Ziel
Wir haben:

(Ext)
(Aus)

Zwei "scheinbare" Axiome:

LM
Ener Paar

Ergebnisse:
1. LM + Ener macht Modelle
weitreich und

2. Aus schließt "Menge aller
Mengen" aus.

Mathematische Logik & Mengenlehre
VORLESUNG XI

ZFC
übliche Axiome der Mengenlehre

Zermelo 1908
Fraenkel

Zermelo-Fraenkel

Z/20

ZFC
Auswahl

"Choice"
Auswahlanaxom

Dann fehlten: - Ersetzungsaxiom
(Skolem, Fraenkel)
- Induktionssaxiom
Regularitätsaxiom
(von Neumann)
"Kleines" Vereinigungsmengenaxiom (U-Ax):
Zu je zwei Mengen x und y gibt es eine Menge, die alle Elemente von x und y enthält.
Also:
\[\forall x \exists y \forall z (z \in x \land z \in y \rightarrow z \in y) \]

Man beachte: \[
\forall x \exists y (\forall z (z \in x \leftrightarrow z \in y))
\]
folgt aus der Existenz einer Menge, welche alle Elemente von x und y enthält.

Großes Vereinigungsmengenaxiom (U-Ax):
Zu jeder Menge X gibt es eine Menge, die alle Elemente der Elemente von X enthält.
Also:
\[\forall X \exists y \forall z (z \in X \land \exists x (z \in x \land x \in y)) \]

Für je zwei Mengen a und b existiert ein Mengenpaar $\{a, b\}$.
"Großes" Vereinigungsmengenaxiom (\(\bigcup\)-Ax):

Zu jeder Menge \(X\) gibt es eine Menge, die alle Elemente der Elemente von \(X\) enthält.

Also:

\[
\forall X \exists y \forall z (x \in X \land z \in x \rightarrow z \in y).
\]

In der Mengenlehre schreiben wir:

\[
\bigcup_{x \in X} x \text{ für } \bigcup_{x \in X} x.
\]
Wie verhalten sich \cup-Ax und \cap-Ax zu den bisherigen Axiomen?

$\text{Paar} + \cap$-$Ax \rightarrow \cap$-Ax

\[\forall x \forall y \exists w \quad (\exists w \iff \exists x \lor \exists y) \]

Sei $\cap = \text{Paar} + \cap$-$Ax$. Seien $a, b \in A$ gegeben. Nach Paar existiert $p \in A$ mit $\forall c (\exists p \iff c = a \lor c = b)$

$\cap \frac{a}{x} \frac{b}{y} \frac{1}{z} = \forall c (\exists p \iff c = a \lor c = b)$

Nach \cap-Ax ex. also ein $\forall e \in A$ mit

$\forall x \forall z \left(x \in p \lor z \in x \rightarrow z \in u \right)$

$\forall x \forall z \left((x = a \lor x = b) \land z \in x \rightarrow z \in u \right)$

$\forall z \left(z \in a \lor z \in b \rightarrow z \in u \right)$

Das ist \cup-Ax.

„Großes“ Vereinigungsmengenaxiom (\cup-Ax):

Zu jeder Menge X gibt es eine Menge, die alle Elemente der Elemente von X enthält.

$p = \forall x \forall y \left[x \in X \land z \in x \rightarrow z \in y \right]$.

Also:

$\forall x \exists y \exists z \left(x \in X \land z \in x \rightarrow z \in y \right)$.
Ohne Paarmengenaxiom ist \(U - Ax \) ggf. nicht sehr aussagekräftig:

\[O2 = \{ (M, E) \} \quad \text{mit} \quad k E \Leftrightarrow k = b + 1. \]

Es gilt: \(O2 \subseteq U - Ax. \)

Wenn? \[\]

Sei \(a \in \mathbb{N} \) gegeben. Falls \(a = 0 \), so ist \(a \) leer und somit erfüllt \(a \) selbst die Bedingung \(U a \) zu sein.

Falls \(a = b + 1 \), dann ist \(b \) das einzige Element von \(a \). Dann ist \(b \) die Vereinigung über \(a \).

Allerdings gilt \(U - Ax \) nicht: es gibt keine Menge, die z. B. 2 und 7 enthält.
Auf S. 34 kommt es Ebbinghaus, § 9

Paar

mit aus \(U \cdot Ax \) und \(u \cdot Ax \) folgt \(\rightarrow \) Übblatt 6

Erweiterung der mengen theologischen Sprache

In \(\text{Ext} + u \cdot Ax \) gibt es für je zwei Objekte \(a, b \) ein eindeutig bestimmtes Objekt \(c \) mit

\[\forall z \ (\exists c < \iff z \in a \lor z \in b) \]

Also, falls \(\mathfrak{L} = \text{Ext} + u \cdot Ax \), so kann man in \(\mathfrak{L} \) eine Notation für die binäre Vereinigung: \(a, b \in A \), so sei \(\text{aus} \) dieses eindeutig bestimmte Objekt.
Axiomatische
Voraussetzungen

\[\text{Ext + LM} \]
\[\text{Ext + Aus} \]

\[\text{Ext + u-Ax} \]
\[\text{Ext + U-Ax} \]

\[\text{neue Symbole} \]

\[\emptyset \]

\[\varphi(x, a_1, \ldots, a_n) \]

\[\{x \in a_j \mid \varphi(x, a_1, \ldots, a_n)\} \]

Semikolon
sonst üblich
oder:
STreich
Doppel-
Punkt

[Dies sind unendlich viele Operatoren]

\[a \setminus b := \{x \in a \mid x \notin b\} \]
\[a \cup b := \{x : a \in a \cup b \} \]

\[U_a = \bigcup_{x \in a} x \]
Potenzmengenaxiom (Pot):
Zu jeder Menge \(x \) gibt es eine Menge, die alle Teilmengen von \(x \) enthält.
Also:

\[\forall x \forall y \forall z (z \subseteq x \rightarrow z \in y). \]

Die Menge aller Teilmengen heißt

\[\text{POTENZMENGE von } x. \]

Wie zuvor: Ext \(\rightarrow \) \(\forall x \), dann ist

die Notation \(\text{Pot} \ (x) \) gerechtfertigt.

\[\text{In } \{ a, b, c, d \} \text{ ist: } a \subseteq \text{d}, a \subseteq \text{c}, a \subseteq \text{b}, b \subseteq \text{c}, b \subseteq \text{d}, c \subseteq \text{d}, d \subseteq \text{d} \]

Hier gilt: \(d \) ist die Menge aller TM von \(c. \)

Aber: \(c \) hat zwei Elemente
\(d \) hat drei Elemente
Wir erwarten eigentlich: \(2^2 = 4 \) TM:

\[c = \{ a, b, c \} \quad \partial \{ a, b \} \quad \times \{ a, b \} \quad \neq \{ a, 6 \} \]

\[b \quad \subseteq \quad c \]
Was ist das Verhältnis von Pot zu den anderen?

Pot + Aus \Rightarrow Etw.

Sei $A = Pot + Aus$. Sei $a \in A$ beliebig. Wir suchen nun eine Menge S mit $2 \in S \iff \exists a$.

Für beliebiges x gilt $x \in x \iff \forall y (x \not\in y \rightarrow x \in y)$.

Also falls y eine Potenzmenge von x ist, so ist $x \in y$.

Sei nun p eine Potenzmenge von z, also $z \in p$.

Sondere aus p mit der Formel $z = a$ aus.

Finde b mit $2 \in b$ \iff $z \in p \land z = a$

$z = a$ \iff $z = a$

Somit ist b eine Ermenage von a.
Pot + Aus + u-Ax \implies Paar.

Nach dem Argument von oben haben wir für \(a, b \in A \) jeweils

Ermögliche \(a', b' \) mit

\[
\begin{align*}
2 \in a' & \iff 2 = a \\
2 \in b' & \iff 2 = b
\end{align*}
\]

Wende \(\neg\text{Ax} \) auf \(a', b' \) an und erhalte \(u \) mit

\[
\begin{align*}
2 \in u & \iff 2 \in a' \lor 2 \in b' \\
& \iff 2 = a \lor 2 = b.
\end{align*}
\]

FST, Finite Set Theory

Endliche Mengenlehre

\[
\begin{align*}
\text{Ext} + \text{Aus} + \neg\text{Ax} + \neg\text{Ax} + \text{Pot} \\
\implies \text{LM, Emer, Paar}
\end{align*}
\]

„Kleines“ Vereinigungsmengenaxiom (\(\cup\text{Ax} \)):

Zu je zwei Mengen \(x \) und \(y \) gibt es eine Menge, die alle Elemente von \(x \) und \(y \) enthält.

Also:

\[
\forall x \forall y \forall z (z \in x \lor z \in y \implies z \in w).
\]
1. Die Mengenlehre FST erzwingt nicht, daß alle Mengen endlich sind, aber ist konsistent mit dieser Annahme [Üb. 6: Konstruktion eines Modells von FST, in dem jede Ecke nur endlich viele Pfeilvorgänger hat].

2. Für echte Mathematik braucht man also ein Funktionsaxiom, welches die Existenz unendlicher Mengen erzwingt: das Unendlichkeitsaxiom.

3. Aber bereits in FST kann man praktisch die gesamte strukturrelle Mathematik wiedergewinnen. [Ebbinghaus: Kapitel IV]
Was ist eine Funktion?

Z.B. von A nach B

\[a \rightarrow b \]

\[a \in A \land b \in B \land a \rightarrow b \}

\[\Rightarrow b = b' \]

Eine Beschreibung: dies ist eine Menge gewichteter Paare:

\[f \subseteq A \times B \]

\[= \{(a,b); a \in A, b \in B\} \]

mit \((a,b) \in f \land (a,b') \in f \Rightarrow b = b'\)

Was ist dann eigentlich \((a,b)\)?

Wir haben vor Mengen \([\{a, b\} = \{1, 2\}]: \text{keine Tupel!}\)

Kuratowski (in FST):

\((a,b) := \{\{a\}, \{a, b\}\}\)
Wir stellen fest:

\[(a, b) = (a', b') \iff a = a' \text{ und } b = b'.\]

\[\left\{\{a_3, \{a, b\}\}\right\} = \left\{\{a_3, \{a', b'\}\}\right\} \square\]

Wichtig im Beweis die Fallunterscheidung: \(a = b \neq a + b.\)

\[(\emptyset, \{a, b\}) \neq (\{a, b\}, \emptyset)\]

Die Menge \(\left\{\{a_3, \{a, b\}\}\right\}\) heißt auch das Kuratowski-Paar zu \(a\) und \(b\).

Seien \(A, B\) gegeben und \(a \in A, b \in B\). Dann ist \(\{a_3, b_3\} \subseteq A \cup B \iff \{a_3, \{a, b\}\} \in \text{Pot}(A \cup B)\).