

Mathematische Logik & Mengenlehre

Sommersemester 2021

Prof. Dr. Benedikt Löwe, Tim Seifert, Lucas Wansner Übungsblatt 3

Abgabe der Hausaufgaben am 4. Mai 2021 bis 10 Uhr (s.t.) über das Moodle

https://lernen.min.uni-hamburg.de/course/view.php?id=1245.

Gruppenaufgabe G3 (wird in der Übung am 27. April 2021 bearbeitet). Sei S eine Symbolmenge und $\mathfrak{A} = (A, \mathfrak{a})$ eine S-Struktur. Eine Teilmenge $X \subseteq A$ heißt S-definierbar über \mathfrak{A} , falls es eine Formel $\varphi \in L^S$ mit genau einer freien Variable x gibt, so daß für alle Interpretationen $\mathfrak{I} = (\mathfrak{A}, \beta)$ und alle $a \in A$ gilt:

$$a \in X \iff \Im \frac{a}{x} \models \varphi.$$

- (G3.1) Seien $\mathfrak A$ und $\mathfrak B$ zwei S-Strukturen und $\pi:A\to B$. Erinnern Sie sich an die Notation $\mathfrak I^\pi$ aus der Vorlesung: falls $\mathfrak I=(\mathfrak A,\beta)$, so $\mathfrak I^\pi=(\mathfrak B,\pi\circ\beta)$. Was hatten wir im Beweis des Isomorphielemmas über diese Interpretation gezeigt (unter der Annahme, daß π ein S-Isomorphismus ist)?
- (G3.2) Ein S-Isomorphismus $\pi:\mathfrak{A}\cong\mathfrak{A}$ wird auch als S-Automorphismus bezeichnet. Sei π ein S-Automorphismus und φ eine S-Formel mit genau einer freien Variable x. Zeigen Sie, daß für jedes $a\in A$ gilt:

$$\mathfrak{I}\frac{a}{x} \models \varphi \iff \mathfrak{I}\frac{\pi(a)}{x} \models \varphi.$$

[*Hinweis*. Überlegen Sie sich, daß nicht im allgemeinen gilt, daß $(\mathfrak{I}_{x}^{a})^{\pi} = \mathfrak{I}_{x}^{\pi(a)}$. Warum gilt die Behauptung trotzdem?]

- (G3.3) Folgern Sie aus (G3.2), daß eine S-definierbare Menge invariant unter Automorphismen sein muß. Überlegen Sie sich, wie man diesen Begriff präzise definiert und geben Sie einen Beweis dieser Eigenschaft mit Hilfe von (G3.2).
- Sei $S := \{\mathbf{0}, \oplus, \otimes\}$ mit einem Konstantensymbol $\mathbf{0}$ und zwei binären Funktionssymbolen \oplus und \otimes . Betrachten Sie $S_0 := \emptyset$, $S_1 := \{\mathbf{0}\}$, $S_2 := \{\mathbf{0}, \oplus\}$ und $S_3 := S$, sowie $A := \mathbb{Z}$ und $\mathfrak{a}(\mathbf{0}) = 0$, $\mathfrak{a}(\oplus) := +$ und $\mathfrak{a}(\otimes) := \cdot$. Sei $\mathfrak{A} := (A, \mathfrak{a})$ und \mathfrak{A}_i das S_i -Redukt von \mathfrak{A} (für $i \in \{0, 1, 2, 3\}$).
- (G3.4) Finden Sie eine Formel, welche zeigt, daß $\emptyset \subseteq \mathbb{Z}$ eine S_0 -definierbare Menge über \mathfrak{A}_0 ist.

- (G3.5) Finden Sie eine Formel, welche zeigt, daß $\{0\} \subseteq \mathbb{Z}$ eine S_1 -definierbare Menge über \mathfrak{A}_1 ist.
- (G3.6) Finden Sie eine Formel, welche zeigt, daß $\{2z; z \in \mathbb{Z}\} \subseteq \mathbb{Z}$ eine S_2 -definierbare Menge über \mathfrak{A}_2 ist.
- (G3.7) Finden Sie eine Formel, welche zeigt, daß $\{1\} \subseteq \mathbb{Z}$ eine S_3 -definierbare Menge über \mathfrak{A}_3 ist.
- (G3.8) Überlegen Sie sich, welche S_i -Automorphismen es für die Strukturen \mathfrak{A}_i gibt (für i=0,1,2,3).
- (G3.9) Verwenden Sie (G3.3) und (G3.8), um zu zeigen, daß $\{0\}$ nicht S_0 -definierbar über \mathfrak{A}_0 ist.
- (G3.10) Verwenden Sie (G3.3) und (G3.8), um zu zeigen, daß $\{2z \; ; \; z \in \mathbb{Z}\}$ nicht S_1 -definierbar über \mathfrak{A}_1 ist.
- (G3.11) Verwenden Sie (G3.3) und (G3.8), um zu zeigen, daß $\{1\}$ nicht S_2 -definierbar über \mathfrak{A}_2 ist.

Präsentationsaufgabe P3 (wird in der Übung am 4. Mai 2021 präsentiert). Präsentieren Sie die Lösung von Aufgabe 3.1.6, Teile (a) & (c) im Buch von Ebbinghaus, Flum und Thomas:

3.1.6 Aufgabe Für S-Strukturen $\mathfrak{A} = (A, \mathfrak{a})$ und $\mathfrak{B} = (B, \mathfrak{b})$ sei $\mathfrak{A} \times \mathfrak{B}$, das direkte Produkt von \mathfrak{A} und \mathfrak{B} , die S-Struktur mit Träger

$$A \times B := \{(a, b) \mid a \in A, b \in B\},\$$

die durch die folgenden Festlegungen gegeben ist: Für n-stelliges R aus S und $(a_1, b_1), \ldots, (a_n, b_n) \in A \times B$ gelte

$$R^{\mathfrak{A}\times\mathfrak{B}}(a_1,b_1)\dots(a_n,b_n)$$
 gdw $R^{\mathfrak{A}}a_1\dots a_n$ und $R^{\mathfrak{B}}b_1\dots b_n$,

für *n*-stelliges f aus S und $(a_1, b_1), \ldots, (a_n, b_n) \in A \times B$ sei

$$f^{\mathfrak{A}\times\mathfrak{B}}((a_1,b_1),\ldots,(a_n,b_n)) := (f^{\mathfrak{A}}(a_1,\ldots,a_n),f^{\mathfrak{B}}(b_1,\ldots,b_n)),$$

und für $c \in S$ sei

$$c^{\mathfrak{A}\times\mathfrak{B}}:=(c^{\mathfrak{A}},c^{\mathfrak{B}}).$$

Man zeige:

- (a) Sind die S_{Gr} -Strukturen \mathfrak{A} und \mathfrak{B} Gruppen, so ist auch $\mathfrak{A} \times \mathfrak{B}$ eine Gruppe.
- (c) Sind die S_{Ar} -Strukturen $\mathfrak{A}, \mathfrak{B}$ Körper, so ist $\mathfrak{A} \times \mathfrak{B}$ kein Körper.

Hausaufgaben H3 (werden bis zum 4. Mai 2021 via Moodle abgegeben).

- (H3.1) Lesen Sie den Beweis des Koinzidenzlemmas 3.4.6 im Buch von Ebbinghaus, Flum und Thomas. Im Beweis werden die Fälle $t=c, \ \varphi=t_1\equiv t_2$ und $\varphi=(\psi\vee\chi)$ nicht behandelt, sondern als "entsprechend" gekennzeichnet. Geben Sie diese Beweise.
 - Was ist mit den Fällen $\varphi = (\psi \wedge \chi), \ \varphi = (\psi \to \chi), \ \varphi = (\psi \leftrightarrow \chi) \ \text{und} \ \varphi = \forall x \psi$?
- (H3.2) Lösen Sie Aufgabe 3.4.11 im Buch von Ebbinghaus, Flum und Thomas:

3.4.11 Aufgabe Man zeige:

- (a) $\forall x(\varphi \wedge \psi) = [\forall x \varphi \wedge \forall x \psi).$
- (b) $\exists x(\varphi \lor \psi) = [\exists x\varphi \lor \exists x\psi).$
- (c) $\forall x(\varphi \lor \psi) = [\varphi \lor \forall x\psi)$, falls $x \notin \text{frei}(\varphi)$.
- (d) $\exists x(\varphi \land \psi) = [(\varphi \land \exists x\psi), \text{ falls } x \notin \text{frei}(\varphi).$
- (e) Man zeige, dass man in (c), (d) auf die Voraussetzung " $x \notin \text{frei}(\varphi)$ " nicht verzichten kann.
- (H3.3) Eine S-Formel heiße *-universell, falls in ihr die Symbole \neg , \rightarrow , \leftrightarrow und \exists nicht auftauchen. Ist jede universelle Formel *-universell? Ist jede *-universelle Formel universell? Begründen Sie Ihre Antworten.