that Ω is a non-empty finite set whose elements are called symbols. Consider the set
Ω∗ of Ω-strings and the set Ω+ := Ω∗\{ε} of non-empty strings. An element of Ω+ × Ω∗ is
called a production rule or rewrite rule over Ω. To improve readability, we write α → β for
(α, β). The informal interpretation of such a production rule is: “whenever a string contains
α as a substring, it can be rewritten by β”.

Definition 1.4. A pair (Ω, P ) is called a rewrite system if Ω is a non-empty finite set and
P is a finite set of rewrite rules over Ω.

Proposition 1.5. If Ω is a non-empty finite set, then there are countably many rewrite
systems on Ω.

Proof. By Proposition 1.1, Ω∗ is countable and so is Ω∗ × Ω∗ ⊇ Ω+ × Ω∗.4 The set P is a
finite subset of Ω+ ×Ω∗; thus, by Proposition 1.3, there are only countably many choices for
P . q.e.d.

If R = (Ω, P ) is a rewrite system and σ, τ ∈ Ω∗, we write

σ
R−→1 τ

if there are α, β, γ, δ ∈ Ω∗ such that σ = αβγ, τ = αδγ, and β → δ ∈ P and say that R

produces τ from σ in one step or R rewrites σ into τ in one step. The relation
R−→ is defined

as the transitive and reflexive closure of
R−→1, i.e., σ

R−→ τ if and only if either σ = τ or there

are σ0, ..., σn such that σ0 = σ, σn = τ , and for each 0 < k < n− 1, we have σk
R−→1 σk+1.

We say that G produces τ from σ or G rewrites σ into τ .

If σ
R−→ τ , we call a sequence (σ0, ..., σn) as in the definition an R-derivation of τ from σ

using R of length n.5 Because of this, we also say τ can be derived from σ in R. Note that
this sequence need not be uniquely determined (cf. Example Sheet #1).

If R is a rewrite system and α is a string, we write D(R,α) := {β ; α R−→ β} for the set
of strings that can be derived from α in R.

1.3 Relation to actual languages

If we think of Ω as a set of basic linguistic construction units, i.e., letters or words or sentences,
then we can think of larger, composite linguistic entities as elements of Ω∗: words are finite
sequences of letters, sentences are finite sequences of words, and texts are finite sequences of
sentences. Not every finite sequence of letters is a word, not every finite sequence of words is
a grammatical sentence, and not every sequence of sentences form an intelligible text. Thus,

4The second claim follows from Proposition 1.1 applied to Ω∗ (note that there is an surjection from X∗

onto X×X), but in this case there is direct proof involving Cantor’s zigzag bijection (i, j) 7→ (i+j)(i+j+1)
2 + j

that will feature in § 4.5 later.
5Note that even though the derivation is a sequence of length n+1, we call it a derivation of length n. This

is because we are counting the number of rewrite rules applied in the derivation. The sequence consisting of
σ0 is a derivation of length zero since zero rewrite rules have been applied.
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the task is to describe which subset L ⊆ Ω∗ consists of the wellformed sequences that we
shall consider acceptable in our language.

In practice, an actual human vernacular language is a finite subset of Ω∗. E.g., in the
case of words constructed from letters, the language is usually defined by a dictionary : a
finite list of all words existing in this language. However, Noam Chomsky observed that one
of the most fundamental features of language is what he called (linguistic) recursion:

[The] arbitrary decree that there is a finite upper limit to sentence length in
English ... would serve no useful purpose. ... The point is that there are processes
of sentence formation that this elementary model for language is intrinsically
incapable of handling. ... In general, the assumption that languages are infinite
is made for the purpose of simplifying the description. If a grammar has no
recursive steps, ... it will be prohibitively complex. If it does have recursive
devices, it will produce infinitely many sentences.6

E.g., the process of taking subordinate clauses is a productive feature of language. In principle,
no matter how complex a sentence is, one can increase its complexity by prefixing it with
“X observes that”. So, we form an infinite sequence of grammatical sentences

B likes A.
C believes that B likes A.
D reports that C believes that B likes A.
E observes that D reports that C believes that B likes A.
etc.

Clearly, at some point, these sentences become too complex to be used in practice as a
means of human communication, but there is no non-arbitrary maximum depth: if you
can understand a sentence with n such nestings, you will be able to understand a sentence
with n + 1 such nestings. Chomsky’s proposal is therefore to embrace that the structure of
languages is governed by recursive rules and they are therefore best represented by infinite
sets of sequences. Recursive rules of such a generative grammar could be something like

S → NPVP,

NP → AdjNP,

NP → Noun, (*)

VP → VPAdv,

VP → Verb,

where NP stands for “noun phrase” and VP for “verb phrase” together with a dictionary list
that allows to exchange Noun, Verb, Adj, or Adv with every noun, verb, adjective, or adverb
in the dictionary, respectively. This allows the derivation of Chomsky’s famous grammatical,

6Chomsky, N. (1956). Three models for the description of language. IRE Transactions of Information
Theory, 2(3), 113–124; pp. 115f.
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but nonsensical sentence “Colourless green ideas sleep furiously”.

S
%%yy

NP
��ww

VP
''��

Adj

��

NP
$$��

VP
��

Adv

��

Adj

��

NP
��

Verb

��
Noun
��

Colourless green ideas sleep furiously.

In contrast, Chomsky’s second example of a string of words “Furiously sleep ideas green
colourless” is not only nonsensical, but cannot be produced from the grammar described
above. It is therefore ungrammatical. Using our definitions from the next section, we shall
be able to prove its ungrammaticality mathematically (Example 1.14).

1.4 Grammars

We shall look at specific rewrite systems that we shall call grammars. Our symbols in Ω
come in two types: terminal symbols, also called letters, and nonterminal symbols, also called
variables. We write Σ ⊆ Ω for the set of letters, also called the alphabet, and V ⊆ Ω for the
set of variables. We assume that Σ and V are both non-empty and disjoint. By convention,
we use a, b, c for terminals and A, B, C for nonterminals.

A Σ-string, i.e., an element of Σ∗ is called a word over Σ. We usually use letters such
as u, v, and w to refer to words and use the symbol W := Σ∗ for the set of words and
W+ := W\{ε} for the set of non-empty words. Any subset L ⊆ W is called a language over
Σ. The set of languages is just the power set of W, so, by Proposition 1.2, we know that
there are uncountably many languages.

Definition 1.6. A grammar over Σ is a tuple (Σ, V, P, S) where Σ and V are non-empty
and disjoint with Ω := Σ ∪ V and we have that S ∈ V and that (Ω, P ) is a rewrite system.
We call S the start symbol.

Since grammars are special rewrite systems, we can use the notation for rewrite systems
for our grammars, i.e., if G = (Σ, V, P, S) is a grammar and R := (Ω, P ), then D(G,α) :=

D(R,α), α
G−→1 β if and only if α

R−→1 β, and α
G−→ β if and only if α

R−→ β. We define

L(G) := {w ∈ W ; S
G−→ w} = W ∩ D(G,S)

and call this the language generated by G. These are all the words that can be derived from
the start symbol. The following are very basic properties whose proofs give us a general idea
how to work with grammars. Let G = (Σ, V, P, S) be a grammar.

Example 1.7. If there is no production of the form S → α ∈ P , then D(G,S) = {S} and
L(G) = ∅.
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[Clearly, there is a unique derivation of length zero and it derives S, so S ∈ D(G,S) for
any grammar G. By our assumption, there are no G-derivations from S of length one (and
therefore not of any greater length), thus D(G,S) = {S} and hence L(G) = D(G,S) ∩W =
∅.]

Example 1.8. If there is no production of the form α → w ∈ P where w ∈ W, then
L(G) = ∅.

[We prove by induction on the length of derivation that the final string is not a word.

Clearly, the unique derivation of length zero produces S which is not a word. If S
G−→ α by

any derivation of greater length, the final step in the derivation is of the form β
G−→1 α, in

particular, one of the rules or P is applied in the rewriting of β to α. But the right-hand
side of that rule contains a variable, so α contains a variable and thus is not a word.]

Example 1.9. Let Σ = {a}, V = {S}, P0 := {S → aaS, S → a}, and G0 := (Σ, V, P0, S).
Then L(G0) is the set of all odd-length words consisting of the letter a.

[Let’s prove this in detail: first of all, we notice that each rewrite step either keeps the
number of symbols the same or increases it by two. We prove by induction on the length of
the derivation, that every string produced by G from S has odd length: the unique string with
a derivation of length zero is S which has odd length; of all strings produced by derivations
of length n have odd length, say, length 2k+1, then a string with a derivation of length n+1
has either length 2k + 1 or (2k + 1) + 2, thus odd length.

In order to see that the unique word a2n+1 of length 2n + 1 can be produced, we give
provide a concrete derivation: we apply the production rule S → aaS to the start symbol
n times to obtain a2nS and finally apply S → a to remove the nonterminal and acquire the
desired word a2n+1.]

An analysis of the argument in Example 1.9 shows that if in a grammar all production
rules preserve oddness of length and we can provide a derivation of a2n+1, then the grammar
will produce the same language. E.g., Gi = ({a}, {S}, Pi, S) with

P1 := {S → aSa, S → a},
P2 := {S → Saa, S → a},
P3 := {S → aaS, S → aaSaa, S → a},
P4 := {S → aaS, S → Saa, S → aSa, S → a},
P5 := {S → aaS, aSa→ aaa, S → a},
P6 := {S → aaS, aaS → aSa, S → a}, or
P7 := {S → aaS, aaS → a, S → a}, etc.

Thus, different grammars can produce the same language. We say that two grammars G and
G′ are called equivalent if L(G) = L(G′).

Definition 1.10. Let Σ be an alphabet and let G = (Σ, V, P, S) and G′ = (Σ, V ′, P ′, S ′) be
two grammars over Σ. Let f : Ω → Ω′ be any function and extend it by recursion to Ω∗. We
say that f is an isomorphism between G and G′ if
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(i) it is the identity on Σ, i.e., f(a) = a for all a ∈ Σ;

(ii) f(S) = S ′;

(iii) the restriction f↾V is a bijection between V and V ′; and

(iv) for each α, β ∈ Ω∗, we have α → β ∈ P if and only if f(α) → f(β) ∈ P ′.

If there is an isomorphism between G and G′, we also say that the two grammars are iso-
morphic.

Proposition 1.11. Isomorphic grammars are equivalent.

Proof. If f is an isomorphism between G and G′, then f−1 is an isomorphism between G′

and G. Thus, by symmetry, it’s enough to show that if f is such an isomorphism, then
L(G) ⊆ L(G′). We can consider the f -image of any G-derivation of w (i.e., apply f to each
Ω-string in the derivation to obtain a new sequence of Ω′-strings). By property (ii), it starts
with S ′; by property (iv), it is a G′-derivation; by property (i), it derives f(w) = w. q.e.d.

Proposition 1.12. If G = (Σ, V, P, S) is any grammar and |V ′| = |V |, then there is a
grammar G′ = (Σ, V ′, P ′, S ′) that is isomorphic to G.

Proof. We first extend the bijection f : V → V ′ to a bijection from Ω to Ω′ by letting it be
the identity on Σ. Then we define S ′ := f(S) and P ′ by property (iv). This means that the
extension of f to Ω is an isomorphism between G and G′. q.e.d.

Proposition 1.13. Fix an alphabet Σ. Up to equivalence, there are only countably many
grammars over Σ.

Proof. If we fix a finite set V , then by Proposition 1.5, there are only countably many rewrite
systems (Ω, P ). Thus, the set of grammars over Ω is a finite union of countable sets, hence
countable.

Propositions 1.11 & 1.12 imply that the set of all languages produced by a grammar with
n variables is independent of the choice of the set of variables. Thus, if we fix a countable set
of variables {Vi ; i ∈ N}, every grammar is equivalent to a grammar with V = {Vi ; i ≤ n}
for some n. Therefore the set of all languages produced by a grammar is a countable union
of countable sets, thus countable (by Numbers & Sets). q.e.d.

We remark that the proof of Proposition 1.13 gives us a very important tool: whenever
we have two grammars and we only care about the languages they produce, we may w.l.o.g.
assume that their sets of variables are disjoint. If not, we just pick a disjoint set of variables
of the same size and use the isomorphic grammar with that set of variables instead.

Proposition 1.13 also shows that there are many languages that cannot be produced by
any grammar: By Proposition 1.2, there are uncountably many languages, but only countably
many of them are generated by a grammar. Thus, most languages are not generated by a
grammar.
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Example 1.14. As an illustration, we show that Chomsky’s example “Furiously sleep ideas
green colourless” is not derivable in the grammar given in § 1.3. We first need to specify the
grammar G formally: Σ is the finite set of all words in some English dictionary,

V := {S,NP,VP,Adj,Adv,Verb,Noun},

and P is the list of production rules given in (*) together with the dictionary rules that
transform the nonterminals into the corresponding terminals, i.e., the relevant production
rules are

S → NPVP, Noun → ideas,

NP → AdjNP, Verb → sleep,

NP → Noun, Adj → colourless,

VP → Verb, Adj → green,

VP → VPAdv, Adv → furiously.

We claim that no derivable string ends in either Adj or colourless (let’s call a string that
does not end in either of these two good) and show this by induction on the length of the
derivation. Clearly, any derivation of length zero produces S which is a good string. Suppose
all derivations of length n produce only good strings and assume that α is produced by a

derivation of length n + 1. Let’s assume that the last step of that derivation is β
G−→1 α.

Clearly, β has a derivation of length n, so by induction hypothesis, β is a good string.

An inspection of our grammar rules show that since β does not end in Adj and β
G−→1 α,

then α does not end in Adj. So, if α is not good, it must end in colourless. Furthermore,
the only rule that could produce colourless is the rule Adj → colourless. Thus, if α ends in
colourless, then β must end in Adj. Contradiction!

1.5 The Chomsky hierarchy

Fix Σ, V , and S ∈ V .

(1) A production rule α → β is called noncontracting if |α| ≤ |β|.

(2) A production rule α → β is called context-sensitive if there are γ, δ, η ∈ Ω∗ and A ∈ V
with α = γAδ, β = γηδ, and η ̸= ε.

(3) A production rule A→ β is called context-free if A ∈ V and |β| ≥ 1.

(4) Production rules A→ a and A→ aB are called regular if A,B ∈ V and a ∈ Σ.

We observe that context-sensitive, context-free, and regular production rules are noncon-
tracting. Every context-free rule is context-sensitive (just let γ = δ = ε) and every regular
rule is context-free.

We call a grammar noncontracting, context-sensitive, context-free, or regular if all of its
production rules are noncontracting, context-sensitive, context-free, or regular, respectively.
If G is a noncontracting grammar, we know that any string in D(G,S) must have length at
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least |S| = 1 [proof by induction on the length of the derivation]. Thus, a noncontracting
grammar can never derive the empty word ε.

We call a language noncontracting, context-sensitive, context-free, or regular if it is pro-
duced by a noncontracting, context-sensitive, context-free, or regular grammar, respectively.

By the above remark, noncontracting, context-sensitive, context-free, and regular lan-
guages cannot contain ε. As a consequence, we shall focus for most of this course on lan-
guages L ⊆ W+. In § 1.8, we discuss the possibility of generalising the notions to allow our
grammars to derive the empty word.

Example 1.15. The rules in the generative grammar for Chomsky’s example sentence
“Colourless green ideas sleep furiously” from Example 1.14 is context-free, since all pro-
duction rules have a single variable on the left-hand side. This is not in general true for
production rules of natural language. Suppose we have variables SNoun for “singular noun”,
SVerb for “singular verb”, PNoun for “plural noun”, and PNoun for “plural verb”. Then the
context-free rules

NP → SNoun, NP → PNoun, VP → SVerb, and VP → PVerb

would allow us to derive the ungrammatical sentences “Idea sleeps” and “Ideas sleep” by the
derivations

S
""{{

NP
��

VP
��

SNoun
��

PVerb
��

Idea sleep

and S
##{{

NP
��

VP
��

PNoun
��

SVerb
��

Ideas sleeps,

so we need to replace them with the context-sensitive production rules

NPVP → SNounVP, NPVP → PNounVP,

SNounVP → SNoun SVerb, and PNounVP → PNounPVerb.

Chomsky called languages generated by any grammar type 0 languages, context-sensitive
languages type 1 languages, context-free languages type 2 languages, and regular languages
type 3 languages. The noncontracting languages are missing in this list of types since Chom-
sky proved that they are the same as the type 1 languages, i.e., a language is noncontracting
if and only if it is context-sensitive (this is discussed on Example Sheet #1).

By the above remarks, we know that the four Chomsky types form a hierarchy, i.e.,
that the set of languages of a type is a subset of the set of languages of any lower type.
Furthermore, by Proposition 1.13, we know that each of the classes of languages is countable.
We call this hierarchy the Chomsky hierarchy (Figure 1). A hierarchy like this is called proper
if all of the classes are distinct, i.e., if each type has languages that are not of any higher
type (e.g., that there is a context-free language that is not regular).

On the level of grammars, it is easy to see that there are context-free grammars that are
not regular, context-sensitive grammars that are not context-free, and grammars that are not
context-sensitive. But a grammar that is not regular can still be equivalent to a grammar
that is regular as the following example shows:
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Type 3 Type 2

Type 1

Type 0

All languages

Figure 1: The Chomsky hierarchy

Example 1.16. Consider Σ = {a}, V := {A, S}, P8 := {S → aA, S → a,A → aS}, and
G8 := (Σ, V, P8, S). This is a regular grammar and L(G8) = {a2n+1 ; n ∈ N}. Thus, the set
of odd-length words with the letter a is a regular grammar. (Cf. Example Sheet #1.)

Example 1.16 shows that {a2n+1 ; n ∈ N} is a regular language. However, the grammars
with production rules P0, P1, P2, P3, and P4 given in or after Example 1.9 are not regular;
the grammar with production rules P5 is not even context-free; the grammar with production
rules P6 is not even context-sensitive; and the grammar with production rules P7 is not even
noncontracting. And yet, they are all equivalent and produce a regular language.

This example shows to us that proving that the Chomsky hierarchy is proper is more
complicated: we need techniques to prove that languages are not regular or not context-
sensitive.

1.6 Decision problems

Historically, computability theory and the theory of models of computation was driven by
decision problems. David Hilbert (1862–1943) gave an address at the International Congress
of Mathematicians in Paris in the year 1900 in which he formulated mathematical problems
for the 20th century.7 One of them was Hilbert’s Tenth Problem:

Given a diophantine equation with any number unknown quantities and with
rational integral numerical coefficients: To devise a process according to which it

7D. Hilbert (1900). Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-
Kongreß zu Paris 1900. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen.
Mathematisch-Physikalische Klasse, 3, 253–297.
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can be determined by a finite number of operations whether the equation is solvable
in rational integers.

Several decades later Hilbert and Wilhelm Ackermann (1896–1962) formulated the so-called
Entscheidungsproblem (“decision problem”) in their monograph on mathematical logic:8

From the considerations of the last section, we conclude the fundamental impor-
tance of the problem, to determine for any given formula of predicate calculus
whether it is [logically valid] or not.

Both of these questions ask for a procedure to determine the answer to a question, in the usual
terminology, for an algorithm. If the answer to the two mentioned problems is positive (and
that was presumably Hilbert’s expectation), it can be given by producing such an algorithm.

Note that we did not define the word “algorithm”. As long as we are giving positive
answers, this is not an issue: if a procedure is obviously algorithmic, we do not need a formal
definition of the word “algorithm”. In other words, it is enough to have sufficient criteria
for being an algorithm that allow us to see a proposed algorithm and determine whether it
actually is one. However, negative answers will require a definition of what an “algorithm”
is, or more specifically, necessary criteria for being an algorithm. This means that there is
a strong asymmetry between positive and negative answers to decision problems. Positive
answers are usually considerably easier to give. We shall come back to the question of
formalising the notion of an algorithm in § 4.5.9

In this section, we’ll formulate the typical decision problems for grammars. Let G and G′

be formal grammars and w ∈ W be a word.

The word problem. Is there an algorithm to determine whether w ∈ L(G)?

The emptiness problem. Is there an algorithm to determine whether L(G) = ∅?

The equivalence problem. Is there an algorithm to determine whether L(G) = L(G′)?

We say that a decision problem is solvable if there is such an algorithm and that it
is unsolvable if there is not. These three decision problems will be a guiding motivation
throughout this lecture course. It will turn out that all three (general) decision problems are
unsolvable. We are therefore particularly interested in restricting the decision problems to
the classes of grammars given by the Chomsky hierarchy. E.g., the word problem for regular
grammars is the question whether there is an algorithm that determines for any regular
grammar G and word w ∈ W whether w ∈ L(G).

In this section, we shall give a positive solution for the word problem for type 1, type
2, and type 3 languages. We shall return to the word problem for type 0 languages in § 4.8
(Corollary 4.39).

8D. Hilbert, W. Ackermann (1928). Grundzüge der theoretischen Logik. Springer-Verlag, p. 90.
9We mention briefly that both of the mentioned Hilbert problems have negative answers. The negative

solution to the Entscheidungsproblem will be discussed in § 4.8; the negative solution of Hilbert’s Tenth
Problem was provided by Davis, Matiyasevich, Putnam, and Robinson. Cf. Y. V. Matiyasevich (1993).
Hilbert’s Tenth Problem. MIT Press & M. Davis (1973). Hilbert’s Tenth Problem is Unsolvable. American
Mathematical Monthly 80, 233–269.
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Lemma 1.17. If G is noncontracting and w ∈ W, then there is a bound N depending only
on |w| and |Ω| such that w ∈ L(G) if and only if w has a derivation of length at most N .

Proof. Suppose w ∈ L(G), then there is a derivation (σ0, ..., σn) such that σ0 = S and
σn = w. Let’s assume that n is minimal with the property that there is a derivation of length
n. Since G is noncontracting, we know that for k ≤ ℓ, we have |σk| ≤ |σℓ|, so the sequence of
lengths of the strings in the derivation is nondecreasing. However, for a fixed length m, the
number of strings of length m is fixed: it is |Ω|m. This means by the pigeonhole principle
that if there are more than |Ω|m consecutive strings of length m in the derivation, then one of
them must repeat. But then the derivation can be shortened by eliminating the loop: that’s
a contradiction to the assumption that n is the minimal length of a derivation of w. So, the
derivation contains at most |Ω|m strings of length m. But this allows us to give an upper
bound on the length of the entire derivation, viz.

N :=

|w|∑
i=m

|Ω|m.

q.e.d.

Theorem 1.18. The word problem for noncontracting grammars is solvable.

Proof. Given w and G, compute N :=
∑|w|

m=1 |Ω|m and systematically check all derivations of
length N . If one of them produces w, output “Yes”; if not, output “No”. By Lemma 1.17,
this algorithm produces the correct result. q.e.d.

Since type 1, type 2, and type 3 languages are all noncontracting, this solves the word
problem for all of these classes. We shall return to the emptiness and the equivalence problems
in §§ 2.8, 3.5, & 4.13.

1.7 Closure properties

There are a number of algebraic operations on languages that allow us to combine languages
to new languages. Let L,M ⊆ W+ be any languages over an alphabet Σ.

(a) Concatenation. The language LM consists of words vw such that v ∈ L and w ∈M .

(b) Union. The language L ∪M consists of words either in L or in M .

(c) Intersection. The language L ∩M consists of words that are both in L and M .

(d) Complement. The language L := W+\L consists of nonempty words that are not in L.

(e) Difference. The language L\M consists of words in L that are not in M .

We are particularly interested in which classes of languages are closed under which oper-
ations. Basic set theoretic relationships between the operations show that there are various
implications between the closure properties:



19 Dec 2022 Michaelmas 2022: Part II Automata & Formal Languages 14

Lemma 1.19. Let C be a class of languages. Then the following implications hold:

(a) If C is closed under union and complementation, then it is closed under intersection.

(b) If C is closed under intersection and complementation, then it is closed under union.

(c) If C is closed under intersection and complementation, then it is closed under difference.

(d) If W+ ∈ C and C is closed under difference, then it is closed under complementation.

Proof. These are all set algebra consequences of the definitions and de Morgan’s Laws
W+\(A ∩B) = W+\A ∪W+\B and W+\(A ∪B) = W+\A ∩W+\B. q.e.d.

It is useful to realise that some of the operations correspond to simple transformations
of grammars, but they work only if we remove the possibility of undesirable interactions
between the grammars. By Proposition 1.12, we already know that we can assume w.l.o.g.
that two grammars have disjoint sets of variables.

Definition 1.20. A production rule is called variable-based if its left-hand side does not
contain any letters. A grammar is called variable-based if all of its rules are variable-based.

Lemma 1.21. For every grammar, there is a variable-based grammar that is equivalent to
it.

Proof. Add new variables Xa for every letter a ∈ Σ; let V ′ := V ∪ {Xa ; a ∈ Σ}. For
each production rule α → β ∈ P , replace every occurrence of a letter a occurring in α by
the corresponding new variable Xa; we write X(α) for this string. Clearly, X(α) does not
contain any letters anymore, and so X(α) → X(β) is a variable-based rule. Now define
P ′ := {X(α) → X(β) ; α → β ∈ P} ∪ {Xa → a ; a ∈ Σ} and G′ := (Σ, V ′, P ′, S).

Any G-derivation is transformed to a G′-derivation by the operation α 7→ X(α); a G-
derivation of w becomes a G′-derivation of X(w). Similarly, if we have a G′-derivation that
contains no letters anywhere, then all strings occurring are of the form X(α) for some α ∈ Ω∗

and the operation of replacing all occurrences of Xa with the corresponding a transforms
that derivation into a G-derivation. Together, this shows that w ∈ L(G) if and only of
X(w) ∈ D(G′, S).

If X(w) ∈ D(G′, S), then (by applying the additional rules of the form Xa → a as needed)
we have w ∈ L(G′).

Conversely, assume that w ∈ L(G′) and let S = σ0
G′

−→1 ...
G′

−→1 σm = w be a G′-
derivation of w. If we apply the operation X to this derivation, we obtain a sequence
(τ0, ..., τm) with τ0 = S = σ0 = X(σ0) and τi = X(σi). This sequence is not necessarily a

G′-derivation. If σi
G′

−→1 σi+1 was an application of a rule of the form X(α) → X(β), then

the same rule will warrant that X(σi)
G′

−→1 X(σi+1); if σi
G′

−→1 σi+1 was an application of
one of the rules Xa → a, then applying X will result in X(σi) = X(σi+1). Since for each
letter a there is only one production rule that produces a, we know that |w| many steps of
the derivation must be of this form. Thus, removing these |w| many steps will make the
remainder of the sequence (τ0, ..., τm) a G′-derivation of length m − |v| of X(w). But then
w ∈ L(G) by our earlier observation. q.e.d.



19 Dec 2022 Michaelmas 2022: Part II Automata & Formal Languages 15

Note that the transformation P 7→ P ′ in this proof preserves being noncontracting, being
context-sensitive, and being context-free, but not being regular. However, regular grammars
are variable-based anyway, so there is no need to apply Lemma 1.21 to a regular grammar.

Let G = (Σ, V, P, S) and G′ = (Σ, V ′, P ′, S ′) be two grammars over the same alphabet Σ.

(a) Concatenation. The concatenation grammar of G and G′ is (Σ, V ∪V ′∪{T}, P ∗, T ) with
a new variable T and P ∗ := {T → SS ′} ∪ P ∪ P ′.

(b) Union. The union grammar of G and G′ is (Σ, V ∪ V ′ ∪ {T}, P ∗, T ) with a new variable
T and P ∗ := {T → S, T → S ′} ∪ P ∪ P ′.

Remark 1.22. Note that if G and G′ are context-free or context-sensitive, then so are their
concatenation and union grammars (since all three new productions T → SS ′, T → S, and
T → S ′ are context-free). Even if G and G′ are regular, then their union and concatenation
grammars are not regular, since the new productions T → S, T → S ′, and T → SS ′ are not
regular rules. (We’ll discuss this in § 2.1.)

Proposition 1.23. Let G and G′ be grammars that do not share any variables and are
variable-based. Let H be their concatenation grammar. Then L(H) = L(G)L(G′).

Proof. For the forward direction, let vw ∈ LM , i.e., v ∈ L and w ∈ M . By definition, we
have a G-derivation (σ0, ..., σn) of v and a G′-derivation (τ0, ..., τm) of w. Then

T
H−→1 SS

′ = σ0S
′ G−→1 σ1S

′ G−→1 ...
G−→1 σnS

′ = vS ′

= vτ0
G′

−→1 vτ1
G′

−→1 ...
G′

−→1 vτm = vw

is an H-derivation of vw.
For the converse, let T = σ0

H−→1 σ1
H−→1 ...

H−→1 σn = u be any H-derivation. Since
there is only one rule involving T , we know that σ1 = SS ′. For i ≥ 1, if σi = x0...xℓ, we
define by recursion what it means that xj belongs to the first half in σi. Our definition will
be done in such a way that all variables occurring in the first half are in V and all variables
occurring in the other half are in V ′. If i = 1, we say that S ∈ V belongs to the first half
in σ1 and S ′ ∈ V ′ doesn’t. Suppose σi = αγβ and σi+1 = αδβ, i.e., σi+1 is produced by
an application of the rule γ → δ. We assumed that our grammars were variable-based, and
hence γ consists only of variables. By definition of H, these must either all be from V or all
from V ′. In the first case, γ lies entirely in the first half; in the second case, γ lies entirely in
the other half. Any symbol instance occurring in σi+1 lies either in α, δ, or β. If the symbol
instance is in α or β then it already occurred in σi, and we say that it belongs to the first
half in σi+1 if and only if it belonged to the first half in σi. If the symbol instance is in δ,
then it belongs to the first half in σi+1 if and only γ was entirely in the first half in σi (that’s
equivalent to γ ∈ V ∗\{ε}). If that’s the case, we also say that the production step from i to
i+ 1 belongs to the first half.

An induction shows that the symbols belonging to the first half form an initial segment
of each σi. So, we have u = vw where v is the subword of letters belonging to the first half.
We now collect all production steps that belong to the first half and observe that they form
a G-derivation of v from S; similarly, all production steps that do not belong to the first half
form a G′-derivation of w from S ′. This shows that u = vw ∈ LM . q.e.d.
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Proposition 1.24. Let G and G′ be grammars that do not share any variables and are
variable-based. Let H be their union grammar. Then L(H) = L(G) ∪ L(G′).

Proof. Clearly, if S
G−→ v, then T

H−→ v by using the rule T → S; similarly, if S ′ G′
−→ v, then

T
H−→ v. Thus, L(G) ∪ L(G′) ⊆ L(H).
Since V ∩ V ′ = ∅ and the grammars are variable-based, no rule from P can apply to

a string that contains no variables from V and no rule from P ′ can apply to a string that
contains no variables from V ′. As a consequence, we see (by induction) that any H-derivation
starting from S will only use rules from P and any H-derivation starting from S ′ will only

use rules from P ′. Thus, if S
H−→ v, then S

G−→ v and if S ′ H−→ v, then S ′ G′
−→ v. But since

there are only two rules involving T , any H-derivation (σ0, σ1, ..., σn) with σ0 = T will have

σ1 = S or σ1 = S ′, so T
H−→ v implies either S

G−→ v or S ′ G′
−→ v. q.e.d.

Corollary 1.25. The classes of type 0, type 1, and type 2 languages are closed under
concatenation and union.

Proof. As mentioned, context-free grammars are variable-based; note, furthermore, that the
construction in the proof of Lemma 1.21 preserves being context-sensitive and being noncon-
tracting. Thus, by the proofs of Proposition 1.13 and Lemma 1.21, we may assume w.l.o.g.
that V ∩ V ′ = ∅ and that P and P ′ are variable-based, thus we can apply Propositions 1.23
& 1.24 in combination with Remark 1.22. q.e.d.

It is not obvious how to produce grammars for the other closure properties (intersection,
complementation, difference). The question whether the relevant classes are closed under
these operations will play a major role in our discussions of the Chomsky classes.

1.8 A comment on the empty word

As mentioned, noncontracting grammars cannot produce the empty word ε (cf. the proof of
Lemma 1.17). What if we wish to talk about languages that may contain the empty word,
e.g., the language of even-length words or the set of words that do not contain the letter a?

We can fix this easily by additionally allowing rules that produce the empty word in our
production rules. Let us call any production rule α → ε an ε-production and the rule S → ε
the basic ε-production. Of course, these rules are not noncontracting, so adding these rules
to any grammar will catapult it out of the Chomsky hierarchy.

Even with just the basic ε-production, we can easily mimic arbitrary production rules in
a noncontracting way: if α → β is a rule with |β| < |α|, say, |α| = n + k > n = |β|, then
consider the (noncontracting) rule α → βSk. In the presence of S → ε, this rule can be used
to produce the effect of the original contracting rule α → β.

In order to avoid this, we call a production rule S-safe if the symbol S only appears on the
left-hand side. A grammar (G, V, P, S) is called ε-adequate if all of its production rules are
S-safe. In order to avoid very lengthy theorem statements, we use the letter Q to stand for
one of the four properties of being regular, context-free, context-sensitive, or noncontracting.
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Proposition 1.26. Any grammar is equivalent to an ε-adequate grammar. Moreover, any
grammar with property Q is equivalent to an ε-adequate grammar with property Q.

Proof. Suppose G = (Σ, V, P, S) is a grammar. Take a new variable T /∈ V and let

V ′ := V ∪ {T},
P ′ := P ∪ {T → α ; S → α ∈ P}, and
G′ := (Σ, V ′, P ′, T ).

Clearly, all rules in P ′ are T -safe, so G′ is ε-adequate and obviously L(G) = L(G′). Observe
that the transformation P 7→ P ′ preserves all four properties that Q can stand for. q.e.d.

A grammar is called essentially Q if it is ε-adequate and all of its production rules are
either the basic ε-rule or have property Q. A language is called called essentially Q if it is
produced by an essentially Q grammar.

Proposition 1.27. A language L is essentially Q if and only there is a language L′ with
property Q such that either L = L′ or L = L′ ∪ {ε}.

Proof. “⇒”: Let L be a language that is essentially Q as witnessed by a grammar G that is
essentially Q. First of all, let us observe that if all rules are ε-adequate, then no derivation
will contain S except at the very beginning: no rule can ever introduce an instance of S, and
the only instance of S will need to be rewritten by a string without S in the first step of the
derivation. That means that the unique derivation that uses the rule S → ε has length one
and produces ε. All other derivations will only use productions that have property Q. Thus,
the grammar obtained by removing the rule S → ε from G will produce a language L′ that
is Q. Then L = L′ if G doesn’t contain S → ε and L = L′ ∪ {ε} if G contains S → ε.

“⇐”: If L′ is a Q language, then by Proposition 1.26, we can assume w.l.o.g. that there
is an ε-adequate and Q grammar G such that L′ = L(G). To produce L′ ∪ {ε}, add the rule
S → ε. q.e.d.
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2 Regular languages

2.1 Understanding regular derivations

A regular grammar only has two types of production rules, A → aB, called nonterminal
rules, and A → a, called terminal rules. The syntactic form of regular grammars seriously
restricts what we can do with them.

Lemma 2.1. Let G = (Σ, V, P, S) be a regular grammar.

(a) If α ∈ Ω∗ and S
G−→ α, then α is either a word or of the form wA where w ∈ W and

A ∈ V .

(b) If v ∈ W and S
G−→ v, then any derivation of v has length |v| and only the final step of the

derivation is an application of a terminal rule, the others are application of nonterminal
rules. The terminal rule creates the final letter in the word v.

Proof. (a) is easily proved by induction: it is true for S and if any of the rules of G is applied
to wA, it either produces a word or some w′B where w′ ∈ W and B ∈ V .

For (b), we observe that nonterminal rules keep the number of variables the same; ter-
minal rules reduce the number of variables by one. Claim (a) shows that the derivation of
a word w consists of strings of the form wA for all steps except the last. Therefore, all
production steps except for the last must have been nonterminal and the last one is terminal.
Note that nonterminal rules increase the length by one and terminal rules keep the length
the same. Since the length of the string consisting only of the start symbol is 1, we have
applied |v|−1 nonterminal rules before reaching a string of length |v|. Since the penultimate
string is of the form wA and the final production step is a terminal rule, it’s clear that this
rewrites A into the final letter of v. q.e.d.

Note that even in this severely restricted case, we do not have uniqueness of derivations:
the following is a regular grammar for the language {01}: S → 0A, S → 0B,A → 1, B → 1;
both S → 0A→ 01 and S → 0B → 01 are derivations of 01.

Now that we understand what regular derivations look like, we can re-visit the question
of closure under union and concatenation. The union and concatenation grammars we used
in § 1.7 were not regular, so we need to give alternative constructions. Let G = (Σ, V, P, S)
and G′ = (Σ, V ′, P ′, S ′) be regular grammars.

(a) The regular concatenation grammar of G and G′ is (Σ, V ∪ V ′, P ∗, S) where P ∗ := P ′ ∪
(P\{A→ a ; A→ a ∈ P}) ∪ {A→ aS ′ ; A→ a ∈ P}.

(b) The regular union grammar of G and G′ is (Σ, V ∪ V ′ ∪ {T}, P ∗, T ) with a new variable
T and P ∗ := P ∪ P ′ ∪ {T → α ; S → α ∈ P} ∪ {T → α ; S ′ → α ∈ P ′}.

Clearly, if G and G′ are regular, then so are the regular concatenation and regular union
grammars.
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Proposition 2.2. Let G and G′ be regular grammars with disjoint sets of variables. If H is
their regular concatenation grammar, then L(H) = L(G)L(G′); if H is their regular union
grammar, then L(H ′) = L(G) ∪ L(G′).

Proof. Concatenation. Suppose vw ∈ L(G)L(G′) and let S
G−→ v and S ′ G′

−→ w. By Lemma
2.1 (b), we know that the final production in the derivation of v is a terminal rule, say A→ a

and therefore A → aS ′ is a rule in H. Thus, we have that S
H−→ vS ′. We also have that

S ′ G′
−→ w and hence S ′ H−→ w, so together S

H−→ vw.

For the other direction, suppose S
H−→ u and let S = σ0

H−→1 σ1
H−→1 ...

H−→1 σn = u be
an H-derivation, By Lemma 2.1, we know that all strings σi (for 0 ≤ i < n) contain exactly
one variable. If σi contains a variable from V ′, then this remains true for all σj with j ≥ i.
Therefore, the strings with variables from V form an initial segment of the derivation. Let m
be the unique number such that σm has a variable from V and σm+1 has a variable from V ′.
The only H-rule that allows to do that is of the form A→ aS ′, so σm = xA and σm+1 = xaS ′

and all rules applied before m are G-rules and all rules applied after m+1 are G′-rules. Thus

S
G−→ xA and therefore (using the original rule A → a in G), S

G−→ xa. Write v := xa and

u = vw. Then S ′ G′
−→ w.

Union. This proof does not need that G and G′ are regular; we shall only use that they

are context-sensitive. The direction “⊇” is obvious since any derivation S
G−→ w or S ′ G′

−→ w

can be made into a derivation T
H−→ w by exchanging the first rule application rewriting

either S or S ′ by the corresponding rule in P ∗ rewriting T .

For the other direction, suppose T
H−→ w. Since H is context-sensitive, all strings occur-

ring in this derivation except for the last one must contain variables (once a string is a word,
nothing can be rewritten anymore as every production rule needs a variable to be rewritten).

If T
H−→1 w, i.e., the derivation has length one, then it is the result of a rule application of

T → w. By definition, either S → w ∈ P or S ′ → w ∈ P ′, so w ∈ L(G) ∪ L(G′). Otherwise,

we have T
H−→1 α

H−→ w with α containing variables. That T
H−→1 α is either witnessed by

some rule S → α ∈ P or some rule S ′ → α ∈ P ′. In the former case, all variables in α are
in V ; in the latter case, all variables in α are in V ′. W.l.o.g., let’s assume that we are in the
first situation, i.e., all variables in α are in V and S → α ∈ P . By induction (and the fact
that H is context-sensitive, i.e., only variables get rewritten), all variables occurring in the

rest of the derivation α
H−→ w will also be in V , so all rules applied in the derivation come

from P and thus we have α
G−→ w. But now S

G−→1 α
G−→ w, thus S

G−→ w, and therefore
w ∈ L(G) ⊆ L(G) ∪ L(G′). q.e.d.

Corollary 2.3. The class of regular languages is closed under concatenation and union.

2.2 Deterministic automata

Let Σ be an alphabet. Then a tuple D = (Σ, Q, δ, q0, F ) is called a (deterministic) automaton
if Q is a finite set such that q0 ∈ Q, F ⊆ Q\{q0}, and δ : Q × Σ → Q. The elements of Q
are called states ; the function δ is called the transition function.
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We graphically represent automata by directed labelled graphs where the vertices are
labelled by the elements of Q, each vertex has precisely |Σ| immediate successors marked by
directed edges labelled with the letters of the alphabet Σ. The vertices labelled with non-
elements of F get a single circle, and the vertices labelled with elements of F get a double
circle. The following is an example for Σ = {0, 1}, Q = {q0, q1, q2}, and F = {q1}:

q1 0,1ll

q0

0
>>

1
// q2

0

OO

1
rr

Note that we simplify our graphical representations by writing a single arrow with multiple
labels if they all have the same source and target (e.g., the arrow from q1 to itself in the
above diagram).

We interpret the automaton D = (Σ, Q, δ, q0, F ) as follows: q0 is the start state and the
automaton starts in this state. The automaton is given a word w ∈ W and reads it letter
by letter from the beginning. The transition function δ tells the automaton what to do: if
the automaton is in the state q and reads the letter a, it moves to the state δ(q, a). After
reading a letter from the word, the automaton then proceeds to the next letter. Once it is
done reading the word, it will be in a particular state q. The set F is the set of accepting
states : the automaton accepts the word w if and only if that state is in F .

More formally, we define a function δ̂ : Q × W → Q by recursion on the length of the
word:

δ̂(q, ε) := q and

δ̂(q, wa) := δ(δ̂(q, w), a),

and define the language accepted by D via L(D) := {w ; δ̂(q0, w) ∈ F}. Here, we say that

D accepts w if δ̂(q0, w) ∈ F and that D rejects w if δ̂(q0, w) /∈ F . Note that for every w =

a0...an, the function δ̂ uniquely determines a sequence of states that the automaton passes
through during a computation: q0 = δ̂(q0, ε), q1 := δ̂(q0, a0), q2 := δ̂(q0, a0a1), ..., qn+1 :=

δ̂(q0, a0...an) = δ̂(q0, w). The sequence is also called the state sequence of the computation.

Example 2.4. The automaton graphically represented above accepts the language

L := {w ; w contains at least one 0}.

[Let us analyse which words will result in state q0, q1, and q2, respectively. By this we

mean words s such that δ̂(q0, w) = qi. Since q0 has no incoming edges, the only word that
results in q0 is ε. The state q2 has two incoming edges, a 1-transition from q0 which means
that the word ε1 = 1 results in q2, and then a 1-transition from q2. So, by induction, any
finite sequence consisting entirely of 1s will result in q2; thus, the words that result in q2 are
precisely the words in {1}+. Finally, all 0-transitions lead to q1, so any word that contains a
0 will always be in state q1 immediately after reading that 0. However, since both transitions
from q1 lead to q1, you cannot ever leave that state. In summary, the empty word ends in
q0, any word consisting of 1s results in q2, and any word that contains a 0 results in q1. This
description covers all possible words. We note that q1 is the only accepting state, which
proves the claim.]
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If D = (Σ, Q, δ, q0, F ) and D′ = (Σ, Q′, δ′, q′0, F
′) are deterministic automata over the

same alphabet Σ, we say that a map f : Q→ Q′ is a homomorphism from D to D′ if

(i) for all q ∈ Q and a ∈ Σ, we have that δ′(f(q), a) = f(δ(q, a)),

(ii) we have f(q0) = q′0, and

(iii) for all q ∈ Q, q ∈ F if and only if f(q) ∈ F ′.

As usual, bijective homomorphisms are called isomorphisms and automata that have an
isomorphism between them are called isomorphic. Note that if f is a bijection, then f−1

satisfies (i) to (iii) and thus is a homomorphism.

If f is a homomorphism, property (i) extends by induction to δ̂′(f(q), w) = f(δ̂(q, w)) for
w ∈ W.

This means that while homomorphisms are not in general surjective, they hit every state
in Q′ that is reachable from q′0 (i.e., a state of the form δ̂′(q′0, w) for some word w ∈ W) by
property (i); these states are the only states that matter for L(D′). Similarly, homomorphisms
are not in general injective, but if f(p) = f(q), then p and q have to agree on everything
that is relevant for determining the accepted language: e.g., p ∈ F if and only if q ∈ F by
property (iii). The two states need to be what we shall later (§ 2.7) call indistinguishable.

Proposition 2.5. If there is a homomorphism from D to D′, then L(D) = L(D′).

Proof. Let f be a homomorphism from D to D′; then for any word w, we have

w ∈ L(D) ⇐⇒ δ̂(q0, w) ∈ F

(iii)⇐⇒ f(δ̂(q0, w)) ∈ F ′

⇐⇒ δ̂′(f(q0), w) ∈ F ′

(ii)⇐⇒ δ̂′(q′0, w) ∈ F ′ ⇐⇒ w ∈ L(D′).

q.e.d.

Theorem 2.6. Any language accepted by a deterministic automaton is regular.

Proof. Let D = (Σ, Q, δ, q0, F ) and define G = (Σ, Q, P, q0) with the following production
rules (for p, q ∈ Q and a ∈ Σ): p → aq is in P if and only if δ(p, a) = q and p → a is in P if
and only if δ(p, a) ∈ F .

Suppose a0...an = w ∈ L(D), i.e., δ̂(q0, w) ∈ F . This means the state sequence of the

computation is given by qi+1 := δ(qi, ai) such that δ̂(q0, w) = δ(qn, an) = qn+1. By definition,
qi → aiqi+1 ∈ P and qn → an ∈ P (since qn+1 ∈ F ). Thus, the state sequence yields a
G-derivation

q0
G−→1 a0q1

G−→1 a0a1q2
G−→1 . . .

G−→1 a0a1...an−1qn
G−→1 a0a1...an = w, (�)

so L(D) ⊆ L(G).
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Conversely, suppose a0a1...an = w ∈ L(G) and apply Lemma 2.1 to see that any G-
derivation of w is the form (�) for letters ai and variables qi and furthermore that this means
that for all i < n, we have qi → aiqi+1 ∈ P , as well as qn → an ∈ P . By definition of
P , this in turn means that δ(qi, ai) = qi+1 and δ(qn, an) ∈ F . We obtain immediately that

δ̂(q0, w) = δ(qn, an) ∈ F , so w ∈ L(D). q.e.d.

Accepting the empty word. To match § 1.8, we should briefly comment on the role of
the empty word for automata. By the stipulation that q0 /∈ F , we make sure that the empty
word can never be accepted by an automaton. This matches with our definition of regular
grammars and we need this in the proof of Theorem 2.6: an automaton that accepts the
empty word would require a derivation q0 → ε in the grammar. If we modify our definitions
of grammars as discussed in § 1.8, we could remove the stipulation that q0 /∈ F from our
definition of automata and retain the equivalence.

2.3 Nondeterministic automata

We would like to prove the converse of Theorem 2.6. However, the transformation of an
automaton into a grammar from the proof of Theorem 2.6 is not invertible since a regular
grammar could contain production rules A→ aB and A→ aC for B ̸= C, but transformation
functions in deterministic automata have to assign a unique value δ(q, a). This suggests a
more liberal notion of automaton:

Let Σ be an alphabet. Then a tuple N = (Σ, Q, δ, q0, F ) is called a nondeterministic
automaton if Q is a finite set such that q0 ∈ Q, F ⊆ Q\{q0}, and δ : Q × Σ → ℘(Q).
We think of δ(q, a) as the set of possible states that the automaton can reach from q upon
reading a. The graphical representation of nondeterministic automata is the same as for
deterministic automata, except that a given vertex may have multiple or no outgoing arrows
labeled with the same letter a.

For nondeterministic automata, we recursively define a similar function δ̂ : Q×W → ℘(Q)
by

δ̂(q, ε) := {q} and

δ̂(q, wa) :=
⋃

{δ(p, a) ; p ∈ δ̂(q, w)}

and define the language accepted by N via L(N) := {w ; δ̂(q0, w) ∩ F ̸= ∅}. The function

δ̂ collects all possible resulting states for all possible paths through the automaton. The
automaton accepts a word if there is at least one such path that results in an accepting
state. For deterministic automata, we had a state sequence given by the transition function.
Similarly, δ̂ produces a state set sequence for nondeterministic automata where X0 = {q0}
and Xi+1 =

⋃
{δ(p, ai) ; p ∈ Xi}.

Nondeterministic automata are a generalisation of deterministic automata: If D =
(Σ, Q, δ, q0, F ) is a deterministic automaton, then δn(q, a) := {δ(q, a)} defines a transition
function of a nondeterministic automaton N := (Σ, Q, δn, q0, F ), and by induction, it is easy

to see that δ̂n(q, a) = {δ̂(q, a)}, so L(N) = L(D). However, at least superficially, nonde-
terministic automata feel much more general as they are able to check many computation
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sequences at the same time. The following theorem shows that this superficial intution is
wrong.

Theorem 2.7. For every nondeterministic automaton N there is a deterministic automaton
D such that L(D) = L(N).

Proof. The construction in this proof is known as the subset construction. Let N =
(Σ, Q, δ, q0, F ) be a nondeterministic automaton. We define the a deterministic automaton
D := (Σ, ℘(Q),∆, {q0}, G) where

∆(X, a) :=
⋃

{δ(q, a) ; q ∈ X} and

X ∈ G ⇐⇒ X ∩ F ̸= ∅.

Since states in D are sets of states in N , any sequence of states in D is a sequence of
sets of states in N . Fix a word w = a0...an and let (X0, ..., Xn+1) be the state sequence
corresponding to w in D and (Y0, ..., Yn+1) be the state set sequence corresponding to w in
N , then we easily see by induction that Xi = Yi. Thus

w ∈ L(D) ⇐⇒ Xn+1 ∈ G ⇐⇒ Xn+1 ∩ F ̸= ∅ ⇐⇒ Yn+1 ∩ F ̸= ∅ ⇐⇒ w ∈ L(N).

q.e.d.

Note that the subset construction in general produces a deterministic automaton with 2n

states if the original nondeterministic automaton had n states.

Theorem 2.8. Every regular language is accepted by a nondeterministic automaton.

Proof. Let G = (Σ, V, P, S) be a regular grammar. Let H /∈ Σ∪V and define Q := V ∪{H}.
We define N := (Σ, Q, δ, S, {H}) with

δ(A, a) := {B ; A→ aB ∈ P} if A→ a /∈ P and
δ(A, a) := {B ; A→ aB ∈ P} ∪ {H} if A→ a ∈ P .

Note that since H /∈ V , we have that δ(H, a) = ∅ for all a ∈ Σ.
If a0...an = w ∈ L(G), by Lemma 2.1, there is a G-derivation

A0 = S
G−→1 a0A1

G−→1 a0a1A2
G−→1 . . .

G−→1 a0a1...an−1An
G−→1 a0a1...an = w,

with production rules Ai → aiAi+1 and An → an in P . By definition (and induction), we

obtain H ∈ δ̂(S,w), and thus w ∈ L(N).
Conversely, if a0...an = w ∈ L(N), then there is a path through N via arrows labelled

with the ai leading to H, i.e., a path of states q0 = S, q1, ..., qn, qn+1 = H such that for each
i, we have that qi+1 ∈ δ(qi, ai). In particular, all of the qi except for the last one must be
elements of V , and so qi+1 ∈ δ(qi, ai) must be witnessed by a production rule qi → aiqi+1 ∈ P ;
furthermore, the fact that qn+1 = H ∈ δ(qn, an) means that qn → an ∈ P . Combining these
results in a G-derivation

q0 = S
G−→1 a0q1

G−→1 a0a1q2
G−→1 . . .

G−→1 a0...an−1qn
G−→1 a0...an = w,

thus showing that w ∈ L(G). q.e.d.
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Corollary 2.9. A language L is regular if and only if it is accepted by a deterministic
automaton.

Proof. Follows directly from Theorems 2.6, 2.7, & 2.8. q.e.d.

2.4 The pumping lemma for regular languages

We now have a good understanding of how we can show that a language is regular, but we
are still missing tools to prove that a language is not regular, even though we already know
(Proposition 1.13) that almost all languages are not regular. In this section, we shall provide
the main tool for proving non-regularity.

Definition 2.10. Let L ⊆ W be a language. We say that L satisfies the (regular) pumping
lemma with pumping number n if for every word w ∈ L such that |w| ≥ n there are words
x, y, z such that w = xyz, |y| > 0, |xy| ≤ n and for all k ∈ N, we have that xykz ∈ L. We
say that L satisfies the (regular) pumping lemma if there is some n such that it satisfies the
(regular) pumping lemma with pumping number n.

If a language L satisfies the pumping lemma and we have written w = xyz as in the
definition, then xz = xy0z, xy2z, xy3z, etc. are all in L. We call the transition from w = xyz
to xz pumping down and the transition to xykz (for k > 1) pumping up.

Theorem 2.11 (The regular pumping lemma). For every regular language L, there is a
number n such that L satisfies the regular pumping lemma with pumping number n.

Proof. By Corollary 2.9, we know that L is accepted by a deterministic automaton D =
(Σ, Q, δ, q0, F ). Let n := |Q| and suppose that w ∈ L(D) such that |w| ≥ n. We write
w = a0...an−1v for some v ∈ W. Consider the state sequence q0, q1, ..., qn obtained by letting
D read a0...an−1, i.e., we have δ(qi, ai) = qi+1. The state sequence has n+1 elements, and so
by the pigeonhole principle, one of the states must occur twice in the state sequence. Let’s
fix 0 ≤ i < j ≤ n such that qi = qj and let

x := a0...ai−1,

y := ai...aj−1, and

z := aj...an−1v,

where the latter means z = εv = v if j = n. Note that our construction implies that w = xyz,
|y| > 0, and |xy| ≤ n. We also observe that

δ̂(q0, x) = qi, (a)

δ̂(qi, y) = δ̂(qj, y) = qj = qi, and (b)

δ̂(qi, z) = δ̂(qj, z) ∈ F. (c)

Fix any k and prove that xykz ∈ L(D). For this, we prove by induction that δ̂(q0, xy
k) = qi

for all k. For k = 0, this is just (a). If δ̂(q0, xy
k) = qi, then δ̂(q0, xy

k+1) = δ̂(qi, y) = qi by
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(b). Now, this implies that δ̂(q0, xy
kz) = δ̂(qi, z) ∈ F by (c). q.e.d.

The pumping lemma is our main tool to prove that languages are not regular.

Example 2.12. The language L := {0k1k ; k > 0} is not regular.

[Suppose it was. Then it satisfies the pumping lemma by Theorem 2.11, i.e., there is
some n such that it satisfies the pumping lemma with pumping number n. Consider the
word w = 0n1n ∈ L. Clearly, |w| = 2n ≥ n, so the word can be pumped. This means that
we can write w = xyz with |y| > 0 and |xy| ≤ n. By choice of w, this means that both x and
y consist entirely of zeros. If we now pump down, we obtain that xy0z = xz ∈ L, but this
word contains n− |y| < n many zeros and n many ones. Hence it’s not in L: contradiction!]

Since the proof of the pumping lemma tells us that the pumping number is the number
of states of the automaton accepting the language, it also gives us lower bounds on its size.

Example 2.13. Fix some positive number n ∈ N. Then the language L := {0nw ; w ∈ W}
is regular and there cannot be an automaton D with n or fewer states such that L(D) = L.

[Towards a contradiction, let’s assume that there is such an automaton. By the proof of
Theorem 2.11, we get that L satisfies the pumping lemma with pumping number n. Consider
the word w = 0n ∈ L. Clearly, |w| = n, so the word can be pumped, in particular, pumped
down. Since it consists entirely of zeros, we know that for w = xyz, the words x, y, and z
also consist entirely of zeros and xy0z = xz is a sequence of n− |y| < n zeros. Hence it’s not
in L: contradiction!]

Corollary 2.14. If D is an automaton with n states and there is a path from q to q′, then
there is a path from q to q′ of length at most n.

Proof. As in the proof of the pumping lemma, if the path is longer, a state repeats, and thus,
the loop from the first to the second occurrence of that repeating state can be removed to
obtain a shorter path. Therefore, the shortest path must have length at most n. q.e.d.

Since the pumping lemma is a very useful tool to prove that languages are not regular,
it is quite natural to wonder whether the statement of the pumping lemma is equivalent to
regularity, i.e., whether a language L is regular if and only if it satisfies the regular pumping
lemma. The answer is “No” as we shall show now.

If w ∈ {0, 1}∗ is a word that contains at least one zero, we write tail(w) for the number
of ones in w that follow the last occurring zero. E.g., tail(0101111) = 4. Let X ⊆ N be an
arbitrary set of natural numbers (by Proposition 1.2, there are uncountably many of those).
We define a language LX ⊆ {0, 1}∗ by w ∈ LX if w consists entirely of ones or if w has
some zero, then tail(w) ∈ X. Let us show that if X ̸= Y , then LX ̸= LY : w.l.o.g., we can
assume that there is some n ∈ X\Y . Then 01n ∈ LX\LY . This shows that X 7→ LX is an
injection from the power set of N into the collection of languages of the form LX , so there
are uncountably many such languages.

Proposition 2.15. Every language LX satisfies the (regular) pumping lemma.



19 Dec 2022 Michaelmas 2022: Part II Automata & Formal Languages 26

Proof. We shall prove that it satisfies the pumping lemma with pumping number 2. Any
word w with |w| ≥ 2 starts either with 0 or 1.

Case 1. It starts with 0. Let x = ε, y = 0, and z such that w = xyz = 0z. Pumping up
produces 0kz (for k > 1), but clearly tail(0kz) = tail(0z) ∈ X, so 0kz ∈ LX . Pumping down
produces z: if z still contains a 0, then tail(z) = tail(0z) ∈ X, so z ∈ LX ; if z contains no 0s,
then z ∈ LX anyway.

Case 2. It starts with 1. Let x = ε, y = 1, and z such that w = xyz = 1z. If z does not
contain any 0s, then all results of pumping y will result in a word without 0s, so they are all
in LX . If z contains a 0, then all results of pumping y will result in a word that has the same
tail as 1z, and hence they are all in LX . q.e.d.

Corollary 2.16. There are languages satisfying the (regular) pumping lemma that are not
regular.

Proof. There are only countably many regular languages (by Proposition 1.13), but uncount-
ably many languages satisfying the regular pumping lemma by Proposition 2.15. q.e.d.

2.5 Closure properties

We shall now show that the class of regular languages is closed under all five closure properties
listed in § 1.7: Concatenation, Union, Intersection, Complement, and Difference. Union and
Concatenation were proved in Corollary 2.3.

Proposition 2.17. The class of regular languages is closed under complementation, inter-
section, and difference.

Proof. We are going to show closure under complementation; the other claims follow from
Lemma 1.19 (a) & (c). Suppose that L = L(D) for some deterministic automaton D =
(Σ, Q, δ, q0, F ). W.l.o.g., we can assume that q0 is not in the range of δ. [Just add a new
state q∗0 and let

δ′(q, a) :=

{
δ(q, a) if δ(q, a) ̸= q0 and
q∗0 otherwise.

Then (Σ, Q ∪ {q∗0}, δ′, q0, F ) accepts the same language as D and does not have q0 in the
range of its transition function.] Thus, let us assume that D has this property and define

D := (Σ, Q, δ, q0, Q\(F ∪ {q0}),

then we claim that L(D) = W+\L(D).

“⊆”: Suppose w ∈ L(D), i.e., q := δ̂(q0, w) ∈ Q\(F ∪ {q0}). This means that w ̸= ε

(since δ̂(q0, ε) = q0) and δ̂(q0, w) /∈ F , so w /∈ L(D).

“⊇”: Suppose ε ̸= w is such that w /∈ L(D), i.e., δ̂(q0, w) /∈ F . Since w ̸= ε, we know

that δ̂(q0, w) ̸= q0 (by our assumption about the range of δ), so together, this implies that
w ∈ L(D). q.e.d.
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There is an alternative proof for union and intersection that can be instructive in certain
contexts. Given nonempty sets Q and Q′, as well as F ⊆ Q and F ′ ⊆ Q′, we let

F ∧ F ′ := {(q, q′) ∈ Q×Q′ ; q ∈ F and q′ ∈ F ′} = F × F ′ and

F ∨ F ′ := {(q, q′) ∈ Q×Q′ ; q ∈ F or q′ ∈ F ′}.

We can now give a product construction of two automata: if D = (Σ, Q, δ, q0, F ) and D
′ =

(Σ, Q′, δ′, q′0, F
′) are two automata, we define

δ × δ′ : Σ× (Q×Q′) → Q×Q′ : (a, (q, q′)) := (δ(a, q), δ′(a, q′)).

This allows us to define product automata for intersection and union as follows:

D ∧D′ := (Σ, Q×Q′, δ × δ′, (q0, q
′
0), F ∧ F ′),

D ∨D′ := (Σ, Q×Q′, δ × δ′, (q0, q
′
0), F ∨ F ′).

Proposition 2.18. For any automata D and D′, we have

L(D ∧D′) = L(D) ∩ L(D′) and

L(D ∨D′) = L(D) ∪ L(D′).

Proof. By definition (and induction), δ̂ × δ′(w, (q, q′)) = (δ̂(w, q), δ̂′(w, q′)). Therefore,

w ∈ L(D ∧D′) ⇐⇒ δ̂ × δ′(w, (q0, q
′
0)) ∈ F ∧ F ′

⇐⇒ (δ̂(w, q0), δ̂′(w, q
′
0)) ∈ F × F ′

⇐⇒ δ̂(w, q0) ∈ F and δ̂′(w, q′0) ∈ F ′

⇐⇒ w ∈ L(D) and w ∈ L(D′),

and similarly for D ∨D′. q.e.d.

2.6 Regular expressions

We shall consider two more operations on languages, the Kleene plus and the Kleene star
operation. If L is a language, we write

L+ := {w ; ∃w0...∃wn ∈ L(w = w0...wn)},

i.e., L∗ is a finite concatenation of elements of L. Furthermore, we write

L∗ := L+ ∪ {ε}.

Note that this notation clashes slightly with our earlier star-operation X∗ which denoted
the set of finite sequences of elements of X. The result L∗ of applying the Kleene star
operation to a language is not the set of finite sequences of words in L, but the set of their
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concatenations. These two notions are closely related, but not quite identical. If there is any
chance of confusion, we shall be explicit about what we mean.

Let Σ be an alphabet. Among the finite strings over the set Σ ∪ {∅, ε, (, ),+,+ ,∗ }; we
shall define the notion of regular expressions over Σ by recursion:10

(1) The symbol ∅ is a regular expression;

(2) the symbol ε is a regular expression;

(3) every a ∈ Σ is a regular expression,

(4) if R and S are regular expressions, then (R + S) is a regular expression;

(5) if R and S are regular expressions, then (RS) is a regular expression;

(6) if R is a regular expression, then R+ is a regular expression;

(7) if R is a regular expression, then R∗ is a regular expression;

(8) nothing else is a regular expression.

Note that construction steps (3) and (4) introduce a lot of parentheses that will turn out to
be unnecessary since the corresponding operations on languages turn out to be associative.
So, informally, we shall often drop some of these parentheses and write, e.g., R + S instead
of (R + S), R + S + T instead of ((R + S) + T ) or ((R + (S + T )), and R(S + T ) instead
of (R(S + T )). We shall also assume that concatenation has higher binding priority than +
and write RS + T for (RS) + T , or more accurately ((RS) + T ).

We now associate languages to regular expressions by recursion:

(1) If E = ∅, then L(E) = ∅;

(2) if E = ε, then L(E) = {ε};
(3) if E = a for a ∈ Σ, then L(E) = {a};
(4) if R and S are regular expressions, then L((R + S)) = L(R) ∪ L(S);
(5) if R and S are regular expressions, then L((RS)) = L(R)L(S);
(6) if R is a regular expression, then L(R∗) = L(R)∗;
(7) if R is a regular expression, then L(R+) = L(R)+.11

Proposition 2.19. If R is a regular expression, then L(R) is an essentially regular language.

Proof. This follows inductively via the recursive definition of regular expressions. Clearly,
∅, {ε}, and {a} are essentially regular languages and we have proved in Corollary 1.25
and Proposition 2.2 that the regular languages are closed under union and concatenation,
respectively. This implies by Proposition 1.27 that essentially regular languages are closed
under union and concatenation as well.

10Note that ∅, ε, +, +, and ∗ are symbols here, not objects or operations. They will, however, be interpreted
as the empty set, the empty sequence, the operation of union, the Kleene star operation, and the Kleene plus
operation, respectively.

11These equations are nice examples of the issue raised in footnote 10: e.g., in the equation L(R+) = L(R)+,
the first + is a symbol that is part of the regular expression R+, whereas the second + is the operation of
Kleene plus applied to the language L(R).
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So, we only need to show that the essentially regular languages are closed under the
Kleene star and plus operations. Since L(L)∗ = L(L)+ ∪ {ε}, it is enough to show that if L
is regular, then so is L+.

Let G = (Σ, V, P, S) be a regular grammar for L. Let P+ := P ∪ {A→ aS ; A→ a ∈ P}
and G+ := (Σ, V, P+, S). Note that G+ is a regular grammar. We claim that L(G+) = L+.

For “⊇”, let w = w0...wn ∈ L+ where w0, ..., wn ∈ L. We prove the claim by induction
on n. If n = 0, then w = w0 ∈ L = L(G) ⊆ L(G+). Suppose the claim holds for n and

w = w0...wnwn+1. By induction hypothesis, we have S
G+

−→ w0...wn and by assumption,

we have that S
G−→ wn+1. By Lemma 2.1, we know that the last rule application in the

derivation of w0...wn is a rule of the form A → a; replacing it with the rule A → aS ∈ P+,

we obtain S
G+

−→ w0...wnS. Prefixing w0...wn to every string in the derivation of wn+1, we

obtain w0...wnS
G−→ w0...wnwn+1 = w. Since P ⊆ P+, these two derivations yield S

G+

−→ w.
For “⊆”, using Proposition 1.26, we may assume w.l.o.g. that P is ε-adequate, i.e., that

it does not contain any instances of S on the right-hand side of its rules. We shall show the

claim by induction of the number of occurrences of S in the derivation S
G+

−→ w. Note the
only rules that are in P+\P introduce an S and all rules in P remove S from the current
string (by ε-adequacy). So, the number of occurrences of S counts how many times one of
the additional rules is used in the derivation. If there is exactly one occurrence of S (the

start symbol at the beginning), we have that S
G−→ w, so w ∈ L(G) = L ⊆ L+. Suppose

that we have shown the claim for derivations with n occurrences of S and let S
G+

−→ w be a

derivation with n + 1 occurrences of S. Then S
G+

−→ vS
G+

−→ w. The final production rule
of the first part is of the form A → aS ∈ P+ whence A → a ∈ P . Replacing the former

with the latter, we obtain S
G+

−→ v and this is now a derivation with n occurrences of S.
Hence, v ∈ L+ by induction hypothesis. By Lemma 2.1, all strings in the remainder of the

derivation vS
G+

−→ w are prefixed by v and we can remove them to obtain S
G+

−→ u with

w = vu. This derivation has only one occurrence of S, so we have S
G−→ u, and hence u ∈ L.

Thus w = vu ∈ L+L ⊆ L+. q.e.d.

The proof of Proposition 2.19 tells us that the class of regular languages has another
closure property: it is closed under the Kleene plus operation.

While we are not going to prove this in this course, the converse of Proposition 2.19
is true: regular expressions describe exactly the essentially regular languages. There are
many algorithms to transform an automaton into a regular expression; the oldest is Kleene’s
algorithm.12 On Example Sheet #2, we shall look at several special cases transforming
regular grammars into regular expressions.

12Cf. S. C. Kleene. Representation of events in nerve nets and finite automata. In: C. E. Shannon, J.
McCarthy (eds.). Automata Studies. Annals of Mathematics Studies, Vol. 34, Princeton University Press,
1956; pp. 3–42.
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2.7 Minimisation of deterministic automata

If D = (Σ, Q, δ, q0, F ) is a deterministic automaton, we call a state q ∈ Q inaccessible if there

is no word w such that δ̂(q0, w) = q. We call two states q, q′ ∈ Q indistinguishable if for all
words w, we have that

δ̂(q, w) ∈ F ⇐⇒ δ̂(q′, w) ∈ F.

A word w such that δ̂(q, w) ∈ F and δ̂(q′, w) /∈ F or vice versa is said to distinguish q and q′.
Given q, q′ ∈ Q and a ∈ Σ and δ(q, a) and δ(q′, a) are distinguished by a word w, then q and
q′ are distinguished by the word aw. If f : Q → Q′ is a homomorphism from an automaton
D to an automaton D′, then if p, q ∈ Q are distinguishable, then f(p) ̸= f(q). Furthermore,
if q′ ∈ Q′ is accessible, then q′ ∈ ran(f).

We write q ∼ q′ if they are indistinguishable. Note that ∼ is an equivalence relation on
Q, i.e., reflexive, symmetric, and transitive. We write [q] for the ∼-equivalence class of q. We
define the quotient automaton

D/∼ := (Σ, Q/∼, [δ], [q0], [F ])

where [δ]([q], a) := [δ(q, a)] and [F ] := {[q] ; q ∈ F}. By induction, we get that [̂δ]([q], w) =
[δ(q, w)].

Proposition 2.20. The quotient automaton is well defined and no two of its states are
indistinguishable.

Proof. Let q ∼ q′ ∈ Q and consider δ(q, a) and δ(q′, a). As mentioned, if they are distin-
guished by a word, then so are q and q′. Therefore, δ(q, a) ∼ δ(q′, a).

Towards the second claim, we know that since {w ; [̂δ]([q], w)} = {w ; δ̂(q, w)}, we have
that [q] ∼ [q′] if and only if q ∼ q′, i.e., [q] = [q′]. q.e.d.

Proposition 2.21. For every deterministic automaton D, we have L(D) = L(D/∼).

Proof. Clearly, the quotient map q 7→ [q] is a homomorphism and the result follows from
Proposition 2.5. q.e.d.

We call an automaton irreducible if it has neither inaccessible states nor indistinguishable
distinct states.

Lemma 2.22. If f is a homomorphism between automata D and D′, then

(a) if D is irreducible, then f is an injection;

(b) if D′ is irreducible, then f is a surjection; and

(c) if both are irreducible, then f is a bijection.

Proof. This follows directly from the observations in § 2.2: if f(p) = f(q), then p and q must
be indistinguishable; if q′ /∈ ran(f), then q′ must be inaccessible. q.e.d.



19 Dec 2022 Michaelmas 2022: Part II Automata & Formal Languages 31

Theorem 2.23. For every deterministic automaton D, there is an irreducible automaton I
with at most as many states as D such that L(D) = L(I).

Proof. Clearly, if q is an accessible state, then all states of the form δ(q, a) with a ∈ Σ are
accessible. As a consequence, if A ⊆ Q denotes the accessible states, then if δ∗ := δ↾A× Σ,
we have that δ∗ : A × Σ → A. Thus, D∗ := (A, δ∗, q0, F ∩ A) is a deterministic automaton.

Clearly, if w ∈ L(D), then δ̂(q0, w) ∈ F ∩ A, so w ∈ L(D∗) if and only if w ∈ L(D).
We now consider I := D∗/∼, the quotient automaton of D∗. By the previous argument

and Proposition 2.21, we obtain

w ∈ L(D) ⇐⇒ w ∈ L(D∗) ⇐⇒ w ∈ L(D∗/∼) = L(I).

Clearly, the quotient construction preserves the property that there are no inaccessible states

(since if δ̂(q0, w) = q, then [̂δ]([q0], w) = [q]), so I has all the desired properties. q.e.d.

We shall see now that up to isomorphism, there is a unique irreducible automaton.

Theorem 2.24. If I and I ′ are two irreducible automata such that L(I) = L(I ′), then there
is a homomorphism from I to I ′.

Proof. Let I := (Σ, Q, δ, q0, F ) and I
′ := (Σ, Q′, δ′, q′0, F

′). As usual, w.l.o.g., we can assume
that Q∩Q′ = ∅. The notion of indistinguishability is an equivalence relation on both Q and
Q′; we now extend it to Q ∪Q′ and say that if q ∈ Q and q′ ∈ Q′, then q ∼ q′ if

{w ; δ̂(q, w) ∈ F} = {w ; δ̂′(q′, w) ∈ F ′};

note that the new relation is an equivalence relation on Q∪Q′. We use the same terminology
as before, e.g., we say that “w distinguishes q and q′” if δ̂(q, w) ̸= δ̂′(q′, w). By the assumption
that L(I) = L(I ′), we have that the two start states are not distinguished by any word, i.e.,

{w ; δ̂(q0, w) ∈ F} = L(I) = L(I ′) = {w ; δ̂′(q′0, w) ∈ F ′}.

Claim 1. Every state in Q is indistinguishable from some state in Q′.

[Since I does not have any inaccessible states, every state in Q is reachable from q0. We
let sp(q) be the length of the shortest path from q0 to q and prove the claim by induction on

sp(q). Clearly, sp(q) = 0 if and only if q = q0; as mentioned above, we have {w ; δ̂(q0, w) ∈
F} = {w ; δ̂′(q′0, w) ∈ F ′}. Let us assume that sp(q) = k + 1 and find p ∈ Q and a ∈ Σ such
that sp(p) = k and δ(p, a) = q. By induction hypothesis, there is some p′ ∈ Q′ such that

{w ; δ̂(p, w) ∈ F} = {w ; δ̂′(p′, w) ∈ F ′}. Let q′ := δ′(p′, a). Then if w distinguishes q and q′,
then aw distinguishes p and p′, so q ∼ q′.]

Claim 2. No two states in Q are indistinguishable from the same state in Q′. Similarly, no
two states in Q′ are indistinguishable from the same state in Q.

[If p ∼ q′ ∼ q, then by transitivity, we have that p ∼ q, but by irreducibility, then p = q.
The second claim follows by symmetry.]

Thus, we can define f(q) to be the unique q′ ∈ Q′ such that q ∼ q′. Claims 1 and 2 imply
that this is an injection from Q to Q′. Let us check that it is a homomorphism:
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(i) Let q ∼ q′, δ(q, a) = p, and p ∼ p′. We need to show that δ′(q′, a) ∼ p′. Suppose they
are not equivalent, say, there is a w such that

δ̂′(δ′(q′, a), w) = δ̂′(q′, aw) ∈ F ′ and δ̂′(p′, w) /∈ F ′.

Since p ∼ p′, we have that δ̂(p, w) /∈ F and thus δ̂(q, aw) /∈ F . But then aw distinguishes
between q and q′.

(ii) By definition, q0 ∼ q′0.

(iii) If q ∈ F and q′ /∈ F ′, then ε distinguishes between them, so q ̸∼ q′.

q.e.d.

Corollary 2.25. Any two irreducible automata that accept the same language are isomor-
phic.

Proof. Follows directly from Theorem 2.24 and Lemma 2.22. q.e.d.

This also means that all irreducible automata producing the language L have the same
size and any automaton producing L must be at least as large in terms of its number of
states. Thus, the (up to isomorphism) unique irreducible automaton for the language L is
minimal in size and we call it the minimal automaton.

2.8 Decision problems

As mentioned in § 1.6, we shall consider the word problem, the emptiness problem, and the
equivalence problem for our classes of languages. In Theorem 1.18, we already solved the
word problem for regular languages positively. Note that the connection to deterministic
automata makes this particularly obvious since a deterministic automaton is an algorithm
and therefore the automaton provides the evidence that whether w ∈ L(D) can be checked
by an algorithm.

The positive solution to the emptiness problem follows easily from the pumping lemma:

Corollary 2.26. If L satisfies the regular pumping lemma with pumping number n, then if
L ̸= ∅, then there is a word w ∈ L with |w| < n.

Proof. If |w| ≥ n and w ∈ L, then w can be pumped down. In particular, w cannot be the
shortest word in L. Since L ̸= ∅, the language L has a shortest word which then must have
length smaller than n. q.e.d.

Corollary 2.27. There is an algorithm that on input of a regular grammar G determines
whether L(G) = ∅.
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Proof. We know that there is a deterministic automaton D such that L(G) = L(D) and the
number of states of D is at most 2m+1 where m is the number of nonterminal symbols of
G (cf. Example Sheet #1). Thus, L(G) satisfies the regular pumping lemma with pumping
number 2m+1. Now check for every single word w of length at most 2m+1 (there are only
finitely many such words) whether w ∈ L(D) or not; if it is, then L(G) is non-empty; if none
of them are, then L(G) = ∅ by Corollary 2.26. q.e.d.

The positive answer to the equivalence problem will follow from our construction of the
minimal automaton as a quotient of the original automaton. We need to check that the
construction steps that we used can be done algorithmically. Given D, we only need to find
an irreducible automaton as a quotient; this will be unique up to isomorphism by Corollary
2.25.

Proposition 2.28. There is an algorithm that determines which states of an automaton are
inaccessible.

Proof. Let D = (Σ, Q, δ, q0, F ) and n := |Q|. By Corollary 2.14, a state q is inaccessible if

and only if there is no word w of length ≤ n such that δ̂(q0, w) = q. Since there are finitely

many such words, we can just check δ̂(q0, w) for all such words to determine which states are
accessible; the remaining states must be inaccessible. q.e.d.

Proposition 2.29. There is an algorithm that determines whether two states of an automa-
ton are equivalent.

Proof. We determine whether the states are indistinguishable; from this, we can easily
determine equivalence. This algorithm is known as the table filling algorithm. We write Q×Q
as a table; note that due to the fact that indistinguishability is an equivalence relation, we
only need to fill half of the table, so we can ignore the lower left triangle.

q0 q1 q2 ... qn−1 qn

q0 ×

q1 ×

q2 ×
...

. . .

qn−1 ×

qn ×

In the first step of the algorithm, we check all relevant pairs (q, q′) and mark them as
distinguished if q ∈ F and q′ /∈ F or vice versa. These states are distinguished by ε, and so
we can write ε as the witness into the table.
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In subsequent steps, we check every pair (q, q′) that is not yet marked as follows: for every
a ∈ Σ, we let q∗ := δ(q, a) and q′∗ := δ(q′, a) and check whether the pair (q∗, q

′
∗) is already

marked. If it is marked by w, then we mark (q, q′) by aw.
At the end of each step of the algorithm, we check whether a new pair was marked or

not. If not, then we terminate the algorithm; otherwise, we go into the next step. Note that
since only finitely many table entries can be filled, this algorithm will eventually terminate.

Claim. Two states q and q′ are indistinguishable if and only if (q, q′) is unmarked at the end
of the algorithm.

[For the forward direction, let a pair (q, q′) is marked by w, then by construction and

induction, δ̂(q, w) ∈ F and δ̂(q′, w) /∈ F or vice versa, so q and q′ are distinguished by w.
Towards proving the backward direction, assume towards a contradiction that there is a

pair that can be distinguished by a word and is not marked by the end of the algorithm.
Let’s call such a pair a bad pair. Each bad pair has a distinguishing word that witnesses
that it is bad. Find a bad pair (q, q′) with a distinguishing word w of minimal length, i.e.,
no other bad pair can have a shorter distinguishing word. Note furthermore that |w| > 0
since pairs that are distinguished by ε are marked by definition of the table-filling algorithm
and so can’t be a bad pair. Thus, let a be the first letter of w, i.e., w = av. Then consider
q∗ := δ(q, a) and q′∗ := δ(q′, a). Clearly, q∗ and q′∗ are distinguished by v, since

δ̂(q∗, v) = δ̂(δ(q, a), v) = δ̂(q, av) = δ̂(q, w) and

δ̂(q′∗, v) = δ̂(δ(q′, a), v) = δ̂(q′, av) = δ̂(q′, w).

However, q∗ and q′∗ cannot be marked: if they were, then in the step after the pair (q∗, q
′
∗)

is marked in the algorithm, (q, q′) would be marked. So, (q∗, q
′
∗) is a bad pair, but it has

a distinguishing word of length |w|−1 in contradiction to the minimality assumption.] q.e.d.

Theorem 2.30. Given two deterministic automata, there is an algorithm to determine
whether they accept the same language. In other words, the equivalence problem for regular
grammar has a positive solution.

Proof. Using Propositions 2.28 & 2.29, we can produce the minimal automata for each of the
two given automata. Now we only need to determine whether they are isomorphic: note that
this can be done algorithmically. If the minimal automata are of different sizes, the answer is
“no”; otherwise, they have the same number n of states and there are at most nn functions
that need to be checked to see whether they are an isomorphism.

Given a regular grammar, transform it to a deterministic automaton via the algorithms
in the proofs of Theorems 2.7 & 2.8 and then apply the first statement to check equivalence.

q.e.d.
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3 Context-free languages

We remember that a grammar is context-free if all of its rules are of the form A → α where
A ∈ V and α ∈ Ω∗\{ε}. We can quite easily see some non-regular languages are context-free.

Example 3.1. The grammar consisting of the rules S → 0S1 and S → 01 produces the
language {0k1k ; k > 0}, our standard example of a non-regular language.

[Clearly, every derivation is just the application of some (possibly none) applications of
the rule S → 0S1 followed by a final application of the rule S → 01. This implies the claim.]

While more general than regular languages, the specific form of context-free grammars
still gives us a great deal of control over its productions. In the next sections, we shall exploit
this control to understand better how context-free languages work.

3.1 Parse trees

We call a subset T ⊆ N∗ a (finitely branching) tree if it is closed under initial segments (i.e., if
t ∈ T and s ⊆ t, then s ∈ T ) and for each t ∈ T there is a natural number n such that tk ∈ T
if and only if k < n. In this case, we say that t has n successors or that t is n-branching.
An element t ∈ T that has no successors is called a leaf (or terminal node). The sequence
ε is contained in every non-empty tree and is called the root of the tree. The elements of
length k in a tree form its kth level. If T is a finite tree, then there is a maximal k such that
T has an element on the kth level. This number is called the height of T . If T is a tree and
t ∈ T is the kth level (i.e., |t| = k), then the corresponding branch through T is the sequence
{t↾m ; m ≤ k}; it is a sequence of nodes of T of length k + 1.

If T is a tree, we can define a partial order < called the left-to-right order as follows:

s < t : ⇐⇒ s ̸= t and if k is least such that s(k) ̸= t(k), then s(k) < t(k).

If X is a set of nodes on the same level of a tree T , then < is a total order on X; similarly,
if X is a set of leaves of T , then < is a total order on X. In particular, the leaves of a tree
are totally ordered from left to right via the order <.

If G = (Σ, V, P, S) is a context-free grammar and A ∈ V , we say that a pair T := (T, ℓ)
is a G-parse tree starting from A if T is a finite finitely branching tree and ℓ : T → Ω is a
function satisfying

(a) ℓ(ε) = A,

(b) if ℓ(t) ∈ Σ, then t is a leaf in T , and

(c) if ℓ(t) = B ∈ V and t is n+ 1-branching, then there is a rule B → x0...xn ∈ P such that
ℓ(tk) = xk for all k < n+ 1.

Since a parse tree is finite, it has finitely many leaves which are totally ordered by the left-
to-right order. Let t0 < t1 < ... < tm be the leaves of T; we then write σT := ℓ(t0)...ℓ(tm) for
the string parsed by T. As a finite tree, T has a last level, and we can graphically extend all
leaves to that level; if we do so, then the left-to-right order corresponds to reading the string
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Figure 2: Left. A finitely branching tree; leaves are marked in boldface font. Middle. The
same tree labelled to form a G-parse tree. Right. The same parse tree with the leaves
extended to the final level to highlight that the parse tree parses the word dabecf .

from left to right on the last level. This is depicted in Figure 2. If we have a branch in a
parse tree (starting from A) of height k, then it is a sequence of length k + 1 and its labels
form a sequence of k + 1 symbols.

Proposition 3.2. If G is a context-free grammar, then w ∈ L(G) if and only if there is a
G-parse tree T starting from S such that w = σT.

Proof. A sequence (T0, ...,Tn) of G-parse trees is called derivative if

(a) T0 = {ε} and ℓ0(ε) = S,

(b) for each i < n, the parse tree Ti+1 = (Ti+1, ℓi+1) is obtained by taking a terminal node
t of Ti with ℓi(t) ∈ V and a rule ℓi(t) → x0...xm ∈ P , adding m + 1 successors to t and
labelling them by ℓi+1(tk) = xk.

Clearly, there is a one-to-one correspondence between G-derivations and derivative sequences

of G-parse trees: a derivation S = σ0
G−→1 σ1

G−→1 ...
G−→1 σn uniquely defines a derivative

sequence of G-parse trees (T0, ...,Tn) such that σTi
= σi and vice versa. This shows the

direction “⇒” of our claim.
For the other direction, let T be a G-parse tree starting from S with σT = w. We

construct a derivative sequence of subtrees of T, starting with T0 = ({ε}, ℓ↾{ε}). In each
step of the construction, assume that Ti was already constructed and find a t ∈ Ti that is a
leaf in Ti, but not in T . Form Ti+1 by adding the T -successors of t to Ti. If we cannot find a
leaf in Ti that is no leaf in T , we terminate the construction.

We claim that the construction terminates when Ti = T . Suppose it’s not, then there is
a t ∈ T\Ti. Consider the branch leading to t in T : there must be a maximal elements of Ti
on this branch (note that ε ∈ Ti): by construction (whenever we add successors, we add all
successors), that is a leaf in Ti, but no leaf in T . So, the construction has not terminated in
contradiction with the assumption. q.e.d.

If T is any G-parse tree and t ∈ T is not a leaf, we can define the subtree at t by
Tt := (Tt, ℓt) with Tt := {s ; ts ∈ T} and ℓt(s) := ℓ(ts). Clearly, if ℓ(t) = A, then Tt is a
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Figure 3: A G-parse tree T (left), a G-parse tree T′ starting from C, and the result of grafting
T′ into the unique node t labelled C in T. Note that σT = dabecf , σTt = ecf , σT′ = bdda,
and that bdda replaces ecf in the word parsed by the result of the graft, i.e., dabbdda.

G-parse tree starting from A. Moreover, the left-to-right ordering of the leaves means that
the leaves of T are a consecutive subsequence of the leaves in T: therefore, there are words
u and v such that σT = uσTtv. The word u corresponds to all of the leaves of T that are to
the left of the leaves of Tt in the left-to-right order; similarly, the word v corresponds to all
of the leaves to the right of those of Tt.

Note that if T and T′ are G-parse trees and t ∈ T with ℓ(t) = A and T′ starts from A,
then we can graft T′ into T as follows: we remove Tt and replace it by T′. By definition,
this results in a G-parse tree. More formally, we define graft(T, t,T′) := (S, ℓ∗) with S =
{s ∈ T ; t ̸⊆ s} ∪ {ts ; s ∈ T ′} and

ℓ∗(s) :=

{
ℓ(s) if t ̸⊆ s and
ℓ′(u) if s = tu for some u ∈ T ′.

In terms of the parsed words, grafting a tree T′ into the position of t in T corresponds to
removing the subword σTt from σT and replacing it with σT′ . This can be seen in Figure 3.

3.2 Chomsky normal form

We say that a grammar G = (Σ, V, P, S) is in Chomsky normal form if all of its production
rules are either of the form A → BC for A,B,C ∈ V or of the form A → a for A ∈ V and
a ∈ Σ. Clearly, a grammar in Chomsky normal form is context-free. Moreover, the parse
trees of these grammars are particularly nice: all nodes are either binary branching with two
non-leaves as successors or not branching with a leaf as successor.

Lemma 3.3. If G = (Σ, V, P, S) is a grammar in Chomsky normal form and w ∈ L(G) with
|w| = n, then any G-derivation of w has length 2n− 1.

Proof. If σ ∈ Ω∗ is a string, write v(σ) for the number of variables in σ. Let’s call a rule of the
form A→ BC binary and a rule of the form A→ a unary. A binary rule increases both |σ|
and v(σ) by 1; a unary rule keeps |σ| the same and decreases v(σ) by 1. Since |S| = v(S) = 1,
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we need n − 1 applications of a binary rule to reach length n; these n − 1 applications of
binary rules will increase the number of variables by n− 1, i.e., to 1 + (n− 1) = n. Since w
is a word and has no variables, we need n applications of a unary rule to ensure v(w) = 0.
Together, this shows that any G-derivation consists of n − 1 many applications of a binary
rule and n many applications of a unary rule, i.e., has length 2n− 1. q.e.d.

Lemma 3.4. If G is a grammar in Chomsky normal form, T a G-parse tree of height h+1,
and σT = w ∈ W, then |w| ≤ 2h.

Proof. By definition, |w| is the number of leaves in T. Parse trees for grammars in Chomsky
normal form are at most binary branching. The full binary tree of height h + 1 has 2h+1

many leaves. Every rule in a Chomsky normal form grammar is either binary and does not
produce letters or unary and produces a single letter. So, if w ∈ W, then the parse tree must
have at least |w| many unary rule applications. Each unary rule application in T reduces the
number of leaves by at least one. As a consequence, we have that |w| ≤ 2h+1 − |w|, whence
|w| ≤ 2h. q.e.d.

Theorem 3.5 (Chomsky). For every context-free grammar G = (Σ, V, P, S), there is a
grammar in Chomsky normal form G′ such that L(G) = L(G′).

In order to prove Theorem 3.5, we need to provide some technical lemmas. We call a
context-free production rule A → α a problematic production if |α| ≥ 2 and α contains
variables; we call it a unit production if α is just a single variable, i.e., the rule is of the form
A→ B.

Lemma 3.6. If G = (Σ, V, P, S) is any context-free grammar, then there is a context-free
grammar G′ that contains no problematic productions such that L(G) = L(G′).

Proof. Fix G = (Σ, V, P, S). We use the ideas from the proof of Lemma 1.21: for each a ∈ Σ,
we introduce a new variable Xa. For α ∈ Ω∗, let X(α) be the string α which each occurrence
of a letter replaced by the corresponding new variable. Let X ′ := V ∪ {Xa ; a ∈ Σ},

P ′ := {A→ a ; A→ a ∈ P} ∪ {A→ X(α) ; A→ α ∈ P, |α| ≥ 2} ∪ {Xa → a ; a ∈ Σ}, and

G′ = (Σ, V ′, P ′, S). Then G′ produces the same language as G and has no problematic pro-
ductions. q.e.d.

We call a grammar unit closed if for any unit production A→ B ∈ P and any production
B → α ∈ P , we also have A→ α ∈ P .

Lemma 3.7. If G is any context-free grammar, then there is a unit closed grammar G′ with
L(G) = L(G′).

Proof. Form the unit closure by iteratively adding A → α if it was not in P already. (Note
that it’s not necessarily enough to do this once: if A→ B,B → C,C → α ∈ P , then the first
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step will add B → α to the set of productions, but only the second step will add A → α.
However, the number of new rules to be added is bounded by |V ||P |.) Clearly, this does not
change the language. q.e.d.

Lemma 3.8. If G = (Σ, V, P, S) is any context-free unit closed grammar, then removing all
unit productions from it does not change the language.

Proof. Clearly, if G′ is G with the unit productions removed, then L(G′) ⊆ L(G), so we
need to show the other direction. We prove that by showing that any G-derivation that uses
a unit production can be shortened. This means that the shortest G-derivation for a word
cannot use unit productions and thus is a G′-derivation.

Let
S

G−→ αAβ
G−→1 αBβ

G−→ w (+)

where αAβ
G−→1 αBβ is the final unit production that occurs in the derivation. Since B is a

variable, does not occur in w, and G is context-free, we know that there is some rule B → ζ
applied to B in the last part of the derivation. Let us write

S
G−→ αAβ

G−→1 αBβ
G−→ γBδ

G−→1 γζδ
G−→ w

where γBδ
G−→1 γζδ is the first rule applied to that instance of B after the use of the unit

production.
By our assumptions (and because G is context-free), all derivations between the applica-

tion of A → B and the application of B → ζ in that derivation are independent of which

symbol is in place of the B, so we also have αAβ
G−→ γAδ with the very same derivation

(i.e., it has precisely the same length as αBβ
G−→ γBδ).

We know that both A → B and B → ζ are in P , so by unit closure, we also have
A→ ζ ∈ P . Now, we put the various parts together and get

S
G−→ αAβ

G−→ γAδ
G−→1 γζδ

G−→ w

which is a production that is one step shorter than the one in (+). This proves our claim
and thus the lemma. q.e.d.

Lemma 3.9. Let G = (Σ, V, P, S) be a context-free grammar and A → α = A0...An ∈ P .
Assume that V ′ = V ∪ {X0, ..., Xn−2} where the Xi are new variables not occurring in V ,

PA→α := {A→ A0X0, X0 → A1X1, ..., Xn−3 → An−2Xn−2, Xn−2 → An−1An},

P ′ := P\{A→ α} ∪ PA→α, and G
′ = (Σ, V ′, P ′, S). Then L(G) = L(G′).

Proof. Clearly, L(G) ⊆ L(G′). For the other direction: if a G′-derivation of a word w ∈ W
uses any of the rules in PA→α, they have to be used in the order given since the variables Xi

do not show up in any other rules: thus, X0 has to appear first, is rewritten by X0 → A1X1,
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etc., until the rule Xn−2 → An−1An removes the new variables. The fact that G is context-
free means that any other rule applications between the rules of PA→α can be moved before
or after the cycle. [E.g., if

S
G−→ αAβ

G′
−→1 αA0X0β

G−→ γX0δ
G′

−→1 γA1A2δ
G−→ w,

then we have by context-freeness that αA0
G−→ γ and β

G−→ δ, and thus

S
G−→ αAβ

G−→ αA0A1A2β
G−→ γA1A2β

G−→ γA1A2δ
G−→ w.]

q.e.d.

Proof of Theorem 3.5. Let G = (Σ, V, P, S) be a context-free grammar. We now apply the
constructions from Lemmas 3.6, 3.7, & 3.9: in the first step, we make sure that all rules are
either unary or have only variables on the right-hand side; in the second step, we form the
unit closure; then we remove unit productions; finally, we iteratively replace all rules of the
form A → α = A0...An for n ≥ 3 by PA→α. Note that all of these steps only require making
finitely many changes to the grammars. The resulting grammar is in Chomsky normal form;
Lemmas 3.6, 3.7, 3.8 & 3.9 show that the resulting grammar is equivalent to the original
grammar. q.e.d.

3.3 The pumping lemma for context-free languages

Definition 3.10. Let L ⊆ W be a language. We say that L satisfies the (context-free)
pumping lemma with pumping number n if for every word w ∈ L such that |w| ≥ n there are
words u, v, x, y, z such that w = xuyvz, |uv| > 0, |uyv| ≤ n and for all k ∈ N, we have that
xukyvkz ∈ L. We say that L satisfies the (context-free) pumping lemma if there is some n
such that it satisfies the (context-free) pumping lemma with pumping number n.

The first proof of the context-free pumping lemma is usually attributed to Yehoshua
Bar-Hillel (1915–1975); the statement is therefore also known as the Bar-Hillel Lemma.13

Proposition 3.11. Every language that satisfies the (regular) pumping lemma satisfies the
(context-free) pumping lemma.

Proof. If w = xuz with |u| > 0 and |xu| ≤ n, then let y := ε and z := ε. Clearly,
|uv| ≥ |u| > 0 and |uyv| = |uεε| = |u| ≤ |xu| ≤ n and xukyvkz = xukεεkz = xukz. q.e.d.

Therefore, the proof of Corollary 2.16 implies that there are uncountably many languages
satisfying the context-free pumping lemma. As in the case of the regular pumping lemma,
this means that the pumping lemma cannot characterise any of our classes of languages.

13Cf. Y. Bar-Hillel, M. Perles, & E. Shamir (1961). On formal properties of simple phrase-structure
grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung 14:2, 143–172.



19 Dec 2022 Michaelmas 2022: Part II Automata & Formal Languages 41

Theorem 3.12 (The context-free pumping lemma). For every context-free language L, there
is an n such that L satisfies the context-free pumping lemma with pumping number n.

Proof. By Theorem 3.5, there is a grammar G = (Σ, V, P, S) in Chomsky normal form such
that L = L(G). Let m := |V | and n := 2m + 1. We claim that n is a pumping number of
L. Let w ∈ L(G) such that |w| ≥ n and let T be a G-parse tree starting with S such that
σT = w. By Lemma 3.4, we know that the height of T must be at least m + 1. Find some
terminal node t ∈ T such that |t| ≥ m + 1 and some s ⊆ t on the branch leading to t such
that the subtree Ts has height precisely m+ 1. In the subtree Ts, the branch from ε to t has
length m + 2 and its labels are m + 1 many variables and one letter (labelling the terminal
node t itself). Since |V | = m, by the pigeonhole principle, there are two nodes on the branch
with the same label, say, t0 ⫋ t1 such that ℓ(t0) = ℓ(t1) = A ∈ V . In particular, Tt0 and Tt1

are both parse trees starting with A. We write

σT = x0σTsz1,

σTs = x1σTt0
z0,

σTt0
= uσTt1

v and

σTt1
= y, so

σT = x0x1uyvz0z1.

Observe that |uv| > 0 since t0 ̸= t1 and that |uyv| = |σTt0
| ≤ |σTs| ≤ 2m = n by Lemma 3.4.

Let x := x0x1 and z := z0z1. Then w = xuyvz satisfies the length bounds of the context-free
pumping lemma. All that’s left to show is that for all k ∈ N, xukyvkz ∈ L. We define
recursively

T(0) := Tt1 ,

T(i+1) := graft(Tt0 , t1,T(i)), and

Tk := graft(T, t0,T(k)).

Then T(k) is a G-parse tree starting with A and σT(k)
= ukyvk [by induction]. Therefore Tk

is a G-parse tree starting with S and σTk
= xukyvkz ∈ L. q.e.d.

Example 3.13. The language L := {akbkck ; k ≥ 1} is not context free.

[Suppose it were, then by the pumping lemma, there is a pumping number n. Consider
the word w = anbncn ∈ L with |w| = 3n ≥ n. Thus, we can write w = xuyvz with |uv| > 0
and |uyv| ≤ n. This means that the subword uyv cannot contain all three letters a, b, and c,
so it is of the form akbℓcm where either k = 0 or m = 0; the condition |uv| > 0 means that
k + ℓ+m > 0. So, if we pump down, we have two cases to consider:

Case 1. We have k = 0. Then the word still contains n many as, but at least one of the
numbers of bs or cs has been reduced. Thus the pumped word is not in L anymore.

Case 2. We have m = 0. Then the word still contains n many cs, but at least one of the
numbers of as or bs has been reduced. Thus the pumped word is not in L anymore.

Together, this yields a contradiction.]
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3.4 Closure properties

Proposition 3.14. The class of context-free languages is not closed under intersection.

Proof. This follows readily from Example 3.13. Consider

L0 := {ambmck ; m, k ≥ 1} and

L1 := {akbmcm ; m, k ≥ 1};

clearly, L0 ∩ L1 = {akbkck ; k ≥ 1} which is not context-free. So, we only need to ar-
gue that both L0 and L1 are context-free. Let G0 = ({a, b, c}, {S,X,C}, P0, S) and G1 =
({a, b, c}, {S,A, Y }, P1, S) with P0 := {S → XC,X → aXb,X → ab, C → cC,C → c}
and P1 := {S → AY,A → aA,A → a, Y → bY c, Y → bc}. Clearly, L(G0) = L0 and
L(G1) = L1.

14 q.e.d.

Therefore by Proposition 1.19, the class of context-free languages cannot be closed under
complements and differences. In light of the product automaton construction from § 2.5, this
tells us that any model of computation that characterises the context-free languages cannot
have a product construction.

In this lecture course, we shall not see the corresponding model of computation: it is the
notion of pushdown automaton. A pushdown automaton is like a regular automaton, but
it as a storage device known as a stack. A stack is a storage unit in which you can store,
remove, and read letters by the last-in-first-out (LIFO) principle. The transition function δ
of the automaton not only determines the state of the automaton, but also the actions to be
performed with respect to the stack, and it depends on what the automaton can see on the
stack. It can be proved that a language is context-free if and only if it is accepted by such a
pushdown automaton. The failure of closure by intersection informs us that there cannot be
a product construction for pushdown automata.

On Example Sheet #2, we shall see that the class of context-free grammars is (like the
class of regular grammars) closed under the Kleene plus operation.

3.5 Decision problems

Again, we shall consider the word problem, the emptiness problem, and the equivalence
problem for our classes of languages. In Theorem 1.18, we already solved the word problem
for context-free languages positively. The proof of Theorem 1.18 was not very efficient: it
potentially requires to check a vast (yet finite) amount of possible derivations. Remember that
in § 2.8, the solution to the word problem was much more straightforward: the automaton
provided an algorithm that would determine in |w| steps whether the automaton accepted
w. A similar situation can be found in context-free grammars that are in Chomsky normal
form: by Lemma 3.3, we know that the derivation of a word w will have length 2|w| − 1.

The emptiness problem was essentially solved in § 2.8: we proved that any language
satisfying the regular pumping lemma with pumping number n that is non-empty must

14Alternatively, observe that {an ; n > 0} and {cn ; n > 0} are regular, hence context-free, and that
{bncn ; n > 0} and {anbn ; n > 0} are context-free by Example 3.1. The closure of the context-free languages
under concatenation does the job.
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regular (type 3) context-free (type 2)

Closure properties.

Concatenation ✓ ✓
Union ✓ ✓
Intersection ✓ ×
Complementation ✓ ×
Difference ✓ ×

Decision problems.

Word problem ✓ ✓
Emptiness problem ✓ ✓
Equivalence problem ✓ ×

Figure 4: Closure properties and decision problems of regular and context-free grammars in
an overview.

contain a word of length less than n. Re-checking the proof, we realise that this had nothing
to do with the regular pumping lemma: also the context-free pumping lemma allows us to
pump down every word of length the pumping number or longer, so a word of minimal length
must be shorter than n.

Corollary 3.15. The emptiness problem for context-free grammars is solvable.

Proof. Given a context-free grammar G, first transform it into Chomsky normal form by the
operations in Lemmas 3.6, 3.7, & 3.9. Note that this is an algorithmic procedure. Now count
the numberm of variables and calculate n := 2m. By the above argument, L(G) is non-empty
if and only if there is a word of length < n in L(G). Therefore, we can now systematically
check for all words of length < n whether they are in L(G) (either use Theorem 1.18 or, more
efficiently, Lemma 3.3). If at least one of them is, L(G) ̸= ∅; otherwise L(G) = ∅. q.e.d.

In contrast, the Equivalence problem for context-free grammars is undecidable. We will
not prove this in this course, but a proof can be found in Sipser’s textbook,15 using the unsolv-
ability of the halting problem (Theorem 4.28) and the technique of reduction functions from
§ 4.11: Sipser’s Exercise 5.1 (p. 211) reduces the equivalence problem for context-free gram-
mars to the universality problem for context-free grammars {G ; L(G) = W} and Sipser’s
Theorem 5.13 (p. 197) reduces that problem to the non-computable set K0 (cf. § 4.8). We
summarise what we know so far (including the unproved claim about unsolvability) in Fig-
ure 4.

15M. Sipser. Introduction to the theory of computing. Second edition. Thomson Course Technology, 2006
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4 Computability theory

4.1 Register machines

Let Σ be an alphabet and Q a non-empty finite set whose elements we shall call states. A
tuple of the form

(0, k, a, q) ∈ N× N× Σ×Q,

(1, k, a, q, q′) ∈ N× N× Σ×Q×Q,

(2, k, q, q′) ∈ N× N×Q×Q or

(3, k, q, q′) ∈ N× N×Q×Q

is called a (Σ, Q)-instruction. For improved readability, we write

+(k, a, q) := (0, k, a, q), (“add”)

?(k, a, q, q′) := (1, k, a, q, q′), (“check”)

?(k, ε, q, q′) := (2, k, q, q′) and (“check”)

−(k, q, q′) := (3, k, q, q′) (“remove”)

and interpret these instructions as listed in Table 4.1. There are infinitely many instructions
of each type, but if we bound the natural number k occurring in them, we only have a finite
number of instructions: there are n · (|Σ| · |Q|+ |Σ| · |Q|2 + 2 · |Q|2) many instructions with
k < n.

Definition 4.1. A tuple M := (Σ, Q, P ) is called a Σ-register machine (or just register
machine, if Σ is clear from the context) if Q is a non-empty finite set with two special
elements qS ̸= qH, the start state and the halt state, and P is a function with domain Q such
that each P (q) is a (Σ, Q)-instruction. The function P is called the program of the register
machine. For a fixed q ∈ Q, we also refer to q 7→ P (q) as a program line.

We observe that because Q is finite, the range of P contains only finitely many instruc-
tions, so for any given register machine M there is a maximal number k that shows up in
any of the instructions in the range of P . This number is called the upper register index of

Instruction Interpretation

+(k, a, q) “Add the letter a to the content of register k and go to state q.”
?(k, a, q, q′) “Check whether the last letter in register k is a; if so, go to

state q; otherwise, go to state q′.”
?(k, ε, q, q′) “Check whether register k is empty; if so, go to state q; otherwise,

go to state q′.”
−(k, q, q′) “Check whether register k is empty; if so, go to state q; otherwise,

remove the final letter of its content and go to state q′”.

Table 1: Interpretations of register machine instructions.
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M . If n is the upper register index of a register machine M , we can think of M as a device
that has n+ 1 many storage units, called registers, that can contain words in W and is in a
state q ∈ Q that determines what it going to do next via the program P . So, at any given
time, the situation of the register machine is determined by its state and what is in the n+1
many registers.

We say that a sequence C := (q, w0, ..., wn) ∈ Q×Wn+1 is a configuration or snapshot of
length n+1. In such a configuration, the first entry q is called the state of the configuration
and the rest is called the register content of the configuration. If M is a register machine
with upper register index n and C is any configuration of length m ≥ n + 1, then we can
define the action of M on C: we say that M transforms C to C ′ if the following is true:

Case 1. If P (q) = +(k, a, q′) and C ′ = (q′, w0, ..., wk−1, wka, wk+1, ..., wm).

Case 2. If P (q) = ?(k, a, q′, q′′),

Subcase 2a. wk = wa for some w and C ′ = (q′, w0, ..., wm) or

Subcase 2b. wk ̸= wa for any w and C ′ = (q′′, w0, ..., wm).

Case 3. If P (q) = ?(k, ε, q′, q′′),

Subcase 3a. wk = ε and C ′ = (q′, w0, ..., wm) or

Subcase 3b. wk ̸= ε and C ′ = (q′′, w0, ..., wm).

Case 4. If P (q) = −(k, q′, q′′),

Subcase 4a. wk = ε and C ′ = (q′, w0, ..., wm) or

Subcase 4b. wk = wa for some a and C ′ = (q′′, w0, ..., wk−1, w, wk+1, ..., wm).

We think of a register machine M as a model of computation in the following sense: the
start state qS is the state the machine is in at the beginning of the computation. We give the
machine some input in its registers, i.e., a sequence w⃗ = (w0, ..., wn) ∈ Wn+1 where n is the
upper register index of M . Then we can define the sequence of computational snapshots by
recursion:

Definition 4.2. If M = (Σ, Q, P ) is a register machine with upper register index n and
w⃗ := (w0, ..., wn) ∈ Wn+1, then the computation sequence of M with input w⃗ is defined by
recursion as follows:

C(0,M, w⃗) := (qS, w⃗),

C(k + 1,M, w⃗) := C where M transforms C(k,M, w⃗) to C.

In order to apply the recursion, we need an input sequence w⃗ that has at least length n+1
where n is the upper register index of M . We shall use the following notational convention:
if v⃗ = (v0, ..., vk) is a shorter sequence, we interpret it as w⃗ = (v0, ..., vk, wk+1, ..., wn) where
wi = ε. In particular, if k = 0, we talk about “input w” for a single word w (which is then
interpreted as a sequence of length n+ 1 with all other registers being empty).

Note that the function k 7→ C(k,M, w⃗) is always defined, so any computation sequence
represents an infinitely long computation. Of course, we are not interested in infinitely long
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computations, but rather in those computations that will eventually halt. This is where our
second special state, the halt state qH comes into play. We say that a computation sequence
halts if there is some element (q, w⃗) in the sequence such that q = qH. Otherwise, we say
that the computation sequence does not halt.

If M is a register machine and w⃗ a sequence of words, we say that M halts on input w⃗ in
k steps if the computation sequence of M with input w⃗ halts and k is the least number such
that C(k,M, w⃗) = (qH, v⃗) for some v⃗; this sequence v⃗ is called the register content at the time
of halting ; we also use the terminology M converges on input w⃗ for this. If the computation
sequence does not halt, we also say that M diverges on input w⃗.

We can call two Σ-register machines M = (Σ, Q, P ) and M ′ = (Σ, Q′, P ′) strongly equiv-
alent if the register content of each of the elements of their computation sequences is the
same, i.e., for all k and all w⃗, if C(k,M, w⃗) = (q, v⃗) and C(k,M ′, w⃗) = (q′, u⃗), then v⃗ = u⃗,
and furthermore the state of a configuration in the computation sequence of one of the ma-
chines is the halting state if and only if the state in the corresponding configuration in the
other computation sequence is the halting state, i.e., C(k,M, w⃗) = (qH, v⃗) if and only if
C(k,M ′, w⃗) = (q′H, v⃗). As with grammars (cf. the proof of Proposition 1.13), we observe
that if |Q| = |Q′|, then for each register machine M = (Σ, Q, P ), there is a register machine
M ′ = (Σ, Q′, P ′) that is strongly equivalent, so the precise nature of Q is irrelevant, only its
size matters.

Proposition 4.3. For any fixed Σ, there are only countably many register machines up to
strong equivalence.

Proof. Fix k and n and observe that for any |Q| = n, there are only finitely many register
machines with upper register index ≤ k. [This follows from our previous finite upper bound
on the number of (Σ, Q)-instructions.] By the previous remark, only the size of the set Q
matters up to strong equivalence, so for fixed k and n, the set of register machines with any
state set of size n and upper register index ≤ k up to strong equivalence is finite. But then
the set of all Σ-register machines up to strong equivalence is a countable union of finite sets,
thus countable. q.e.d.

Proposition 4.4 (Padding Lemma). For each register machine there are infinitely many
strongly equivalent register machines.

Proof. Let M = (Σ, Q, P ) be any register machine and let q̂ /∈ Q. Because q̂ is not in Q, it
does not show up in any instructions in the range of P . DefineM+ := (Σ, Q∪{q̂}, P+) where
P+↾Q = P and P+(q̂) := ?(0, ε, q̂, q̂). Clearly, the state set ofM+ has one element more than
the state set of M . By construction, if C is a configuration with state in Q, then M+ and
M will transform C in precisely the same way. Since qS ∈ Q, we can show by induction that
the computation sequences of M+ are precisely the computation sequences of M (actually,
the entire sequences, not just the register content of the configurations). The construction
M 7→ M+ produces a strongly equivalent machine with strictly bigger state set. We can
now produce infinitely many pairwise distinct machines by recursively adding additional new
elements that are irrelevant for the computation. q.e.d.
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4.2 Performing operations and answering questions

In the following, we shall talk about partial functions, i.e., functions that are not necessarily
defined everywhere. In this lecture, we shall use the notation f : X 99K Y for “f is a partial
function from X to Y ”, i.e., dom(f) ⊆ X and ran(f) ⊆ Y . In addition, for partial functions,
we introduce the following useful notation: if f : X 99K Y , we write

f(x)↓ if and only if x ∈ dom(f) and

f(x)↑ otherwise

and use our terminology for computations by saying “f converges on input x” for f(x)↓ and
“f diverges on input x” for f(x)↑. If f : X 99K Y and g : Y 99K Z, then the concatenation
of f and g, denoted by g ◦ f : X 99K Z is defined by g ◦ f(x) = g(f(x)); in particular, if
x /∈ dom(f), then x /∈ dom(g ◦ f).

Fix an upper register index n and let F : Wn+1 99K Wn+1 be any partial function. We say
that a register machine M performs the operation F if upon input w⃗ ∈ Wn+1, if F (w⃗)↑, then
M diverges on input w⃗ and if F (w⃗)↓, then M converges on input w⃗ with register content
F (w⃗) at the time of halting. If F is a total function, we sometimes emphasise this by using
the phrase “M performs the total operation F”.

A question with k+1 answers is a partition ofWn+1 into k+1 disjoint sets A0, ..., Ak. E.g.,
the question “does the second register end with a?” is the partition A0 := {w⃗ ; ∃v(w2 = va)}
and A1 := Wn+1\A0. A register machine M answers a question with k + 1 answers if it has
k+ 1 designated answer states q̂0, ..., q̂k and for each w⃗, the computation of M with input w⃗
produces in finitely many steps a configuration (q̂i, w⃗) if and only if w⃗ ∈ Ai.

Example 4.5. (1) The operation “never halt” corresponds to the partial function
f : Wn+1 99K Wn+1 with dom(f) = ∅ and is performed by the register machine with
programme qS 7→ +(0, a, qS). Note that many register machines perform this operation:
e.g., any register machine that does not have qH in any of its instructions.

(2) The operation “halt without changing anything” corresponds to the total identity function
f(w⃗) = w⃗ and is performed by the register machine with programme qS 7→ ?(0, ε, qH, qH).

(3) The question “Is register i empty?” corresponds to the partition given by A0 := {w⃗ ; wi =
ε} and A1 := {w⃗ ; wi ̸= ε} and is answered by the register machine with programme
qS 7→ ?(i, ε, q̂0, q̂1).

(4) The question “Does register i end with letter a?” corresponds to the partition given by
A0 := {w⃗ ; ∃v(wi = va)} and A1 := Wn+1\A0 and is answered by the register machine
with programme qS 7→ ?(i, a, q̂0, q̂1).

Lemma 4.6 (Concatenation Lemma or Subroutine Lemma). Let M = (Σ, Q, P ) and M ′ =
(Σ, Q′, P ′) be two register machines. If M performs operation F and M ′ performs operation
F ′, then we can construct a register machine that performs operation F ′ ◦ F .

Proof. We can assume w.l.o.g. that Q ∩ Q′ = ∅. If we only care about whether a machine
performs an operation, the value of P (qH) never matters: for each input, the state qH is either
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never reached, or if it is reached, the tail of the computation sequence after the computation
reaches qH is irrelevant for the output of the computation. So, we can alter that instruction
without affecting the fact that M performs F . Let Q̂ := Q ∪ Q′\{qH}. Define a set P ∗

consisting of P without (qH, P (qH)) and all instances of qH in the instructions replaced by

q′S. Then P̂ := P ∗ ∪ P ′ is a (Σ, Q∗)-program and M̂ := (Σ, Q̂, P̂ ) is a register machine that
performs the operation F ′ ◦ F . q.e.d.

We emphasise (since this will become important later) that the operation that produces

the machine M̂ from the machines M and M ′ is a concrete construction: given M and M ′,
it provides a concrete definition of the machine M̂ performing F ′ ◦ F .

Lemma 4.7 (Case Distinction Lemma). Let Q = {Ai ; i ≤ k} be a question with k + 1
answers and fi : Wn+1 99K Wn+1 be operations for i ≤ k. If Q is answered by a register
machine M = (Σ, Q, P ) and fi is performed by Mi := (Σ, Qi, Pi) (for i ≤ k), then we can
construct a register machine that performs the operation defined by g(w⃗) := fi(w⃗) if and
only of w⃗ ∈ Ai.

Proof. As in the proof of Lemma 4.6, we observe that the instructions P (qH) and P
′(q′H) are

irrelevant, so we can w.l.o.g. assume that the machines Mi all share the same halt state qH
and that their programs agree on that state, i.e.,

⋂
i≤kQi = {qH} and Pi(qH) = Pj(qH) for all

i, j ≤ k; furthermore, we can assume w.l.o.g. that for all i ≤ k, we have that Q ∩ Qi = ∅.
Let qS,i be the start state of Mi and q̂i be the answer states of the machine M . Let P ∗

i be
the program consisting of the program lines of Pi with all occurrences of qS,i replaced by q̂i.

Let Q̂ := Q ∪
⋃

i≤k(Qi\{qS,i}), P̂ := P ∪
⋃

i≤k P
∗
i , and M̂ := (Σ, Q̂, P̂ ). Then M̂ performs

the operation g. q.e.d.

Lemmas 4.6 & 4.7 are crucial tools in building the theory of register machines. Because
of them, once we have established that a certain operation can be performed by a register
machine, we do not need to explicitly give the program lines for the machine, instead, we
can use the description of the operation (e.g., “never halt”) and build a new operation by
concatenations and/or case distinctions. E.g.,

f(w⃗) =

{
w⃗ if wi ̸= ε and
↑ if wi = ε

(�)

can be performed by a register machine as follows: check if the ith register is empty; if so,
halt without any change; if not, never halt.

Example 4.8. The following operations and questions are performed or answered by register
machines:

(1) “Delete the final letter in register i, if it exists.”

[The program qS 7→ −(i, qH, qH) performs this operation.]

(2) “Delete the content of register i.”

[The program qS 7→ −(i, qH, qS) performs this operation.]
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(3) “Add a to the end of register i.”

[The program qS 7→ +(i, a, qH) performs this operation. Note that this also performs the
operation “guarantee that register i is not empty”.]

(4) “Add w to the end of register i.”

[If w = a0...am, then concatenate the operations “Add ai to the end of register i” by
Lemma 4.6 and (3).]

(5) “Replace the content of register i with w.”

[First empty register i by (2), then add w to register i by (4).]

(6) “What is the final letter of register i?”

[If Σ = {a0, ..., ak}, then this is a question with k + 2 answers, i.e.,

Aℓ := {w⃗ ; ∃v(wi = vaℓ)}

(for ℓ ≤ k) and Ak+1 := {w⃗ ; wi = ε}. We can answer this question by checking each
letter in turn with Example 4.5 (4): “Does register i end in letter aℓ?” If yes, we go to
state q̂ℓ, if not and ℓ ̸= k, we answer the next question; if not, and ℓ = k, we go to answer
state q̂k+1.]

(7) “Copy the final letter of register i (if it exists) to register j.”

[Determine the final letter of register i by (6). If the answer is q̂k+1, perform “halt” via
Example 4.5 (2); if it is q̂ℓ for some ℓ ≤ k, perform “add aℓ to the end of register j” (3).]

(8) “Move the final letter of register i (if it exists) to register j.”

[Check whether register i is empty via Example 4.5 (3). If so, perform “halt”. If not,
perform “copy the final letter of register i to register j” (7) and then “delete the final
letter in register i” (1).]

(9) “Move the content of register i into register j in reverse order.”

[Perform the operation “move the final letter of register i (if it exists) to register j” (8)
repeatedly until register i is empty; after that halt.]

(10) “Move the content of register i into register j.”

[Take an additional register k which is first emptied (2). Then move the content of
register i to register k in reverse order (9) and after that move the content of register k
to register j in reverse order.]

(11) “Copy the content of register i into register j in reverse order.”

[Take an additional register k which is first emptied (2). Then perform the operations
“Copy the final final letter of register i (if it exists) to register k” (7) and “move the
final letter of register i (if it exists) to register j” (8) repeatedly until register i is empty.
After that, move the content of register k to register i in reverse order (9).]
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(12) “Copy the content of register i to register j.”

[Take an additional register k which is first emptied (2). Copy the content of register i
to register k in reverse order (11) and then move the content of register k to register j
in reverse order (9).]

(13) “Is the content of register i exactly w?”

[If w = a0...ak, answer the questions “Is aℓ the final letter of register i?” from the back
of the word. If one of the questions gets a negative answer, answer “no”. If the answer
is positive, move the final letter to an unused register and continue. If all k + 1 checks
are positive, move the word back from the unused register and answer “yes”.]

Note that some of these operations and questions require unused registers to store infor-
mation that would otherwise be lost. It is not always possible to perform an operation on
Wn+1 with only n+1 many registers as we might need additional storage space to perform our
operations. E.g., copying the content of register i to register j in Example 4.8 (12) requires
the storage of the word in a register k. Of course, the exact choice of k does not matter. We
call these additional registers scratch registers or scratch space. This indicates that for many
purposes, the notion of strong equivalence of register machines is too strong: it requires that
all snapshots are the same, including the information on the scratch registers.

4.3 Computable functions & sets

If M is a Σ-register machine and k ∈ N, we can define a partial function fM,k : Wk 99K W by

fM,k(w⃗)↑ if and only if M does not halt on input w⃗,

fM,k(w⃗) = v0 if and only if M halts on input w⃗ with register content
v⃗ at the time of halting.

Note the subtle difference to the setting in § 4.2: there we considered the entire v⃗ as the
output of the computation; here, we consider only what happens in register 0 as output. Ev-
erything else is considered as part of the input and scratch space. If two Σ-register machines
M and M ′ are strongly equivalent, then the partial functions defined by them are equal, i.e.,
fM,k = fM ′,k. However, it can be easily seen that the converse does not hold, i.e., there can
be machines that produce the same function, but are not strongly equivalent: they do not
produce the same computation sequences, but they still produce the same halting behaviour
and the same output (which only lives in register 0). The domain of the partial function
fM,k is exactly the set of k-tuples of words w⃗ for which the machine M halts if given the
input w⃗. If k = 1, we write WM := dom(fM,1). This gives rise to an even weaker notion of
equivalence: machine M and M ′ are called weakly equivalent if WM = WM ′ . Again, if the
defined functions fM,k and fM ′,k are the same, then M and M ′ are weakly equivalent, but
the converse need not hold.

Definition 4.9. A partial function f : Wk 99K W is called computable if there is a Σ-register
machine M such that f = fM,k.
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The Padding Lemma (Proposition 4.4) immediately implies that the machine computing
f is not unique; in fact, for every computable partial function f there are infinitely many
different machines that compute f . Proposition 4.3 yields that there are at most countably
many computable partial functions.

Example 4.10. Based on the constructions in § 4.2, we already know many examples of
computable partial functions:

(1) The identity function id : w 7→ w (Example 4.5 (2));

(2) constant functions ck,v : Wk → W : w⃗ 7→ v (Example 4.8 (5));

(3) projection functions πk,i : Wk → W : w⃗ 7→ wi for some i < k (if k = 0, the identity does
the job; otherwise, empty register 0 and copy the content of register i to register 0).

If X ⊆ Wk, we call any total function f : Wk → W with the property

f(w⃗) ̸= ε ⇐⇒ w⃗ ∈ X

a characteristic function of X. We can fix a particular a ∈ Σ and then call the function

χX(w⃗) :=

{
a if w⃗ ∈ X and
ε if w⃗ /∈ X.

the characteristic function of X. Similarly, we call any partial function f : Wk 99K W with
dom(f) = X a pseudo-characteristic function of X and

ψX(w⃗) :=

{
a if w⃗ ∈ X and
↑ if w⃗ /∈ X.

the pseudo-characteristic function of X. A set X ⊆ Wk is called computable if its character-
istic function is computable; it is called computably enumerable if its pseudo-characteristic
function is computable.

Proposition 4.11. Let X ⊆ Wk.

(a) If X is computable, then so is Wk\X, i.e., being computable is closed under complemen-
tation.

(b) Then ψX is computably enumerable if and only if there is a computable pseudo-characte-
ristic function. In particular, a set is computably enumerable if and only if it is the domain
of a computable partial function. For X ⊆ W, the set X is computably enumerable if
and only if there is an M such that X = WM .

(c) If X is computable, then it is computably enumerable.

We’ll see later that the converse of (c) does not hold and that (a) does not hold for
computably enumerable sets.
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Proof. (a) Consider f : W → W defined by f(ε) = a and f(w) = ε for any w ̸= ε. This is
computable: first check whether w is empty; if so, empty register 0, add a to that register,
and halt. If not, empty register 0 and halt.

Clearly, χWk\X = f ◦ χX , so the claim follows from Lemma 4.6.
(b) Only the backwards implication is non-trivial. Let c be the constant function that

maps everything to the designated element a and ψ be any computable pseudo-characteristic
function. Then c ◦ ψ = ψX .

(c) In (�) on page 48, we had seen that the partial function f that is the identity on
non-empty words and diverges on the empty word is computable. Then ψL = f ◦χL. q.e.d.

Theorem 4.12. Every regular language is computable.

Proof. Let L be regular and let D = (Σ, Q, δ, q0, F ) be a deterministic automaton such that

L(D) = L. We describe a register machine M̂ = (Σ, Q̂, P ) that takes w as input in register
0, mimics the computation of the automaton D, and outputs a if w ∈ L and ε if w /∈ L. For
each state of the automaton q ∈ Q, our register machine will have a subset Qq ⊆ Q̂ of states:
this subset of register machine states will only be left if we explicitly say so, and while the
register machine is in states from Qq, it is mimicking steps of automaton computation in
state q.

First we reverse the order of w in register 0 (since automata read words from the front
and register machines read words from the back). We do this by reversing the content of
register 0 into register 1 via Example 4.8 (9). We then move into the subset Qq0 , i.e., those
states that correspond to the automaton being in the start state q0.

Whenever the register machine gets into a state in Qq, it reads and removes the final
letter in register 1, say b, and then moves into a state in the subset Qq′ where q

′ = δ(q, b).
If there are no letters remaining in register 1, it either empties register 0 and halts (in case
q /∈ F ) or empties register 0 and after that writes a into register 0 (in case q ∈ F ). q.e.d.

On Example Sheet #3, we shall see that the algorithms that we exhibited in the proof
of the solvability of the word problem for noncontracting grammars (Theorem 1.18) can
be performed by a register machine which shows that if G is a type 1 grammar, L(G) is
computable, yielding the following chain of implications:

regular ⇒ context-free ⇒ type 1 ⇒ computable ⇒ computably enumerable.

This leaves the question where type 0 grammars fit into this chain of implications: we’ll
discuss this in § 4.8.

4.4 The shortlex ordering and its computability

Let us assume that our finite alphabet Σ comes with some ordering of the letters, i.e.,
Σ = {a0, ..., an} and

a0 < a1 < ... < an.
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If w, v ∈ W and w = b0...bk and v = c0...cℓ, we can define the following order relation:

w < v : ⇐⇒ |w| < |v| or
|w| = |v| and w ̸= v and

if i is mı̀nimal such that bi ̸= ci, then bi < ci.

This order relation is called the shortlex order. It is a total order, i.e., irreflexive (for no w,
it is the case that w < w), transitive (if u < v < w, then u < w) and trichotomous (for any
v and w, we either have v < w or w < v or v = w), and ε is its minimal element. We write
pred<(w) := {v ∈ W ; v < w} for the initial segment of word smaller than w.

Theorem 4.13. The shortlex order (W, <) is isomorphic to (N, <).

We also say that the shortlex order and the natural numbers have the same order type or
that the shortlex order has order type ω.

Proof. If w ∈ W is any word, then the set pred<(w) is finite: all such v have length ≤ |w|
and there are only finitely many words like this. So, there is a canonical map assigning a
natural number to each such v, viz. if v 7→ n if v is the nth word in the shortlex ordering of
pred<(w). Since pred<(w) is an initial segment of the entire shortlex ordering, if v is the nth
word in the shortlex ordering of pred<(w), it is also the nth word in (W, <). This provides
the canonical isomorphism: F (v) = n if and only if there is some w such that v is the nth
word in pred<(w). q.e.d.

Notice that the isomorphism provided in the proof of Theorem 4.13 is unique. We often
would like to identify words with natural numbers and Theorem 4.13 allows us to do this in
a canonical way. We write #(w) for the natural number assigned to w by the isomorphism
in the proof of Theorem 4.13. We shall show that this ordering is computable.

Proposition 4.14. The characteristic function of {(v, w) ; v < w} and the function s(w) := v
where v is the <-immediate successor of w (i.e., #(v) = #(w) + 1) are computable.

Proof. The question “What is the relationship of the lengths of the contents in registers i
and j?” with answers “the content of register i is shorter than the content of register j”,
“the content of register j is shorter than the content of register i”, and “they are of equal
length” can be answered by a register machine (copy the contents into unused registers and
remove letters one by one; if one of them is empty before the other, it’s shorter; if they both
become empty in the same step, they are of equal length).

If |v| < |w|, we empty register 0, add a to it, and halt; if |w| < |v|, we empty register
0 and halt; if they are of the same length, we copy the contents into unused registers and
remove letters one by one, checking whether they are the same; once we see that they are
different, say a = v(i) ̸= w(i) = b, we either empty register 0, add a to it, and halt (if a < b)
or empty register 0 and halt (if b > a). Finally, if we emptied both registers without finding
a difference, we empty register 0 and halt.

Finding the <-immediate successor of a word w with |w| = k can be described as follows
(using the ordering a0 < a1 < ... < an on Σ): move all instances of the letter an from the
back of the word into an unused register (say, j) until you either hit an instance of aℓ ̸= an
or the register is empty. If the former, then change aℓ to aℓ+1 and then add precise as many
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letters a0 after this as you have letters in the scratch register j. If the latter, add precisely
as many letters a0 as you have letters in the scratch register j (that’s k many) and after that
add another a0. q.e.d.

4.5 Church’s recursive functions

The following operations on partial functions were considered by Alonzo Church (1903–1995).
The functions

πk,i : Wk → W : w⃗ → wi (projection functions)

ck,ε : Wk → W : w⃗ → ε (constant functions)

s : W → W : w 7→ v (where #(v) = #(w) + 1; the successor function).

are called basic functions. We have already proved that all basic functions are computable.
Suppose f : Wm 99K W and g1, ..., gm : Wk 99K W are partial functions, then the partial

function h defined by
h(w⃗) := f(g1(w⃗), ..., gm(w⃗))

is called the composition of f with (g1, ..., gm). The notational convention used for operations
applies here as well: if any term on the right hand side is undefined, then so is the left hand
side.

Suppose f : Wk 99K W and g : Wk+2 99K W are partial functions, then the function h
defined by the recursion equations

h(w⃗, ε) = f(w⃗) and

h(w⃗, s(v)) = g(w⃗, v, h(w⃗, v))

is called the recursion result of f and g.
Suppose f : Wk+1 99K W is a partial function, then the partial function h defined by

h(w⃗) :=


v if for all u ≤ v, we have that f(u)↓ and

v is <-minimal such that f(w⃗, v) = ε or
↑ if for all v, f(w⃗, v) ̸= ε

is called the minimisation result of f .
We say that a class C of partial functions is closed under composition, recursion, or

minimisation if, whenever f, g, g1, ..., gm are in C, then the composition of f with (g1, ..., gm),
the recursion result of f and g, or the minimisation result of f , respectively, are in C.

Definition 4.15. The class of primitive recursive (partial) functions is the smallest class of
partial functions containing all basic functions that is closed under composition and recursion.
The class of recursive (partial) functions is the smallest class of partial functions containing
all basic functions that is closed under composition, recursion and minimisation.

Let us see an example:

(a) The function π1,0(w) = w is a basic function and thus partial recursive.
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(b) The function π3,2(w, v, u) = u is a basic function and thus partial recursive.

(c) The function s is a basic function and thus partial recursive.

(d) The function s ◦ π3,2 is a concatenation of partial recursive functions and thus partial
recursive: s ◦ π3,2(w, v, u) = s(u).

(e) We now apply recursion to the functions in (a) and (d), i.e.,

h(w, ε) = π1,0(w)

h(w, s(v)) = s(π3,2(w, v, h(w, v))) = s(h(w, v)).

The function h defined by these recursion equations is partial recursive.

The recursion equations given in (e) are the so-called Grassmann equations for addition
(written in ordinary natural number notation: h(n, 0) := n and h(n,m+ 1) := h(n,m) + 1).
So, in our setting, we have #(h(w, v)) = #(w)+#(v). Thus, h(w, v) is the unique word such
that its shortlex number is the sum of the shortlex numbers of w and v. Similar recursions
using the Grassmann equations for multiplication and exponentiation, respectively, allow
us to show that the standard arithmetical functions such as m(w, v) with #(m(w, v)) =
#(w) ·#(v) and e(w, v) with #(e(w, v)) = #(w)#(v) are primitive recursive.

Let T ⊆ N∗ be a finitely branching tree (cf. § 3.1). For t ∈ T , we write succT (t) := {s ∈
T ; s is an immediate successor of t}. As for our parse trees in § 3.1, we assign a labelling
function ℓ; each label comes with an arity and a branching number listed in Table 2.

Definition 4.16. A recursion tree (T, ℓ) is a non-empty finite tree together with a labelling
function ℓ with dom(ℓ) = T such that each value of ℓ is a label with the additional properties
that

(i) for every α ∈ T , |succT (α)| is the branching number of ℓ(α);

(ii) if ℓ(α) = Cn,k, then the first successor of α has a label with arity n and all other
successors of α have labels of arity k;

(iii) if ℓ(α) = Rk, then the first successor of α has a label of arity k and the second successor
has a label or arity k + 2;

(iv) if ℓ(α) = Mk, then the unique successor of α has a label of arity k + 1.

A recursion tree is called primitive if no M-labels occur.

By recursion on the height of the tree, we can assign functions fT,ℓ to each recursion tree
(T, ℓ) such that the arity of the function assigned to the root is equal to the arity of the label
ℓ(ε):

(a) By construction, a recursion tree has height 0 if and only if ℓ(ε) is a basic label, i.e., Bπ
k,i,

Bc
k, or B

s. In this case, let fT,ℓ = πk,i, fT,ℓ = ck,ε, or fT,ℓ = s, respectively.
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(b) Suppose the height of the tree is k + 1 and ℓ(ε) = Cn,k. Recursively, we assume that
the construction is already done for all trees of height ≤ k. Note that all of the subtrees
starting with the immediate successors of ε are recursion trees with height ≤ k, so we
have already assigned functions of the right arity to them. By construction, ε has n+ 1
successors: the first one is assigned a function f of arity n, and all others are assigned
functions gi of arity k. We let fT,ℓ be the composition of f with (g1, ..., gn).

(c) Suppose the height of the tree is k + 1 and ℓ(ε) = Rk. By construction, ε has two
successors: the first one is assigned a function f of arity k and the second one is assigned
a function g with arity k + 2. We let fT,ℓ be the recursion result of f and g.

(d) Suppose the height of the tree is k+1 > 1 and ℓ(ε) = Mk. By construction, ε has a unique
successor that is assigned a function f of arity k + 1. We let fT,ℓ be the minimisation
result of f .

The following recursion tree gives us the Grassmann definition of addition:

R1

Bπ
1,0 C1,3

Bs Bπ
3,2

Theorem 4.17. A partial function f is recursive if and only if there is a non-empty recursion
tree (T, ℓ) such that f = fT,ℓ; it is primitive recursive if and only if there is a primitive
recursion tree with that property.

Proof. Clearly, all basic functions are represented by recursion trees and the class of all
partial functions represented by recursion trees is closed under composition, recursion, and
minimisation. Since the recursive functions were the smallest class with these properties, we
get that every recursive function is represented by a recursion tree.

Assume towards a contradiction that there is a function represented by a recursion tree
(T, ℓ) that is not recursive. Let’s assume that (T, ℓ) is a counterexample of minimal height,
i.e., all shorter trees represent recursive functions. Since functions represented by trees of
height 1 are clearly recursive (they are basic functions), the height must be > 1, so the label

Label Arity Branching number Interpretation

Bπ
k,i k 0 Projection
Bc
k k 0 Constant

Bs 1 0 Successor
Cn,k k n+ 1 Composition
Rk k + 1 2 Recursion
Mk k 1 Minimisation

Table 2: Labels for recursion trees and their arities and branching numbers



19 Dec 2022 Michaelmas 2022: Part II Automata & Formal Languages 57

of ε is either a C, R, or M label, so by definition fT,ℓ is the result of either composition,
recursion, or minimisation applies to the functions associated with the immediate successors
of ε. But the immediate successors determine trees of strictly lower height, so by induction
hypothesis, these functions are all recursive. Since the class of recursive functions is closed
under the three operations, fT,ℓ is recursive. Contradiction! q.e.d.

Corollary 4.18. Every primitive recursive function is total.

Proof. This follows now directly by induction on the height of the primitive recursion tree
because all basic functions are total and the operations composition and recursion preserve
totality. q.e.d.

Theorem 4.19. Every partial recursive function is computable.

Proof. We have already established that the basic functions are all computable (Example
4.10 (2) & (3) and Proposition 4.14) and that the computable functions are closed under
composition (Lemma 4.6), so we only need closure under recursion and minimisation. To-
gether this shows that the computable functions form a class of functions containing the basic
functions and closed under all three operations. Since the partial recursive functions are the
smallest such class, they are contained in the computable functions.

Recursion. Suppose f and g are computable and that h(w⃗, ε) = f(w⃗) and h(w⃗, s(v)) =
g(w⃗, v, h(w⃗, v)). Fix w⃗ and v and describe how to compute h(w⃗, v): we use two registers that
will not be needed otherwise, say, registers k and ℓ, and empty them. We then calculate f(w⃗)
and write it into register ℓ. In each step of the computation, we check whether v is equal to
the content of register k. It this happens to be the case at the beginning of the computation
(i.e., when register k is empty), then we just output f(w⃗) and halt. If not, we repeat the
following routine: we apply the successor function (which is computable by Proposition 4.14)
to the content of register k and calculate g(w⃗, v, u) where u is the current context of register
ℓ and write this into register ℓ. If w is equal to the content of register k, then we output
what is in register ℓ. Otherwise, we go back to the beginning of the routine. By Theorem
4.13, this loop will eventually reach a point when w is equal to the content of register k and
therefore, the computation will eventually halt (unless one of the f - or g-calculations fails to
halt).

Minimisation. Assume that f is computable. Use a register that is not needed otherwise,
say, register k and empty it. Now apply the following routine iteratively: Check whether f
applied to (w⃗, u) halts, where u is the current content of register k; if it does, check whether
f(w⃗, u) = ε; if so, then output the current content of register k. If it halted, but is not
empty, apply the (computable) successor function to the content of register k and restart the
routine. q.e.d.

Among other things, Theorem 4.19 gives us computable access to the arithmetical func-
tions since we proved earlier that they are primitive recursive.
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Splitting & merging words. We use our access to arithmetical functions to define split-
ting and merging operations on words. Consider the arithmetical function

z : (i, j) 7→ (i+ j)(i+ j + 1)

2
+ j

which is the well-known Cantor zigzag bijection that Cantor used to prove the countability
of the rational numbers Q. This function is a composition of the basic arithmetical functions
that we already established are primitive recursive. So, the maps (v, w) 7→ u if #(u) =
z(#(v),#(w)) is a primitive recursive function. We write v ∗ w := u and call this operation
merging v and w into a single word.

The merging function is a total computable bijection between W2 and W. It’s inverse
taking a word u and finding v and w such that v ∗w = u can also be performed by a register
machine: note that we know that these words must exist, since the Cantor zigzag function is
a bijection and that if the formula is valid, then u, v < w, so we only need to search through
finitely many possible values of u and v. This operation is called splitting u into two words.
It gives rise to two computable total functions ·(0) : W → W and ·(1) : W → W such that
u(0) ∗ u(1) = u.

4.6 Remark on the choice of alphabet

We defined computability for partial functions f : Wk 99K W in terms of Σ-register machines:
the instructions and behaviour of register machines are closely tied to their alphabet and
register machines can only compute partial functions that use the letters that the machines
are built for. Clearly, if Σ ⊆ Σ′ and f : Wk 99K W is computable by a Σ-register machine, then
it is computable by a Σ′-register machine. But could it be that the notion of computability
gets stronger if we add more letters to the alphabet? The answer is no as will be shown in
this section.

We shall encode computations in binary notation. For this, let us assume that we have
two special symbols 0 and 1 in Σ. Suppose 2 ≤ n = |Σ| and k is such that 2m ≥ n. Then
we can represent the elements of Σ by binary sequences of length m by using our favourite
injection i from Σ into {0,1}k. The injection i induces an injection (also denoted by i) from
W into ({0, 1}m)∗ ⊆ {0,1}∗ ⊆ W. We extend that induced injection further to injections
i : Wn → Wn, defined componentwise and again using the same notation.

Lemma 4.20. The injection i : W → W is computable and so is its inverse i−1 : W 99K W
(which has domain ({0,1}m)∗).

Proof. We can easily write a register machine program that removes the final letter of register
k, say, a and copies i(a) in reverse order into register ℓ. Repeating this until register k is
empty results in the reverse of the i-image of the original content of register k to be stored
in register ℓ. Now reverse the order and you obtain the i-value of the content of register k.

For the inverse, we do the same except that the program reads m many letters from the
content of the register k, check that it’s an element of {0,1}k (if not, we loop forever) and
writes the i-preimage of that string into register ℓ. The rest of the construction is the same.

q.e.d.
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Using the map i, we can represent a partial function on W by a partial function on {0,1}∗
as follows:

Wk f //W

i

��
({0,1}∗)k

i−1

OO

{0,1}∗

Let us write f̂ for this partial function i ◦ f ◦ i−1.

Proposition 4.21. The partial function f is computable by a Σ-register machine if and only
if the partial function f̂ is computable by a {0,1}-register machine.

Proof. If M is the Σ-register machine computing f , all we need to do is to replace all in-
structions by sequences of instructions that do the same for the represented sequences. I.e.,
if the instruction is +(ℓ, a, q) we replace it with m many instructions that add the m bits
that form i(a) to register ℓ; if the instruction is ?(ℓ, a, q, q′), we replace it with a sequence of
instructions that reads the final m bits from register ℓ and checks whether this sequence is
i(a); if the instruction is −(ℓ, q, q′), we remove the final m bits from register ℓ instead. The
instruction ?(ℓ, ε, q, q′) can remain unchanged. q.e.d.

Corollary 4.22. Suppose {0,1} ⊆ Σ ⊆ Σ′ and f : Wk 99K W is computable by a Σ′-register
machine. Then it is computable by a Σ-register machine.

Proof. We consider f as a partial function from ((Σ′)∗)k to (Σ′)∗ and apply Proposition 4.21,
making use of an appropriate injection i : Σ′ → {0,1}m. This gives us a {0,1}-register
machine that computes f̂ . Consider j = i↾Σ : Σ → {0,1}m. The injection j and the induced
injections for W and Wk as well as all of the partial inverses are computable by a Σ-register
machine by Lemma 4.20. But f = j−1 ◦ f̂ ◦ j, so f is computable by a Σ-register machine.

q.e.d.

Corollary 4.22 allows us to use the word computable without referring to the alphabet.
It also allows us to extend the alphabet with additional letters for the convenience of proofs
and show that a function f : Wk → W is computable by a machine using these additional
letters: Corollary 4.22 tells us that these additional letters are not really needed since they
can be coded away appropriately.

4.7 Software and universality

Fix an alphabet Σ and enlarge it by new symbols to a larger alphabet Σ′:

0 1 ε + ? − ( ) , 7→ □.

We’ll use these symbols to encode all of the elements of our descriptions of Σ-register ma-
chines. First of all, a natural number k will be represented in binary notation using 0 and
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1, e.g., 13 will be represented by 1101; we write code(k) for this word. The ability to refer
directly to natural numbers with words (rather than via the #-function that we get from
the shortlex ordering) allows us to write arithmetical functions in a more direct way. Note
that the function w 7→ code(k) where #(w) = k is computable (use recursion) and has a
computable inverse. This means that the function h(code(k), code(ℓ)) := code(k+ ℓ) is com-
putable: find w and v such that #(w) = k and #(v) = ℓ, use the arithmetical functions
defined in § 4.5 to obtain u such that #(u) = k + ℓ, and transform u into code(k + ℓ).

Similarly, we shall represent states by binary sequences: as we have seen before, the actual
set of states does not matter for a register machine, only its size. As a consequence, we can
assume w.l.o.g. that the states of a register machine are binary number representations; again,
we write code(q) for the word in {0,1}∗ that represents the state q.

Instructions are represented by the obvious string of letters in W using +, ?, and −
to represent the types of instructions. E.g., +(k, q, q′) will be represented by the word
+(code(k), code(q), code(q′)). If I is an instruction, we once more write code(I) for the
word representing it.

A program line of the form q 7→ P (q) will be represented by code(q) 7→ code(P (q)), and
finally, a register machine M = (Σ, Q, P ) will be represented by the word

code(q0) 7→ code(P (q0)), code(q1) 7→ code(P (q1)), ..., code(qn) 7→ code(P (qn))

if Q has n+ 1 elements; we write code(M) for that word.
We encode a sequence w⃗ ∈ Wn+1 by a single word in the enlarged alphabet Σ′, viz.

w0□...□wn□; we write code(w⃗) for this word. If q ∈ Q and w⃗ ∈ Wn+1, we encode the
configuration C = (q, w⃗) by the word code(q)□code(w⃗); once more, we write code(C) for this
word.

All relevant questions about codes can be answered by register machines, e.g., whether
a word is a code for an instruction, a program line, a register machine, a configuration, or
a sequence of words, or in which state a given configuration is, or what the instruction of a
register machine for a given state is, etc. Given a code for a configuration and a code for
an instruction, a register machine can perform the operation that transforms the code of the
configuration to the code of the configuration that is the result of applying the instruction.

Lemma 4.23. The total operation that assigns to code(M), code(w⃗), and v the code of the
#vth configuration in the computation of M with input w⃗ can be performed by a register
machine.

Proof. We have seen that the computable functions are closed under recursion (proof of
Theorem 4.19), so we define this by recursion via

h(code(M), code(w⃗), ε) := code(qS)□code(w⃗),

h(code(M), code(w⃗), s(v)) := code(C ′)

where C ′ is determined as follows: there is a unique configuration C such that h(v) = code(C);
define C ′ such thatM transforms C into C ′ (as mentioned above, that operation is performed
by a register machine). q.e.d.
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Corollary 4.24. The total operation “check whether M has halted with input w⃗ after at
most #v steps” can be performed by a register machine. We call the corresponding total
(characteristic) function

tM,k(w⃗, v) :=

{
a M has halted with input w⃗ after at most #v steps and
ε otherwise

the truncated computation of M .

Proof. Empty an unused register i. Now run the following subroutine: run the operation h
from Lemma 4.23 with input code(M), code(w⃗), u where u is the content of register i and
check if the result starts with code(qH);

if so, then terminate and confirm that the computation has halted;

if not, check whether the content of register i is equal to v;

if so, terminate and confirm that the computation has not halted;

if not, apply the successor function s to the content of register and start the subroutine
afresh.

This performs the desired check operation and will always terminate in a finite number of
steps since h is a total function. q.e.d.

Theorem 4.25 (The Software Principle). There is a register machine U , called a universal
register machine such that for every register machine M and sequence of words w⃗, we have
that

fU,2(v, u) =


fM,k(w⃗) if v = code(M) for a register machine M

and u = code(w⃗) for a sequence of words of length k,
↑ otherwise.

Theorem 4.25 tells us that there is a single register machine that can mimic the behaviour
of all register machines. This is quite remarkable since the universal register machine is a
finite object and, in particular, has a fixed upper register index and a fixed number of states
and instructions. The register machines whose behaviour it can mimic can use many more
registers than U and can be a lot bigger than U in terms of the number of states. But U will
need this information in the input (since it uses code(M) as part of its input data) and so
we have moved the additional registers and states that would require a much larger machine
than U into the realm of software (hence the name). We can think of U as the actual machine
with its storage space and universal program and of code(M) as the software that is being
installed on U to run the program that produces fM,k.

Proof. We describe the register machine U by the operations it performs: at the beginning,
we check whether v is a code for a register machine and whether u is a code for a sequence
of words; if not, we diverge. Let h be the computable function from Lemma 4.23, i.e.,
h(code(M), code(w⃗), v) is the code of the #vth configuration in the computation of M with
input w⃗.

We now use a modification of the procedure described in the proof of Corollary 4.24:
Empty an unused register i and run the following subroutine: run the operation h from
Lemma 4.23 with input code(M), code(w⃗), u where u is the content of register i and check if
the result starts with code(qH);
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if so, then confirm that the computation has halted;

if not, apply the successor function s to the content of register and start the subroutine
afresh.

If it is ever confirmed that the computation has halted, register i contains a word of the
form code(qH)□code(u⃗) where u⃗ is the register content at the time of halting. Read the
word between the first and the second occurrence of □ in h(code(M), code(w⃗), v), write it in
register 0, and halt. q.e.d.

Theorem 4.25 allows us to simplify our notation in a natural way: instead of using the
register machine M as parameter of our computable functions, we can define for arbitrary
words v

fv,k(w⃗) := fU,2(v, code(w⃗)).

If v = code(M), this partial function coincides with fM,k; if v is not the code of a register
machine, it’ll give the nowhere defined partial function. We extend this notation to the com-
putably enumerable sets WM by writing Ww := dom(fw,1). This parametrises all computably
enumerable sets in a single list.

Theorem 4.26 (The s-m-n Theorem). Let g : Wk+1 99K W be any partial computable
function. Then there is a total computable function h : W → W such that for all v ∈ W and
all w⃗ ∈ Wk, we have fh(v),k(w⃗) = g(w⃗, v).

The curious name of this theorem derives from the notation Sm
n used for the function

h in the original publication.16 The s-m-n Theorem pulls one of the parameters of the
function g into the index. This process is also called Currying, after the logician Haskell
Curry (1900–1982).17

Proof. Clearly, for a fixed v, the function gv : w⃗ 7→ g(w⃗, v) is computable, so there is some
word u such that fu,k(w⃗) = g(w⃗, v). However, what we need to establish here is that a register
machine can find such a u.

For a fixed v, the operation w⃗ 7→ (w⃗, v) is performed by a register machine Mv: the
register machine consists of the instructions that add the word v letter by letter into register
k. We can explicitly construct a register machine that performs the operation v 7→ code(Mv).

Since g is computable, there is a register machineM that computes it, i.e., fM,k+1(w⃗, v) =
g(w⃗, v). This means that for a fixed word v, the function gv is performed the concatenation of
the two register machines Mv and M . In the comment after Lemma 4.6, we highlighted that
the concatenation of register machines is a concrete operation that provides a definition for
the register machine that performs the concatenated operation (making the state sets disjoint
and replacing the halt state of the first register machine with the start state of the second).
For register machines M0 and M1, let us write M0 ◦ M1 for their concatenation machine

16Cf. S. C. Kleene (1938), On notation for ordinal numbers, Journal of Symbolic Logic 3 (4): 150–155; p.
153.

17This is conceptually related to the fact that functions from X × Y into Z can be considered as functions
from X into the set of functions from Y into Z, sometimes referred to as Curry-Howard Correspondence;
arithmetically, this is just the equality zyx = (zy)x.
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from the proof of Lemma 4.6. In the terminology of this section, the remark means that the
operation (code(M1), code(M0)) 7→ code(M0 ◦M1) is performed by a register machine.

Clearly, the operation w 7→ (w, code(M)) is performed by a register machine (viz. the
case k = 1 and v = code(M) of the machine Mv above). Thus, fitting all of these together,

v 7→ code(Mv) 7→ (code(Mv), code(M)) 7→ code(M ◦Mv)

is performed by a register machine and thus h(v) := code(M ◦Mv) is a total computable
function with

fh(v),k(w⃗) = fM◦Mv ,k(w⃗) = gv(w⃗) = g(v, w⃗).

q.e.d.

4.8 Computably enumerable sets

Using our universal register machine, we can now get the most important computably enu-
merable set, the halting problem and its two-variable variant:

K := {w ; fw,1(w)↓} and

K0 := {(w, v) ; fw,1(v)↓}.

Theorem 4.27. The sets K and K0 are computably enumerable.

Proof. By Proposition 4.11, we only need to show that they are domains of a computable
functions. By Theorem 4.25, we have that fU,2(w, v) = fw,1(v), so K0 = dom(fU,2). The
operation w 7→ (w,w) can be performed by a register machine; hence, f : w 7→ fU,2(w,w) is
computable and K = dom(f). q.e.d.

Theorem 4.28. The sets K and K0 are not computable. In particular, they are computably
enumerable set that are not computable.

Proof. Suppose either of them is, i.e., χK or χK0 are computable functions. Define

f(w) :=

{
↑ if χK0(w,w) = χK(w) = a
ε if χK0(w,w, ) = χK(w) = ε.

This is clearly computable, so let d ∈ W be a word such that fd,1 = f . Then we have that

f(d)↑ ⇐⇒ χK(d) = a ⇐⇒ χK0(d, d) = a ⇐⇒ (d, d) ∈ K0 ⇐⇒ d ∈ K ⇐⇒ f(d)↓.

Contradiction! q.e.d.

Definition 4.29. A set X ⊆ Wk is called Σ1 if there is a computable set Y ⊆ Wk+1 such
that for all w⃗ ∈ Wk, we have

w⃗ ∈ X ⇐⇒ ∃v(w⃗, v) ∈ Y.

It is called Π1 if it is the complement of a Σ1 set; it is called ∆1 if it is both Σ1 and Π1.
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The terminology derives from the fact that Σ1 sets are defined using one existential quan-
tifier and logicians tend to think of existential quantifiers as analogues of sums; similarly, Π1

sets are defined using one universal quantifier and logicians tens to think of these as analogies
of products. The letter ∆ comes from the German word “Durchschnitt” (intersection) since
the class of ∆1 sets is the intersection of the classes of Σ1 and Π1 sets.

Proposition 4.30. Every computable set is ∆1.

Proof. By Proposition 4.11 (a), we only need to show that every computable set is Σ1. Let
X ⊆ Wk be computable. Define Y by (w⃗, v) ∈ Y if and only if w⃗ ∈ X. The set Y is clearly
computable (ignore v and do the computation to check that w⃗ ∈ X). But then w⃗ ∈ X if and
only of there is a v such that (w⃗, v) ∈ Y by definition. q.e.d.

Theorem 4.31. Let X ⊆ Wk. Then the following are equivalent:

(i) The set X is computably enumerable and

(ii) the set X is Σ1.

Proof. “(i)⇒(ii).” Let X = dom(f) and let M be a register machine that computes f .
The truncated computation function tM,k is a characteristic function of a set Y ⊆ W2 where
(w, v) ∈ Y if and only if the computation of f(w⃗) has halted after at most #(v) steps. Then
clearly

w⃗ ∈ dom(f) ⇐⇒ ∃v(w⃗, v) ∈ Y.

“(ii)⇒(i).” Let Y ⊆ Wk+1 and consider its computable characteristic function χY and
apply minimisation to χY , obtaining h : Wk 99K W with the property that h(w⃗)↓ if and
only if there is some v such that (w⃗, v) ∈ Y . Thus, X = dom(h) and so X is computably
enumerable. that X = dom(h). q.e.d.

Example 4.32. If f : Wk+1 → W is partial computable, then the set

X := {w⃗ ∈ Wk ; ∃v(f(w⃗, v)↓)}

is computably enumerable.

[Let M be such that fM,k+1 = f . Consider Z := {(w⃗, v, u) ; tM,k+1(w⃗, v) = a}. By
Corollary 4.24, this is computable. Clearly, w⃗ ∈ X if and only if there are v and u such that
(w⃗, v, u) ∈ Z. We need to combine the two existential quantifiers into one. We define Y :=
{(w⃗, v) ; (w⃗, v(0), v(1)) ∈ Z} and observe that this is computable (since the two component
functions of the splitting operation are). Now

w⃗ ∈ X ⇐⇒ ∃v∃u((w⃗, v, u) ∈ Z)

⇐⇒ ∃v((w⃗, v(0), v(1)) ∈ Z)

⇐⇒ ∃v((w⃗, v) ∈ Y ),

proving our claim.]
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Figure 5: The search space W2 traversed by Cantor’s zigzag function as in the argument of
Example 4.32.

The proof method used in Example 4.32 is called the zigzag method since we can visualise
the computation process as running through W2 via Cantor’s zigzag function and checking
the relevant question for each pair in the ordering that is determined by the zigzag function
as depicted in Figure 5. The following important‘result is another application of the zigzag
method.

Corollary 4.33. A set is computable if and only if it is ∆1.

Proof. The forward direction was proved in Proposition 4.30. Thus, assume that X is ∆1,
i.e., by Theorem 4.31, we have register machines M and M ′ such that

w⃗ ∈ X ⇐⇒ ∃v(tM,k(w⃗, v) = a) and

w⃗ /∈ X ⇐⇒ ∃v(tM ′,k(w⃗, v) = a).

Define the following function

f(w⃗, v) :=

{
tM,k(w⃗, v(1)) if #v(0) is even and
tM ′,k(w⃗, v(1)) if #v(0) is odd.

Minimise this function to obtain a function h finding the least v such that f(w⃗, v) = a. Since
for each w⃗, we either have w⃗ ∈ X or w⃗ /∈ X, we know that such a v must exist, so h is a
total function. Now output a if #h(w⃗) is even and ε if #h(w⃗) is odd. This computes the
characteristic function of X. q.e.d.

Corollary 4.34. The class of Σ1 sets is not closed under complementation; more specifically,
W\K is not computably enumerable.
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Proof. We proved in Theorem 4.28 that the halting problem is not computable, so by The-
orem 4.31 and Corollary 4.33, there are Σ1 sets that are not ∆1. This means that Σ1 is not
closed under complementation. q.e.d.

Corollary 4.35. Any type 0 language L ⊆ W is computably enumerable.

Proof. Let G := (Σ, V, P, S) be the grammar such that L(G) = L. We let Σ′ := Ω ∪ {→}. If
σi ∈ Ω∗, a string of the form

σ0 → σ1 → σ2 → ...→ σn

is called a derivation code if (σ0, ..., σn) is a G-derivation; we say that σ0 is the start string
of the derivation code and σn is the result string.

Let Y := {(v, w) ; v is a derivation code with start string S and result string w}. A
register machine can check whether something is a derivation code and that it can check
whether its result string coincides with w. So, the set Y is computable. But by construction,

w ∈ L(G) ⇐⇒ ∃v(v, w) ∈ Y,

so L(G) is Σ1 and hence by Theorem 4.31, it is computably enumerable. q.e.d.

The converse also holds: every computably enumerable language is type 0. This is not
proved in this lecture course; a proof can be found as Theorem 4.4 (p. 37) in Salomaa’s
textbook,18 formulated in terms of Turing machines rather than register machines.

We shall give a sketch of the construction that does not require to know precisely what a
Turing machine is (cf. p. 68 in § 4.5). Turing machines are more convenient for the technical
details which are suppressed here since their actions are entirely local: the head of the machine
sits somewhere on the tape and it can only make modifications in the cell where it sits. The
machine will start in a starting Turing configuration in the start state and it will terminate
in a configuration in the halt state qH. Suppose a set X is computably enumerable, i.e., its
pseudo-characteristic function ψX is computable by a Turing machine, i.e., if we start from
qS□w□ and w ∈ X, then it will halt and the final configuration will be qH□a□.

We construct a grammar whose strings correspond to the Turing configurations that
the machine runs through in its computation; the rewrite rules correspond to the reversed
computation steps that the Turing machine performs, i.e., α → β if β is (part of) a Turing
configuration that will be modified to α by the Turing program computing ψX ; we have
additional rewrite rules that take a starting Turing configuration and modify it so that only
the input word of the starting configuration remains; the start symbol S of the grammar
generates the halting Turing configuration (i.e., qH□a□) which is independent of w. The
grammar will then produce all possible Turing configuration paths that could have resulted
in this halting configuration; if (and only if) it generates a configuration in the start state,
it will then be able to continue generation by removing the coding bits and producing the
actual input word w that resulted in ψX(w) = a. Thus, a word is produced by this grammar
if and only if ψX(w) = a if and only if w ∈ X.

18A. Salomaa (1973). Formal Languages, Academic Press.
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4.9 Closure properties

Proposition 4.36. The class of computable languages is closed under union, intersection,
complement, and concatenation.

Proof. Let A and B be computable sets, i.e., χA and χB are computable functions. Then

χA∩B(w) =

{
a if χA(w) = a = χB(w)
ε otherwise,

χA∪B(w) =

{
ε if χA(w) = ε = χB(w)
a otherwise, and

χW\A(w) =

{
a if χA(w) = ε
ε otherwise

are computable functions, and so A ∩ B, A ∪ B, and W\A are computable sets. Also, the
concatenation AB is computable: given a word w, check all initial segments of w whether
they are in A, using the computable function χA; if one of them is, check the remainder of w
by χB; if both checks are successful, output a; after all |w| many initial segments of A have
been checked unsuccessfully, output ε. q.e.d.

Proposition 4.37. The computably enumerable languages are closed under union, intersec-
tion, and concatenation, but not under complementation and difference.

Proof. The construction for intersection from the proof of Proposition 4.36 works for pseudo-
characteristic functions as well:

ψA∩B(w) =

{
a if ψA(w) = a = ψB(w)
↑ otherwise.

For union, write both A and B in Σ1 form, i.e.,

w ∈ A ⇐⇒ ∃v((w, v) ∈ C) and

w ∈ B ⇐⇒ ∃v((w, v) ∈ D)

and use the zigzag method to get

w ∈ A ∪B ⇐⇒ there is v such that

{
(w, v(1)) ∈ C if #v(0) is even and
(w, v(1)) ∈ D if #v(0) is odd.

The set described on the right-hand side of the equivalence is computable by Proposition 4.36.
The argument for concatenation is a modification of the concatenation argument from

the proof of Proposition 4.36. As before, we let C and D be the computable sets that witness
that A and B are Σ1, respectively. Given w, v ∈ W, we write I(w, v) for the initial segment
of w of length #v (possibly all of w, if #v ≥ |w|) and F (w, v) for the final segment of w that
remains after removing i(w, v) (possibly empty). We need to split a word v into three parts:
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concatenation union intersection complement difference

regular (type 3) ✓ ✓ ✓ ✓ ✓
context-free (type 2) ✓ ✓ × × ×
context-sensitive (type 1) ✓ ✓ ✓ ✓ ✓
computable ✓ ✓ ✓ ✓ ✓
computably enumerable (type 0) ✓ ✓ ✓ × ×

Figure 6: The closure properties of all classes of languages we discussed in an overview.

let v(2) := (v(1))(0) and v(3) := (v(1))(1); then v = v(0) ∗ (v(2) ∗ v(3)). With these definitions, we
have

w ∈ AB ⇐⇒ there is some v such that (I(w, v(0)), v(2)) ∈ C and (F (w, v(0)), v(3)) ∈ D

which is in Σ1 form, so AB is computably enumerable.
That the computably enumerable sets are not closed under complementation (and thus

not under differences) is Corollary 4.34. q.e.d.

We summarise all of the closure properties discussed in this lecture course in Figure 6.
The results on type 1 languages were not discussed in this lecture course. The closure of the
class of context-sensitive languages under complementation was a famous open problem for
several decades which was solved independently by Immerman and Szelepcsényi in 1987.19

Using the Immerman-Szelepcsényi theorem, closure under intersection and difference follows
by general set algebra.

4.10 The Church-Turing thesis

It turns out that the converse of Theorem 4.19 can also be proved: every computable function
is partial recursive. Two concepts that are (remarkably) different mathematical conceptu-
alisations of what it means to be a computation are equivalent. This equivalence result is
not an isolated result: many other models of computation have been defined that all define
equivalent concepts of computability:

Turing machines. A Turing machine consists of an infinite tape and a head that moves on
the tape and can read and write letters on the tape. The tape is organised into cells ordered
like the natural numbers (we think of them indexed by elements of N): each cell can contain
a letter or be empty. At the beginning, the head is positioned on cell 0 and the tape contains
the word code(w⃗) for some sequence of word w⃗. The behaviour of the head is determined
by its current state and the letter it reads in the cell on which the head is currently placed;
based on this, it can change the symbol on the cell where it sits, change the state, and either
move left or right or stay where it is.

Formally, a Turing machine M = (Σ, Q, P ) consists of an alphabet Σ, augmented to
Σ′ := Σ ∪ {□}, a finite set of states Q, disjoint from Σ′ with both a start state qS and a

19N. Immerman (1988), Nondeterministic space is closed under complementation. SIAM Journal on Com-
puting, 17 (5): 935–938. R. Szelepcsényi, (1987), The method of forcing for nondeterministic automata,
Bulletin of the EATCS, 33: 96–100.
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halt state qH. We write Ω := Σ′ ∪ Q and Instr := {L,R, ◦} × Σ′ × Q is the set of Turing
instructions. We interpret (L, a, q) as “write a, go to state q, move head left”, (R, a, q) as
“write a, go to state q, move head right”, and (◦, a, q) as “write a, go to state q, don’t move
head”. The Turing program P is a function from Q× Σ′ to Instr.

A Turing configuration is a string C ∈ Ω∗ that has precisely one occurrence of a symbol
in Q. This symbol indicates the position of the head on the tape, the other symbols are
the tape content. A Turing program P transforms a Turing configuration C with state q to
another Turing configuration C ′ by the rewrite rules

aqb→ q′ac if P (q, b) = (L, c, q′),

aqb→ acq′ if P (q, b) = (R, c, q′), and

aqb→ aq′c if P (q, b) = (◦, c, q′).

The Turing configuration CS(w⃗) := qS□w0□w1□...□wk−1□ is called the start configuration
for input w⃗ and the Turing configuration with input w⃗ is defined by recursion via

C(0,M, w⃗) := CS(w⃗) and

C(k + 1,M, w⃗) := C ′ if M transforms C(k,M, w⃗) to C ′.

This computation halts if one of the configurations is in the state qH. The output of this
computation in this case is the word that lies between the first and second instance of the
letter □ on the tape at the time of halting (compare the proof of Theorem 4.25). If P is a
Turing program, we write fP,k(w⃗) for the partial function that is defined if P halts on input
w⃗ and produces the output of the computation. A partial function f : Wk 99K W is called
Turing computable if and only if there is a Turing machine M such that f = fM,k.

While programs. A while program is defined by recursion using finite number of natural
number tokens 1, ..., n. Let i be one of these natural number tokens and let a ∈ Σ. The
instructions add(i,a) and remove(i) are while programs. If P and Q are while programs,
then PQ is a while program. If P is a while program then so is while i not empty do P .
We interpret these as “add the letter a to the ith word”, “remove the last letter from the
ith word (if it is empty, do nothing)”, and “repeat the while program P until the ith word
is empty”.

A while configuration for a while program P consists of an n-tuple of words and a marker
that indicates where in the while program we currently are. The initial while configura-
tion starts at the beginning of the while program. We can then define by recursion a while
computation sequence consisting of the sequence of configurations that the while program
generates. If the marker ever reaches the end of the program, the computation terminates.
(So, while computation sequences, in contrast to computation sequences or Turing compu-
tation sequences can be finite.) If P is a while programme, we write fP,k(w⃗) for the partial
function that is defined if the while computation sequence is finite and outputs the 0th word
at the end of the computation sequence. A partial function f : Wk 99K W is called while
computable if and only if there is a while program P such that f = fP,k.

Theorem 4.38. If f : Wk 99K W, then the following are equivalent:
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(i) the partial function f is computable,

(ii) the partial function f is partial recursive,

(iii) the partial function f is Turing computable, and

(iv) the partial function f is while computable.

The confluence of so many different attempts to formalise the notion of computability
suggests that the concept that we described is robust and reflects something substantial
about the pre-theoretical concept of computation. In fact, when defining his Turing machines,
Turing had the intention to capture the essence of the nature of computation and describe
it formally.

The Church-Turing Thesis. The mentioned equivalent formal concepts of
computability describe the informal notion of computability successfully: any
reasonable attempt to describe the informal notion of computability will lead to
a formal notion that is equivalent to the ones we have described.

It is very important to note that the Church-Turing thesis is not a mathematical state-
ment: it cannot be proved or refuted, but it makes a prediction about the human practice of
mathematics. It could be refuted in practice if mathematicians find a formal description of a
model of computation that yields a non-equivalent notion of computability and unanimously
agree that this formal description describes the informal notion of computability. There
have been candidates for this in the decades that followed the Church-Turing discovery: e.g.,
quantum computing, DNA computing, and other models of so-called unconventional comput-
ing. While they often produced models where computation behaves rather differently from
computation by register machines in various respects, their notions of computability remain
equivalent to our notion of computability.

The Church-Turing Thesis finally provides us with an answer to the question raised ear-
lier about the definition of the word “algorithm”. Informally, by “algorithm”, we meant a
computational procedure that produces an answer to the decision problem in a finite amount
of time. If we accept the Church-Turing Thesis, this informal notion of a computational
procedure is correctly formalised by the concept of a register machine, i.e., it corresponds
to the notion of computability: each of our decision problems just becomes a set and the
question whether it is solvable becomes the question whether that set is computable.

More precisely, we consider an encoding of grammars as words in W such that for every
word w, there is a grammar Gw and all grammars are of this form. Then the word problem
is the set {(u, v) ; u ∈ L(Gv)}, the emptiness problem is the set {u ; L(Gu) = ∅}, and the
equivalence problem is the set {(u, v) ; L(Gu) = L(Gv)}. Similarly, the decision problems re-
stricted to a class C of grammars are these sets restricted to words that decode into grammars
in C.

Of course, there is no reason to restrict decision problems to grammars only: the same
definitions also give us the word, emptiness, and equivalence problem for register machines
or any other encodable model of computation.

The interpretation of the word “algorithm” via the Church-Turing thesis finally gives us
the mathematical specificity needed to prove the unsolvability of a decision problem: in order
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to do so, we have to show that the corresponding set is not computable. On Example Sheet
#3, we saw that the solution algorithm for the word problem for type 1 grammars can be
performed by a register machine; consequently {(u, v) ; u ∈ L(dv) and v is a code for a type
1 grammar} is computable. We furthermore note that all algorithms given in §§ 1.6, 2.8, &
3.5) can be performed by register machines, so all of our solvability results from previous
chapters give computability results for the corresponding sets.

Corollary 4.39. The word problem for type 0 languages is unsolvable.

Proof. As mentioned above, the word problem is the set W := {(u, v) ; u ∈ L(Gv)}. We
replicate the proof of Theorem 4.28: if W is computable, then so is the function

f(w) :=

{
↑ if w ∈ L(Gw) and
ε if w /∈ L(Gw).

Let dom(f) is computably enumerable, so there is a grammar Gd such that dom(f) = L(Gd).
We obtain the contradiction by

d ∈ L(Gd) ⇐⇒ d ∈ dom(f) ⇐⇒ d /∈ L(Gd).

q.e.d.

Note that the set W in the proof of Corollary 4.39 is essentially the halting problem K0

if you assume that a register machine can perform the transformation between computably
enumerable sets and grammars (cf. 4.11).

4.11 Reduction functions

A binary relation ≤ on a set X is called a partial preorder if it is reflexive and transitive
(i.e., for all x, y, z ∈ X, we have x ≤ x and if x ≤ y ≤ z, then x ≤ z). If ≤ is a partial
preorder, we can define a binary relation ≡ by x ≡ y if and only if x ≤ y and y ≤ x. This is
an equivalence relation and ≤ respects the equivalence classes, i.e., if x ≡ x′ and x ≤ y, then
x′ ≤ y, similarly, if x ≡ x′ and y ≤ x, then y ≤ x′. If [x] and [y] are ≡-equivalence classes,
we can define [x] ≤ [y] if and only if x ≤ y; this is well defined since ≤ respects equivalence
classes. If (X,≤) is a partially preordered set, then (X/≡,≤) is a partially ordered set (i.e.,
partially preordered and anti-symmetric).

If L,L′ ⊆ W, we call a total computable function f : W → W a reduction of L to L′ if
for all w ∈ W, we have

w ∈ L ⇐⇒ f(w) ∈ L′.

We say that L is many-one reducible to L′ and write L ≤m L′ if there is a reduction from L
to L′.20 If L ≤m L′ and L′ ≤m L, we say that L and L′ are many-one equivalent and write
L ≡m L′. We observe that the identity is a reduction of L to L and that a concatenation of

20The term “many-one” is a reminder that the function is not required to be injective (“one-one”), but
can map several words to one word.
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a reduction of L to L′ and a reduction of L′ to L′′ produces a reduction of L to L′′; thus ≤m

is a partial preorder. Note that by definition of what it means to be a reduction function,

L ≤m L′ ⇐⇒ W\L ≤m W\L′. (#)

As a consquence, a language is many-one reducible to its complement if and only if it is
many-one equivalent to its complement. In other words, a language and its complement are
either many-one equivalent or incomparable by ≤m.

Proposition 4.40. Let L,L′ ⊆ W.

(a) If L ≤m L′ and L′ is computable, then so is L.

(b) If L ≤m L′ and L′ is computably enumerable, then so is L.

Proof. For (a), let f be the reduction and let χL′ be computable. Then χL = χL′ ◦ f is
computable. For (b), use ψL and ψL′ instead of the characteristic functions. q.e.d.

If there is a reduction of L to L′, we can think of L as “at most as complicated as L′”:
having access to the characteristic function of L′ gives us access to the characteristic function
of L.

The notion of reduction was implicitly used in some of the discussions about algorithmic
solvability. In § 4.5, we claimed that the set {(w, v) ; w ∈ L(Gv)} representing the word
problem for type 0 grammars is “essentially the halting problem K0 if you assume that a
register machine can perform the transformation between computably enumerable sets and
grammars”. If we let f and g be the total computable functions that translate between codes
of grammars and codes of register machines and vice versa, then this just means that f and
g witness that

{(w, v) ; w ∈ L(Gv)} ≡m {(w, v) ; w ∈ Wv} = K0.

Similarly, we can identify the emptiness problem and the equivalence probvlem for type 0
grammars with {w ; Ww = ∅} and {(w, v) ; Ww = Wv}, respectively.

Proposition 4.41. The sets K and W\K are incomparable in ≤m.

Proof. Since W\K is not computably enumerable, we have W\K̸≤mK by Proposition 4.40
(b). But if K ≤m W\K, then W\K ≤m K by (#). q.e.d.

If our alphabet has two distinct letters, say {0, 1} ⊆ Σ, we can define for any two sets
X, Y ⊆ W the Turing join of X and Y :

X ⊕ Y := 0X ∪ 1Y.

Clearly, the function w 7→ 0w is a reduction from X to X ⊕ Y and the function w 7→ 1w is
a reduction from Y to X ⊕ Y , so X, Y ≤m X ⊕ Y . In particular, the Turing join produces
something that is at least as complicated as the two original sets and thus K⊕W\K is a set
that is strictly more complex than both K and W\K, in particular, it cannot be either Σ1 or
Π1. On Example Sheet #4, we shall see that the Turing join corresponds to the least upper
bound operation in the preorder ≤m. The results about the notion of many-one reducibility
are collected in Figure 7 (cf. also Example Sheet #4).
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K⊕W\K

K W\K

all computable sets
except W and ∅

W ∅

Figure 7: The many-one degrees.

Hardness & completeness. If C is a class of languages and L is a language, then L is
called C-hard if for all X ∈ C, we have X ≤m L. This means that L is an upper bound for
the class C in terms of computational complexity. If L is C-hard and in addition L ∈ C, then
we call it C-complete.

Proposition 4.42. If L is any computable language such that ∅ ̸= L ̸= W, then L is
∆1-complete.

Proof. By Proposition 4.30 and Corollary 4.33, computable and ∆1 are the same, so we
only need to show that if X is an arbitrary computable set, then X ≤m L. The assumption
implies that there are v, u ∈ W such that v ∈ L and u /∈ L. Let

g(w) :=

{
v if w ∈ X and
u if w /∈ X.

Since X is computable, g is computable and it is a reduction of X to L. q.e.d.

Theorem 4.43. The halting problem K is Σ1-complete.

Proof. Let X = dom(f) be computably enumerable. Define g : W2 99K W : (w, u) 7→ f(w)
and apply the s-m-n Theorem 4.26 to g to get a total computable function h such that
fh(w),1(u) = g(w, u) = f(w). In particular, we observe that w ∈ X = dom(f) if and only
fh(w),1 is everywhere defined and w /∈ X if and only if fh(w),1 is nowhere defined. But if
fh(w),1 is everywhere defined, then in particular, fh(w),1(h(w))↓, so h(w) ∈ K and if fh(w),1 is
nowhere defined, then in particular, fh(w),1(h(w))↑, so h(w) /∈ K. Together, we obtain

w ∈ X ⇐⇒ h(w) ∈ K

which shows that h is a reduction of X to K. q.e.d.
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4.12 Index sets & Rice’s theorem

We remember our notion of weak equivalence (now transferred to words rather than ma-
chines): two words w, v ∈ W to be weakly equivalent if Ww = Wv. A set I ⊆ W is called
an index set if it is closed under weak equivalence. We say that an index set is nontrivial, if
it is neither ∅ nor W. Index sets correspond to properties of computably enumerable sets.
Henry Gordon Rice (1920–2003) proved that nontrivial index sets cannot be computable.21

Example 4.44. The sets Emp := {w ; Ww = ∅}, Fin := {w ; Ww is finite}, Inf := {w ; Ww

is infinite}, and Tot := {w ; Ww = W} are nontrivial index sets. Non-empty index sets must
be infinite (by the Padding Lemma, Proposition 4.4).

Theorem 4.45 (Rice’s Theorem). No nontrivial index set is computable.

Proof. For a fixed w, consider the following function:

gw(u, v) :=

{
fw,1(v) if u ∈ K and

↑ otherwise.

We first observe that gw is computable: given u and v, we first run the computation fu,1(u).
If that diverges, then the computation outputs ↑ which is the desired result. If it converges,
we run the computation of fw,1 on input v and output the result (if there is one). Therefore,
by the s-m-n theorem, we obtain a total computable hw such that fhw(u),1(v) = gw(u, v). If
u ∈ K, then fhw(u),1 is defined whenever fw,1 is, so Whw(u) = Ww. If u /∈ K, then ffw(u),1 is
nowhere defined, so Whw(u) = ∅.

Now let I be our index set. Fix some e such that We = ∅. Then either e ∈ I or e /∈ I.

Case 1. If e ∈ I, then by nontriviality, there must be some w /∈ I. Consider gw as
above and the total function hw obtained by the s-m-n theorem. We claim that h is a
reduction of W\K to I. If u /∈ K, then Whw(u) = We = ∅, so since I is an index set,
hw(u) ∈ I. Conversely, if u ∈ K, then Whw(u) = Ww, so since I is an index set, hw(u) /∈ I.
So, W\K ≤m I.

Case 2. If e /∈ I, then by nontriviality, there must be some w ∈ I. The above construction
yields (just with the roles of e and w reversed) that u ∈ K if and only if hw(u) ∈ I. So,
K ≤m I. q.e.d.

We note that the proof shows more than the statement of Rice’s Theorem: the proof
shows that if e ∈ I, then W\K ≤m I, and if e /∈ I, then K ≤m I, so for our examples of
nontrivial index sets, we obtain W\K ≤m Emp,Fin and K ≤m Inf ,Tot.

Corollary 4.46. The emptiness problem for Type 0 languages is not solvable.

Proof. The emptiness problem is represented by the set Emp: since W\K ≤m Emp, this
set is not computable (nor computably enumerable). q.e.d.

On Example Sheet #4, we shall see that Emp ≡m W\K; the other sets in our list are
even more complex as the following statement shows:

21H. G. Rice (1953), Classes of recursively enumerable sets and their decision problems, Transactions of
the American Mathematical Society 74 (2): 358–366.
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Word problem Emptiness problem Equivalence problem

regular (type 3) ✓ ✓ ✓
context-free (type 2) ✓ ✓ ×
context-sensitive (type 1) ✓ × ×
computably enumerable (type 0) × × ×

Figure 8: The decision problems of all classes of languages we discussed in an overview.

Proposition 4.47. The set Fin is neither Σ1 nor Π1.

Proof. We already know that W\K ≤m Fin, so Fin is not Σ1. To prove the claim, we shall
show that K ≤m Fin.

We use the truncated computation function tw,1(u, v) from Corollary 4.24 which outputs
a if fw,1(u) has halted within #v steps and ε otherwise. Note that if tw,1(u, v) = a, then for
any v′ > v, we have tw,1(u, v

′) = a. Consider the computable function

g(w, v) :=

{
↑ if tw,1(w, v) = a and
ε otherwise.

By the s-m-n Theorem 4.26, we find a total computable h such that fh(w),1(v) = g(w, v). We
claim that h reduces K to Fin.

Suppose that w ∈ K. Then fw,1(w)↓, so there is some v such that tw,1(w, v) = a which
remains true for all v′ > v. Therefore, fh(w),1 is undefined for all but finitely many v, and
thus Wh(w) is finite, so h(w) ∈ Fin.

Suppose that w /∈ K. Then fw,1(w)↑, so for all v, we have that tw,1(w, v) ̸= a, and thus
fh(w),1(v) = ε. So, Wh(w) = W and h(w) /∈ Fin. q.e.d.

Note that this implies that Inf cannot be Σ1 or Π1 either since it is the complement of
Fin; the set Tot will be discussed on Example Sheet #4.

4.13 Decision problems

We have discussed the word problem and the emptiness problem in §§ 4.8 & 4.12, respectively.
The only remaining decision problem for type 0 grammars is the equivalence problem, i.e.,
the set {(w, v) ; Ww = Wv}. Its unsolvability can be derived immediate from that of the
emptiness problem.

Corollary 4.48. The equivalence problem for Type 0 languages is not solvable.

Proof. If e is such that We = ∅, then the operation w 7→ (w, e) can be performed by a register
machine. If χ is the characteristic function of {(w, v) ; Ww = Wv}, then let χ′(w) := χ(w, e).
If χ is computable, then so is χ′. But χ′ is the characteristic function of the emptiness prob-
lem {w ; Ww = ∅} in contradiction to Corollary 4.46 q.e.d.

We observe that the proof of Corollary 4.48 is a fully general argument that shows that
if C is any class of grammars such that there is a G ∈ C with L(G) = ∅, then the solvability
of the equivalence problem for C implies the solvability of the emptiness problem for C.
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We summarise the results concerning our decision problems in Figure 8; note that we did
not prove the unsolvability of the equivalence problem for type 2 languages (cf. § 3.5) and
the unsolvability of the emptiness problem for type 1 languages. The latter can be found
as Theorem 5.10 (p. 223) in Sipser’s textbook,22 albeit expressed in the language if linear
bounded automata which is the model of computation that corresponds to type 1 grammars.
By the above observation, the unsolvability of the emptiness problem for type 1 grammars
implies the unsolvability of the equivalence problem for type 1 grammars.

22M. Sipser. Introduction to the theory of computing. Second edition. Thomson Course Technology, 2006


