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Abstract

This article containing interviews with Jeremy Avigad, Jasmin Blan-
chette, Frédéric Blanqui, Kevin Buzzard, Johan Commelin, Manuel
Eberl, Timothy Gowers, Peter Koepke, Assia Mahboubi, Ursula Mar-
tin, and Lawrence C. Paulson attempts to approach the question of
the significance of proof assistants—in tandem with the (possible) ef-
fects of their underlying logical formalisms—for contemporary and fu-
ture mathematical practice. The answer to this broad question within
such a fast-developing area involving cutting-edge research cannot be
clear nor complete; here, through a discussion with eleven leading ex-
perts and considering some recent advances as well as several newly
started research projects, we merely attempt to illuminate varying as-
pects of the topic, with the hope to demonstrate its dynamic, richness
and potential.

1 Introduction

1.1 Formal systems and mathematics

The typical mathematician doing research in pure or applied mathematics
is hardly ever concerned with foundations. Areas of mathematical logic,
such as proof theory, homotopy type theory, model theory, set theory, com-
putability theory/recursion theory, reverse mathematics, are often consid-
ered to be closer to, or classified under computer science instead of math-
ematics, even though they do have interesting applications in mainstream
mathematics as well. E.g., in Kohlenbach’s proof mining [51, 52, 53], a re-
search program in applied proof theory, if certain prerequisites referring to
the logical form of the statement proved and the logical framework at hand
are fulfilled, certain logical metatheorems guarantee the pen-and-paper ex-
tractability of effective information even from nonconstructive proofs. Proof

∗The author would like to warmly thank all participants for their valuable insights
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mining has found many applications over the last two decades mainly within
nonlinear analysis (e.g. there are many results in Banach spaces, fixed
point theory, convex optimisation, ergodic theory, topological dynamics and
more).

All along the foundational crisis in mathematics fuelled by the para-
doxes of the early 20th century, the efforts by Whitehead and Russell to
axiomatise mathematics and express it in symbolic logic [80], the rise and
fall (due to Gödel’s Incompleteness Theorems) of Hilbert’s Program and
all the way until today, the typical mathematician working in subfields of
e.g. algebra, geometry, topology, combinatorics, number theory or analysis
(even more so a mathematician doing applied mathematics) would (almost)
safely ignore foundations; even constructivism and intuitionism remain to
most mathematicians a foreign land.

The proof that the continuum hypothesis is independent of ZFC by the
combined works of Gödel and Cohen in 1963 was followed by the proofs
of the independence of a number of statements mainly within the realm
of logic and set theory. In the 1992 novel “Uncle Petros and Goldbach’s
Conjecture” by Doxiadis [28], the main character, a reclusive former math-
ematician who spent his youth, talent and potential in an obsessive, fruitless
attempt to prove Goldbach’s conjecture, desperately tries to find consola-
tion (or to save himself from insanity) in the belief that his inability to
prove Goldbach’s conjecture despite his obsessive efforts was not a failure;
instead, he explains to his nephew, it was merely bad luck, as he had con-
vinced himself that the key lies in Gödel’s First Incompleteness Theorem:
Goldbach’s Conjecture, he now believes, happens to be a rare instance of
an undecidable statement. This is of course a work of fiction, yet in reality
there are indeed a few instances of statements in mathematics too that have
been shown to be undecidable in ZFC (in the sense of independent of ZFC).
E.g., Shelah showed in 1974 that the Whitehead Problem, a problem in
group theory, is independent of ZFC [76]. Another problem independent of
ZFC is Wetzel’s problem, a problem on the cardinality of a set of analytic
functions fulfilling certain conditions: as shown by Erdős, it depends on
the truth of the continuum hypothesis [1, pp. 132–134].1 Another more re-
cent example from 2011 is the proof by Farah [38] and Phillips and Weaver
[71] that the existence of outer automorphisms of the Calkin algebra de-
pends on set theoretic assumptions beyond ZFC: in particular, there exist
outer automorphisms assuming the continuum hypothesis, while assuming
Todorčević’s Axiom all automorphisms are inner.

On a different note, within computability theory, undecidable problems
in the sense of not effectively solvable, that is, computational problems
for which there cannot exist a computer program that always gives the

1The proof was very recently formalised in Isabelle/HOL by Paulson [70].
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correct “yes” or “no” answer, such as Hilbert’s Entscheidungsproblem or
the Halting Problem for Turing machines, are uncountably many, yet, once
again, most such known statements are within logic rather than within
mainstream mathematics. The group isomorphism problem is a notable
example in combinatorial group theory, with more known examples in group
theory, topology, linear algebra and analysis.

Such “anomalies” remain in the sidelines and it is generally accepted
that foundations are not usually considered in mainstream mathematics
research; this is normally inconsequential.

But nowadays foundations play another role, too: they are blueprints for
proof assistants (also known as interactive theorem provers), which brings
us to the main topic of this paper.

1.2 Proof assistants and mathematics

There are several reasons why formalising mathematics with a proof as-
sistant can be useful. I have elaborated some reasons in an article [55]; I
summarise these below. I would also like to point to a new preprint by
Buzzard summarising his upcoming invited talk at the 2022 International
Congress of Mathematicians [17] as well as an earlier opinion piece by the
same author for the Notices of the London Mathematical Society [14].

Obviously a first reason is verification. This however mainly applies to
formalisation of research results, since otherwise the material has usually
been checked by a great number of people over the years. A second reason is
that contributing to the libraries of formal proofs amounts to the creation
of a database with a huge potential. Formalised material could be used
in the future to create new tools with the help of artificial intelligence to
discover new mathematical results. A vision for the future is the creation of
an interactive assistant that would provide “brainstorming” tips to research
mathematicians in real time assisting them in the process of discovering (or
inventing) a new result. In any case, a library written in code offers many
possibilities: it is something we can modify, interact with, reuse, in contrast
with a “physical” library consisting of printed books. A third reason is that
the process of formalising in itself can help the user gain brand new insights
even in already familiar topics. This is not only because a formalised proof
must be written in a very high level of detail, but also because using new
tools forces to look at familiar material from a new perspective. Last but
not least, formalising mathematics with a proof assistant can also serve
educational purposes.

An important milestone that indicates that formalised mathematics and
proof assistants are gradually becoming integrated into mathematical prac-
tice is that the new 2020 Mathematics Subject Classification [3] includes for
the first time [29] a new class (68Vxx) referring to topics such as computer
assisted proofs, proofs employing automated/ interactive theorem provers,
formalisation of mathematics in connection with theorem provers.
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Some interesting very recent developments in the area of formalisation of
mathematics with proof assistants are listed below. Summarising the most
notable developments of the last couple of years in such a rapidly developing
field would be no easy task; this is a collection of some highlights that I am
aware of rather than a comprehensive review—I should apologise in advance
for any omissions. The interested reader is also invited to explore e.g. the
Archive of Formal Proofs and mathlib, the main databases for Isabelle and
Lean respectively, that are growing at a very fast pace, day by day. Monthly
progress in mathlib is summarised in the Lean Community Blog. Other
extensive libraries are e.g. these of Coq and Agda.

A very important recent development is the Liquid Tensor Experiment :
it involves the formalisation (in Lean) of material from the area of Con-
densed Mathematics. This is a theory that Clausen and Scholze started
to develop almost four years ago: it claims that topological spaces are the
wrong definition, and that they should be replaced with the different notion
of condensed sets. Condensed abelian groups constitute a variant of topo-
logical abelian groups, but with more convenient properties. In late 2020,
Scholze posed a challenge [74] which was realised by the Lean community
very soon: in subsequent blogposts ([75] and more recently [19]) progress
on the project has been reported. This achievement has gained extensive
publicity and has been covered by Nature [18] and Quanta [48].

This is not the first important work by the Fields medalist Peter Scholze
that was formalised in Lean: Perfectoid spaces, a special kind of adic spaces
of fundamental significance introduced by Scholze in 2012 [73] have recently
been formalised by Buzzard, Commelin and Massot [15].

There has been considerable recent activity in the area of number the-
ory: Lean Forward: Usable Computer-Checked Proofs and Computations
for Number Theorists led by Jasmin Blanchette is a major ongoing research
project funded by the Dutch Research Council (NWO) that got launched
in 2019 and will continue until 2023. The goal of Lean Forward is to col-
laborate with number theorists to formalise research-level theorems and to
address the main usability issues that mathematicians are confronted with
in their efforts to adopt proof assistants in their work. One of the major
results of the project is the formalisation in Lean of Dedekind domains and
class groups of global fields by Baanen, Dahmen, Narayanan, and Nuccio
Mortarino Majno di Capriglio [5]. Another very notable development is the
formalisation of the solution to the cap set problem by Dahmen, Hölzl, and
Lewis [20] in Lean: this is a result by Ellenberg and Gijswijt published in
the Annals of Mathematics in 2017 [35] addressing the size of subsets of
fields that contain no 3-term arithmetic progressions.

Other recent, important progress in number theory involves the formal-
isation of a substantial amount of material in analytic number theory in
Isabelle/HOL by Eberl [31].
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Han and van Doorn have formalised in Lean the independence of the
Continuum Hypothesis [45]. More recently, Gunther, Pagano, Sánchez
Terraf, and Steinberg completed a formalisation of the above result in Is-
abelle/ZF [42].

Edmonds, Paulson, and the present author have recently formalised Sze-
merédi’s Regularity Lemma, a major result in extremal graph theory [32].
We employed this to formalise the proofs of the Triangle Counting Lemma
and the Triangle Removal Lemma and finally prove Roth’s Theorem on
Arithmetic Progressions, a major result in additive combinatorics on the
existence of 3-term arithmetic progressions in subsets of natural numbers
[33, 34]. Independently, and around the same time, Dillies and Mehta for-
malised the aforementioned results in Lean following a different approach
[26]; their formalisations will be incorporated into mathlib in the near fu-
ture.

An upcoming Special Issue on Interactive Theorem Proving in Mathe-
matics Research of the journal Experimental Mathematics contains a num-
ber of papers on new contributions. Among these are a paper by Džamonja,
Paulson and the present author [30] discussing formalisations [68, 69] of a
number of research results in infinitary combinatorics and set theory (more
specifically in ordinal partition relations, a field that deals with generaliza-
tions of Ramsey’s theorem to transfinite ordinals) by Erdős and Milner [36],
Nash-Williams [63], Specker and Larson [60], leading to Larson’s proof of an
unpublished result by Milner asserting that for all m ∈ N, ωω → (ωω,m).
This is of interest not only because it involves formalisation of material
within an area never formalised before (to our knowledge), but also be-
cause it is a demonstration of working with Zermelo-Fraenkel set theory in
higher-order logic [67], as all the formalisations were done in Isabelle/HOL.
Another paper in the issue, by Li, Paulson, and the present author [59],
explores the formalisation of relatively modern mainstream research papers
in number theory and analysis discussing our formalisations [56, 57, 58]
in Isabelle/HOL of certain irrationality and transcendence criteria for infi-
nite series from three different research papers (by Erdős and Straus [37],
Hančl [46], and Hančl and Rucki [47]). A very important work on a differ-
ent topic, also included in the aforementioned special issue, discusses the
formalisation in Lean of Grothendieck’s schemes in algebraic geometry by
Buzzard, Hughes, Lau, Livingston, Fernández Mir, and Morrison [16]. A
short time later, schemes got formalised in Isabelle/HOL, too, by Bordg,
Paulson, and Li [12, 13]: to make up for the lack of dependent type theory
in Isabelle/HOL, locales were employed instead to achieve the required level
of expressiveness.
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1.3 Proof assistants and formal systems: back to the main
question

Like a driver who ignores the details of how their car engine works but still
drives safely to their destination, the typical mathematician proof assistant
user may not always be concerned with all the ramifications of the formal
system their proof assistant of choice is based on. This is typically not true
of proof assistant developers. In any case, the issue of foundations, usually
hidden in the background, becomes inevitably more relevant when using a
proof assistant compared to when doing mathematics with pen and paper.

Today there is a number of different proof assistants, based on different
formal systems, that provide important libraries of formalised mathemati-
cal proofs. We can distinguish three big families: the proof assistants based
on set theory (e.g. Mizar, Metamath); these based on simple type the-
ory (e.g. HOL4, HOL Light, Isabelle); and these based on dependent type
theory (e.g. Coq, Agda, Lean, PVS). The interested user who would like
to see a direct comparison between their corresponding languages through
examples of formalised material is referred to Formalizing 100 Theorems,
a list of central mathematical theorems formalised in different proof assis-
tants, maintained by Freek Wiedijk on his website. (Another source for
comparisons, [81], though very useful, being one and a half decades old it
is dated, as Lean [62], a very widely used proof assistant especially among
mathematicians, would enter the picture seven years later, in 2013).

This pluralism invites us to explore to what extent logical foundations
might have an effect here, i.e., within which aspects of proof assistants they
manifest themselves (if at all). Thus, inevitably we are returning to the
original question of the title: the question of how formal systems themselves
matter in practice for proof assistants and what they can do for mathematics,
possibly transforming the contemporary and future mathematical landscape
via proof assistants.

Such a transformation may refer to the kind of research work we do;
most likely it will relate to various different aspects of mathematical prac-
tice, that is, not only (or not necessarily) what we do but also how we do
it. It may, e.g., refer to an evolution of the reviewing system by having the
authors submit code containing formalised versions of their results along
with their proofs written in “usual” mathematical language (Hales’s mas-
sive Flyspeck project that succeeded in 2014 [44] to formally verify using
HOL Light and Isabelle/HOL his 1998 proof of the Kepler conjecture [43]
is of course well-known; we can mention a couple of examples in recent pure
mathematics research, still rather isolated thus pioneering, where the for-
mal proofs were submitted simultaneously with the original result, such as
the work [50] by Kjos-Hanssen, Niraula and Yoon in metric geometry with
the result formalised in Lean and the work [40] by Gouëzel and Shchur in
Gromov-hyperbolic spaces with the result formalised in Isabelle/HOL). The
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possible upcoming transformation may moreover refer to teaching, learning
and dissemination approaches in mathematics; to social aspects of large col-
laborative projects; or even to an increase of interest in the foundations of
mathematics among mathematicians.

But let us listen to what a few of the protagonists have to say—in their
own words.

2 Interviews

Jeremy Avigad, Department of Philosophy and Department of
Mathematical Sciences at Carnegie Mellon University & Charles
C. Hoskinson Center for Formal Mathematics.

K.-A. The new Charles C. Hoskinson Center for Formal Mathematics at
Carnegie Mellon University of which you are the director, was inaugurated
in September 2021. The center aims at the advancement of mathematical
research by facilitating access to knowledge and resources. To this end, one
of the main goals of the center is to support the development of Lean’s
library of formalised mathematics and of new tools to help convert mathe-
matical statements from natural language to a formal language, as well as
the creation of educational resources for the dissemination of these tools.
Would you like to elaborate on how this will contribute to the evolution of
mathematical practice (and the practice of related disciplines) as we know
it?

Avigad. It is important to recognise that formalisation is not just about
checking correctness. Building a digital mathematical library is a won-
derfully collaborative activity, and the result is an important communal
resource: a permanent, precise repository of mathematical knowledge, in-
terlinked, searchable, and surveyable at any level of detail. It’s like building
the library of Alexandria and making it fireproof by putting it in the cloud.
The resources—not just the definitions and theorems but also the algorithms
and software tools that act on them—are freely available to anyone with an
internet connection. They can be used to support education and discovery
as much as verification.

The mission of the Hoskinson Center is to help make that technology
accessible to as wide an audience as possible. Infrastructure and library de-
velopment are an important part of that, but our main focus is on education
and dissemination.

K.-A. Based on your rich experience with various different proof assistants
(Isabelle/HOL, Coq and, more recently, Lean) what are, in a nutshell, the
strengths and weaknesses of each system? What are some improvements
that you would like to see in future versions of Lean?
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Avigad. I don’t like to make comparisons. Proof assistants are like pro-
gramming languages. Everyone has their favourites, and people spend far
too much time fighting over which ones are better. All three systems you
mention are wonderful. All of them have yielded fundamental, groundbreak-
ing contributions to our understanding of formal methods and what they
can do.

In recent years, my focus has been on Lean. It is a beautifully designed
system and it has attracted a number of energetic, enthusiastic young math-
ematicians and computer scientists. My favourite thing about Lean is the
community that has grown around it.

In general, though, proof assistants are still too hard to use. Using the
technology requires too much dedication; it’s impossible to just pick it up for
casual use. We need better libraries, interfaces, search engines, automation,
and educational resources. Progress has been slow but steady. We’ll get
there.

Jasmin Blanchette, Department of Computer Science, Vrije Uni-
versiteit Amsterdam, VeriDis group at Loria, Nancy, Max-Planck-
Institut für Informatik, Saarbrücken, & Institut für Systemsicher-
heit, Universität der Bundeswehr München.

K.-A. A benefit of using simple types instead of dependent types is the
more practical implementation of efficient automation. Isabelle uses sim-
ple types and Isabelle/HOL, encoding higher-order logic, is implemented
with Sledgehammer’s [7, 11] automation, that calls several external auto-
mated theorem provers, giving Isabelle/HOL an advantage over other proof
assistants. However, Isabelle/ZF, encoding Zermelo-Fraenkel set theory,
does not feature Sledgehammer. As a leading expert in automated theorem
proving and in particular Sledgehammer, would you like to elaborate on the
obstacles (if any) to the implementation of Sledgehammer to Isabelle/ZF?

Blanchette. To adapt Sledgehammer to Isabelle/ZF, the three main mod-
ules of the existing Sledgehammer would have to be revisited:

(1) the relevance filter, which selects (typically) a few hundred facts (lem-
mas, definitions, ...) from the (typically) thousands available in back-
ground libraries;

(2) the problem translation module, which encodes Isabelle formulas into
the logic of the target automatic theorem prover (ATP);

(3) the proof reconstruction module, which takes an ATP-generated proof
and translates it into an Isabelle proof.
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The relevance filter would be straightforward to port to ZF. It would
need to be told which symbols are ZF primitives, so that it ignores them
when computing the relevance of a fact with respect to the formula to prove.

The problem translation module would need the most adaptation, be-
cause it would need to translate from a different logic. I know Cezary
Kaliszyk had a prototypical translation running, and the MizAR “hammer”
for the Mizar proof assistant also performs a translation for another set the-
ory, so this is possible. Most automatic theorem provers support first-order
logic, and set theory is formulated in terms of that logic.

Proof reconstruction depends on having strong built-in automation di-
rectly in Isabelle/ZF that can reconstruct arbitrary ATP steps. For Is-
abelle/HOL, we integrated the Metis prover by Joe Hurd. One option would
be to integrate Metis in Isabelle/ZF in much the same way.

Barring a lot of engineering, I see nothing really standing in the way of
a Sledgehammer for Isabelle/ZF.

Frédéric Blanqui, INRIA, Laboratoire Méthodes Formelles, Uni-
versité Paris-Saclay.

K.-A. You are the main proposer and Chair of the European COST Action
CA20111 EuroProofNet (European Research Network on Formal Proofs)
that got launched recently, in October 2021, and has over 200 participants
from 30 countries. One of the main objectives of the Action is to work
towards the ambitious task of achieving interoperability between different
proof systems (like Coq, Isabelle/HOL, HOL Light, Agda, Lean, Matita and
others). To this end, a new common logical framework (Dedukti) will be
developed, along with new tools for inter-translation of proofs formalised in
various different systems to and from the new common logical framework.
What are some of the required characteristics of the new formal system?
What do you expect will be some of the most challenging obstacles to over-
come so as to achieve inter-translation between the new “global” formal
system and other systems?

Blanqui. Various logical frameworks have already been developed in the
past. The most prominent one, adopted by all mathematicians now, is first-
order logic. In first-order logic, each mathematical theory is characterized by
some propositions called axioms. E.g., Euclidean geometry and hyperbolic
geometry can both be expressed in first-order logic using different axioms.

However, first-order logic suffers from a number of weaknesses. E.g., it
is uneasy to express properties and proofs of objects with binding construc-
tions, or modern categorical constructions. That is why, nowadays, many
proof assistants are not based on first-order logic but rather on higher-order
logic or dependent type theory, that is, a type theory where types can de-
pend on objects.
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Similarly, Dedukti is based on the simplest dependent type theory possi-
ble. But, in Dedukti, in contrast with other systems, typing is done modulo
user-defined equations. Hence, while in first-order logic, theories are char-
acterized by the symbols they use and their axioms, in Dedukti, theories
are characterized by the symbols they use and their equations.

Reasoning modulo equations on types is the key feature that allows one
to express in Dedukti the proofs of many systems: first-order logic and its
theories, higher-order logic, as well as complex type systems like Agda and
Coq.

However, we have to express in the same way the features (polymor-
phism, predicate subtyping, proof irrelevance, impredicativity, etc.) that
are common to all systems, so that we can more easily detect the proofs
that can be translated from one system to the other. E.g., Euclidean geom-
etry and hyperbolic geometry only differ by one axiom. Hence, a proof in
Euclidean geometry not using Euclid’s 5th axiom can be readily translated
into hyperbolic geometry.

There are many theoretical and practical challenges to scale up and fully
handle all current proof assistants. A first challenge is to extend the set of
proof assistant features that can be expressed in Dedukti. A first step is the
article “Some axioms for mathematics” at the 2021 FSCD conference [9].
Another very important challenge is to make the translated proofs usable.
This in particular requires to align the concepts used in the source system
with the ones used in the target system.

Kevin Buzzard, Department of Mathematics, Imperial College
London.

K.-A. Continuing a celebrated career in algebraic number theory, in re-
cent years you have also been enthusiastically working on formal proof
verification—an area that used to traditionally attract mostly computer
scientists rather than mathematicians—using Lean. You are very actively
involved in teaching mathematics undergraduates how to use Lean to for-
malise proofs, and you have been supervising many student projects in this
direction, too; a new generation of mathematicians, in their formative years,
is becoming accustomed to formalisation and interactive theorem proving.
Watching your students learn, how do you think using a proof assistant
affects the development of their mathematical thinking? Have you noticed
that it may increase the students’ attention to detail, or spark an interest
in foundational questions? In your experience, is getting accustomed to
Lean’s dependent type theory actively affecting how students think about
mathematics?

Buzzard. Here is what I think is going on: Students learn very quickly
when coming to university that there are things which are acceptable to
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say in some courses, but not acceptable in others. E.g., the fact that the
derivative of sine is cosine would be a perfectly acceptable claim in a 1st
year mechanics course, but would probably need a detailed proof in a 1st
year analysis course. I teach students how to formalise mathematics, but I
am not convinced that it changes the way they solve mechanics questions
one jot! I am not even convinced that it changes the way they work in their
other pure mathematics courses. Perhaps it changes things slightly: maybe
they are more careful with edge cases, maybe they factor out sublemmas a
bit more, maybe they write more constructively. But what does this buy
them in practice? Mathematicians are sometimes sloppy with edge cases—
e.g., in Atiyah and MacDonald’s book on commutative algebra, in their
proof of the Artin-Tate lemma they do an induction where the inductive
step works fine but the base case does not! An undergraduate pointed this
out to me when they were formalising it in Lean and I was shocked, but
Lean was right. But of course edge cases to mathematicians are just boring
and trivial. Mathematicians don’t need to compile their work so who cares
if it is written in a modular manner. And of course, most mathematicians
have no idea what constructivism is. I wonder therefore whether all that
is happening is that undergraduates are learning a third “mode”—there is
“applied mathematics mode”, “pure mathematics mode” and then “formali-
sation mode”. One thing I’ve learnt from undergraduates (showing me their
problem sheets) is that pure mathematics, even at undergraduate level, is
sometimes extremely difficult to formalise. A student might observe that a
question on an algebraic topology example sheet which just comprises of a
couple of pictures would be extremely hard to formalise, e.g., it might even
be extremely hard to formally show that the question is well-defined; I see
a picture of a torus being butchered in some way, but how do we know that
the resulting object is truly independent of the details of the butchering?
However, the students know what the lecturer is looking for in a solution,
because they have seen how the lecturer does analogous questions and they
understand that the point is that they are to copy the techniques and this
will be an acceptable argument in this context. In particular, the student
knows not to be in “formalising mode” when solving some of the problems,
they just switch back into “maths how it is done in class in practice” mode.

Another observation would be that there is this inconvenience of type
theory: types cannot intersect nontrivially. Sets of course can, so in ZFC,
it’s easy to switch between the notion of a “thing” being both a subgroup
and a group at the same time. In type theory this is not so easy. Students
learning Lean are learning how to do mathematics in type theory, but in
practice a mathematician when working on paper just uses whatever theory
is most convenient for the situation at the time; we are under no pressure
to be consistent in practice.
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I think that in conclusion I would say that I am teaching the students
how to think carefully and pedantically, which is definitely a useful skill,
but that mathematics is not only about this.

Johan Commelin, Mathematisches Institut, Albert-Ludwigs-Uni-
versität Freiburg.

K.-A. In parallel with your research in algebraic geometry and algebraic
number theory, you are very actively involved in the Lean theorem prover
community. You are currently leading the Liquid Tensor Experiment, hav-
ing taken up a challenge posed by Peter Scholze, formalising cutting-edge
research mathematics. In your experience so far, how do think Lean’s de-
pendent type theory, as an underlying logical formalism, has been helpful
in formalising this area of mathematics in terms of expressiveness? E.g.,
overall, what have you and your collaborators found more challenging: ex-
pressing definitions in the language of Lean or actually working out proof
steps? What do you think are some of the pros and cons of Lean’s depen-
dent type theory and what are some changes that you would like to see in
future versions of Lean?

Commelin. The Liquid Tensor Experiment showed that within a reason-
able amount of time, difficult state-of-the-art mathematics can be formally
verified; providing a tangible benefit for the working mathematician.

In my experience, this is the first time that I was genuinely assisted by
the computer in understanding a proof. Attempts to penetrate the proof
using pen and paper went nowhere. But by gradually building the formali-
sation (with the help of a dozen other people) I gained a solid understanding
of all the moving parts, and how they precisely fit together. This proof is
extremely complicated, and walks a very fine line. In that sense, it comes as
no surprise that Scholze had not received any feedback on this proof from
within the mathematical community more than a year after publishing this
proof on his website. At the same time, Scholze explains that he had some
small lingering doubts about this proof, precisely because of this complexity.

The formalisation process, and all the interaction that ensued between
Scholze and the formalisation team also led to a better understanding of
the structure of the proof. Scholze wrote in a blogpost [75] that for him the
arithmetic nature of the proof of this analytic result was clarified. Besides
that, a technical ingredient was significantly simplified.

I do not know enough about type theories to give a meaningful state-
ment about how important dependent type theory is for the Liquid Tensor
Experiment. I recognize the following important factors in the success:

(1) The community. When Scholze posed his challenge (in all proof as-
sistants), there was an enthusiastic response in the Lean community.
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There were sufficiently many mathematicians with a good working-
knowledge of Lean, which led to fast and fruitful collaboration.

(2) Lean’s mathematical library, mathlib. This is a large and coherent
library of many topics in undergraduate mathematics, which means
that all these developments can be imported and used simultaneously.
Both because it is developed in a single repository via a coordinated pull
request system, and because the mathlib continuous integration process
ensures no name collisions and no bad interactions between simplifier
lemmas.

We used extensively the sections on algebra, topology, analysis, cate-
gory theory, and homological algebra. Futhermore, when things did not
work right, we could refactor mathlib and improve the library. Algebra
(monoids and groups), analysis (semi-normed groups) and homologi-
cal algebra (complexes) were refactored as part of the project. These
refactors would be merged upstream in an efficient process, which was
crucial for keeping the ball rolling.

The success of the Liquid Tensor Experiment is very much a success of the
community around Lean and mathlib.

Manuel Eberl, Computational Logic Group, University of Inns-
bruck.

K.-A. As a very experienced user of Isabelle and a prolific contributor to
the Isabelle Libraries and the Archive of Formal Proofs, how useful has
Sledgehammer been in your everyday formalisation work?

Eberl. I do use Sledgehammer a lot, albeit less so than other users. When
I do use it, it is mostly as a tool to find relevant facts to my current goal.
When I think the current goal should be doable by the automation given
the correct rules but I’m not quite sure what the correct rules are, I call
Sledgehammer, and if it finds a proof, I then inspect the facts it uses and
construct a “proper” proof from them. I tend to prefer that to the kind of
proofs that Sledgehammer generates. Other people tend to use Sledgeham-
mer regularly to find proofs and keep them that way. So I think I would
not miss it quite as much as a lot of other people if it did not exist, but I
certainly use it often enough that it would impede my productivity if it did
not exist.

K.-A. Is the lack of Sledgehammer the reason that Isabelle/ZF is much less
used (compared to Isabelle/HOL), or are there other reasons related to the
expressiveness of Isabelle/ZF?

Eberl. First of all, I must say that I have never used Isabelle/ZF, so take
everything I say with a huge grain of salt. My impression is that there is



152 A. Koutsoukou-Argyraki

no problem at all with the expressiveness of Isabelle/ZF. The major reason
why it is not used is probably simply that the libraries and tooling (proof
automation, probably definitional tools) are nowhere near as nice as those
of Isabelle/HOL. As for why that is, I suspect that a large amount of it is
simply historical: Isabelle/HOL got quite popular, so many people flocked
to it and built libraries and tools, and that made it even more popular etc.
Nothing comparable happened for Isabelle/ZF.

From what I understand, there are technical issues with using “untyped”
logics such as ZF in a theorem prover. Working with the “naked” logic
is possible, but tedious. For productive work, you want something like
Mizar’s soft types, and overloaded operators, and management of algebraic
structures like groups (perhaps using some analogue of type classes). All
of that takes quite a bit of engineering. I understand that there were (or
still are) people working on such things, and I’m sure they can in principle
be brought into a state were they work well enough to make working in
Isabelle/ZF just as pleasant as in Isabelle/HOL, but it is a lot of work, and
it takes quite a lot of energy to get it to a “self-sustaining” point where it
is good enough that it will attract other people to work on it.

K.-A. Do you think you can make a prognosis about the possible limitations
of simple type theory?

Eberl. In the kind of mathematics that I formalise, I have not really
encountered any hard obstacles due to using simple type theory. There
are definitely hard limitations, such as the inability to quantify over types,
which makes some definitions basically impossible to write down. And as
far as I know, there are also other logical issues when it comes to formalising
category theory or advanced set-theoretic arguments like forcing, but I do
not know much about these fields. In my experience, such things do not
crop up too often in practice. The more interesting limitations are where
something is possible to do in simple type theory, but becomes significantly
more painful.

The one part of the Isabelle library where such issues become most
apparent to me is in abstract algebra: the obvious way to define, e.g., a
group is as a type with a binary operation and a neutral element that
fulfil certain laws. The type classes in Isabelle/HOL make this approach
very comfortable, which is why that is the way it is done in the standard
library. But as soon as we want to talk about different groups and their
relations to one another and their subgroups etc., this does not work without
dependent types. Instead, one can define groups with an explicit carrier set
and carry the group operations and the group axioms around manually.
This is the approach that the HOL-Algebra library (also in Isabelle/HOL)
follows, but it is much less pleasant to use than the type-based approach
from the standard library.
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A similar situation exists, e.g., for topologies: there is a type-class-based
version where the topology comes from a type class (where you can just write
“open X” for “the set X is open”), and a more general one where a topology
is a separate object (where you write “openin top X” for “the set X is open
with respect to the topology top”). Having two separate libraries that do
the same thing in different ways is always problematic for maintainability
and usability. There is some tooling that allows transferring results between
the two approaches, but it is unfortunately not as pleasant to use as one
would want.

In any case, these problems are not show stoppers. They may force you
to write down some things in a less natural fashion than you would have to
in a stronger logic, but this extra effort always has to be seen in conjunction
with the advantages of simple type theory: as far as I am aware, simple type
theory-based systems like Isabelle/HOL tend to have better performance
and better proof automation than systems using stronger logics. Depending
on the concrete application, this may offset the less expressive logic.

Sir Timothy Gowers, Collège de France, Department of Pure
Mathematics and Mathematical Statistics, University of Cam-
bridge, & Trinity College, Cambridge.

K.-A. You are a strong supporter of proof assistants and the formalisation of
mathematics; for many years, during your celebrated career in mathematics,
you have been advocating the vision of developing an interactive tool that
would provide direct assistance to working mathematicians in their everyday
research by offering ideas, hints, information related to the work at hand
and proving auxiliary results [39, 41, 4]. Given the state of the art of
the tools and the most recent advances in the area of proof assistants and
formalisation, how optimistic are you that this vision is getting closer to
realisation?

Gowers. As background, I should say that my main interest in this sphere
is not so much formalisation as fully automatic proof discovery, but the two
are sufficiently closely related that I am certainly interested in following
what other people are doing in the formalisation area.

My answer to your first question is that I am very uncertain. I think
there is certainly the potential for a lot of non-revolutionary progress, which
I think might be enough to develop tools of genuine use to mathematicians.
Indeed, I hope to contribute to that development by continuing to work on
human-oriented theorem proving, but of course there are other ways that
progress may well be made, such as machine learning. (My hunch about
machine learning is that there is a fundamental limitation to what it can do
if it is operating entirely on its own—roughly speaking corresponding to the
need to have non-obvious mathematical ideas. So I expect to see impressive
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progress in the short term but also to see a plateau being reached unless it
is combined with more traditional approaches. But it’s always dangerous
to make predictions like that.)

My short answer to your question is that I am optimistic that there
will be exciting progress over the next ten years or so, but I think we are
probably two or three big breakthroughs away from a system that can solve
interesting research problems. (But a lot depends on what one means by
“solve” here, and in particular on how much human assistance there is.)

K.-A. What are some theorems or research areas that you would like to see
formalised in the near future?

Gowers. I suppose I’d answer that I don’t have a direct interest in any par-
ticular part of mathematics becoming formalised, because the areas I work
in tend to be ones where we are not too worried about whether the main
results are correct. (I contrast that with some areas where major results
sometimes depend on other major results that have never been properly
written down, and things like that. Such situations are quite rare in com-
binatorics.) So I could go in one of two ways. Either I’d say that for the
health of mathematics it would be good to identify the more “troubled”
areas where the foundations are potentially shaky and put those right, or
I’d simply say that I’d find it personally satisfying to see the main results in
my own area formalised. Or I could be more selfish still and say that in the
past I have written some pretty complicated papers that almost certainly
have details that aren’t fully correct, so it would be a good feeling if some
of them were formalised—if I ever found out that somebody was interested
in doing that, I would be more than happy to cooperate in finding any nec-
essary corrections. (I do not believe that any of my papers are incorrect in
a worrying way, but some of the fixes could be quite hard to find.)

K.-A. You initiated the first Polymath project in 2009. Do you think that
thanks to the rise of proof assistants massively collaborative mathematics
may soon become customary?

Gowers. I think that what’s going on with formalisation could be described
already as a massively collaborative project, though it’s not precisely the
same as mathematics. The way things look at the moment, people are too
wedded to the current reward structures of mathematics for the massively
collaborative approach to become the main way of operating, and it can be
hard to organize a successful project unless one has a strong online presence.
So I think that there will continue to be Polymath projects, but I don’t think
they are going to become mainstream in the near future.
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Peter Koepke, Mathematisches Institut, Rheinische Friedrich-Wil-
helms-Universität Bonn.

K.-A. Proof assistants use formal languages that are reminiscent more of
computer code rather than “natural” mathematical language and notation
that is familiar to mathematicians. The goal of natural proof assistants is to
remedy this issue, thus making formalised proofs more easily readable and
proof assistants more user-friendly to mathematicians. An effective combi-
nation of the formal rigour of logical calculi behind proof assistants with
the use of natural mathematical language and notation as in usual math-
ematical textbooks and research papers would be an extremely powerful
development. As one of the creators of the Isabelle/Naproche [24, 25] nat-
ural proof assistant, would you like to share some insights about choosing
an appropriate underlying logical formalism that can nicely combine with
natural language?

Koepke. We focus on the natural language and structuring of mathemat-
ical texts as they are really employed in mathematical publications. In an
appropriate context of definitions, notations, and axioms, Naproche is, e.g.,
able to directly accept, process and proofcheck (a LATEX source of) the fol-
lowing formulation of the open mapping theorem from complex analysis,
including natural language phrases and mathematical symbolisms:

Theorem 2.1 (Open Mapping Theorem). Assume f is a holomorphic func-
tion and Bε(z) is a subset of the domain of f . If f is not constant on Bε(z)
then f [Bε(z)] is open.

This kind of mathematics is usually modelled by first-order logic and some
version of set theory. We have inherited the first-order approach from our
predecessor system SAD (System for Automated Deduction, by Varchinine,
Lyaletski, and Paskevich [79]). An important advantage is that the leading
automated theorem provers which Naproche continuously calls for minor
proof tasks use first-order logic themselves. As natural language and the
language of mathematics use “soft types” it may be better in the long run
to switch to an appropriate formal language between first-order logic and
type theory.

K.-A. What are the reasons behind your choice of Isabelle?

Koepke. Originally we have chosen Isabelle as a proof development en-
vironment in which we can comfortably run and use the Naproche pro-
gram. So far there has been no connection to the typical Isabelle logics
like Isabelle/HOL. We are, however, collaborating with Makarius Wen-
zel to find ways to map logical entities of Naproche to Isabelle and vice
versa. We have an experimental setup where Naproche is invoking the Is-
abelle/Sledgehammer mechanism to discharge certain proof obligations.
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K.-A. How has your long career in set theory and foundations of mathe-
matics influenced your taste in logical formalisms for proof assistants?

Koepke. My experience with first-order set theory of course came in handy
for dealing with SAD/Naproche formalisations and with the logical mech-
anisms of the system. Similar to Naproche, the working language of set
theory introduces all sorts of notions like numbers, functions, structures,
etc. on top of the frugal language of the axioms. But if other formalisms
accommodate actual natural language better I shall happily adopt them.
The trouble with natural (mathematical) language are the freedoms and
ambiguities that people use to convincingly express their intuitions and ar-
guments. First-order logic is able to deal with all sorts of exceptions by “if
... then ... otherwise ...” constructs, whereas other formalisms might force
users to write in a more regulated and possibly “unnatural” language.

Assia Mahboubi, INRIA, Gallinette Team, Nantes & Vrije Uni-
versiteit Amsterdam.

K.-A. You are a very experienced user of the Coq proof assistant and
you are particularly interested in the interplay between computer algebra
systems and formal proofs. Your new EU-funded FRESCO project (“Fast
and Reliable Symbolic Computation”), that started in November 2021, aims
to explore whether computer algebra systems could be both reliable and
fast. To this end, the programming features of proof assistants will be
enriched to become efficiently combined with computer algebra systems,
while compatibility with logical foundations will be preserved. Undoubtedly,
the combination of the computational power of computer algebra systems
with the formal reasoning tools provided by proof assistants based on various
logical formalisms would be a very powerful combination. Would you like to
give a few examples of applications in mathematical practice and research
where we could see significant advances thanks to this interplay? And would
you like to comment on which logical formalism(s)/formal system(s) you
believe would be more preferable or practical to combine with computer
algebra systems?

Mahboubi. From experimentation to proofs, there is a tremendous mo-
mentum right now for computer-aided mathematics. The use of computers
for formulating conjectures, but also for substantiating proof steps, pervades
mathematics, even in its most abstract fields. Most of these computer proofs
are produced by symbolic computations, using computer algebra systems.
Sadly, these systems suffer from severe, intrinsic flaws, key to their amazing
efficiency, but preventing any flavour of post-hoc verification.

The field of number theory is an emblematic example of this change of
era, and computers have become a crucial instrument for basic research in
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number theory, both for designing conjectures and for proving them. The
Birch and Swinnerton-Dyer’s conjecture about the rational points of an
abelian variety, is a notorious example of a computer-shaped hunch, based
on (at the time) intensive calculations. This fertile conjecture has sparked
fundamental contributions, although if the problem remains open at the
time of writing: the Clay Mathematics Institute even advertises a 1 million
dollar bounty for its solution. Regarding published proofs, prominent ex-
amples include Bharghava’s work in the sub-field of number theory called
“geometry of numbers”, crowned by a Fields medal in 2014 or Helfgott’s
groundbreaking proof of the long-standing Ternary Goldbach conjecture, in
analytic number theory.

Verified (and fast) computer algebra would of course provide a principled
way to assess the correctness of such achievements, when the social process
of peer-reviewing just falls short of evaluating the proofs produced by com-
puters. But it would also provide an invaluable tool for gaining confidence
in the intuitions shaped by computer calculations. These calculations can
be of a very diverse nature: evaluation of formulas, simplification of alge-
braic expressions, plots, etc. But these can all go very wrong, and for subtle
reasons, which pertain to the semantic of symbolic computations (or to the
lack thereof) rather than to the bugs in the usual sense, that of program-
ming errors. Another important application I can foresee is the validation
of handbooks and databases, gathering collections of mathematical objects
together with their properties, like the celebrated NIST Handbook of Spe-
cial Functions or the reference L-functions and Modular Forms Database,
in number theory.

Modern verification tools can be classified according to the expressivity
of the logical language available to state specifications, which in turn im-
pacts their ability to automate proof search. E.g., variants of propositional
logic have earned their stripes in hardware design, but specifying and verify-
ing cyber-physical systems requires first-order logic and beyond. Verifying
computer algebra in the large is more demanding, as elementary specifica-
tions will casually involve quantifying over objects such as “finite fields of
an arbitrary characteristic p”, with a formal integer p. Such a parametri-
sation is typically beyond the skills of computer algebra systems; they only
provide concrete instances of these fields, for concrete values of p, as this
prime integer controls algorithmic choices in modular arithmetic. In fact,
verifying computer algebra in the large calls for a first-class, representation
of hierarchies of mathematical structures in the logic, a feature which is
available in dependent type theory.
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Ursula Martin, School of Informatics, University of Edinburgh &
Wadham College, Oxford.

K.-A. Your celebrated career covers many areas in theoretical computer sci-
ence and formal methods; in recent years, supported by an EPSRC Fellow-
ship, you have also been investigating the nature of mathematical practice
as a social machine with your project “The Social Machine of Mathemat-
ics”. In addition to various online databases (such as arXiv, Google Scholar,
ResearchGate, MathSciNet, Orcid...) having revolutionised access to in-
formation and knowledge, various online platforms such as MathOverflow,
MathStackExchange, GitHub and Zulip (and sometimes, even social media)
actively facilitate communication and collaboration. The latter tools have
been broadly adopted by the proof assistant community and contributed to
its activity and success. Do you think that mathematical practice is, in this
way, being radically transformed? If yes, do you perhaps see more working
mathematicians taking more interest in the foundations of mathematics due
to interest in proof assistants? And do you think that the existence of many
different proof assistants is affecting (either accelerating or hindering) the
progress of this transformation?

Martin. It’s hard to recall, even for those of us old enough to remember,
what the practice of mathematics was like before the personal computer;
before email; before the internet; before LATEX; before the arXiv; before
collaboration sites like MathOverflow and GitHub; and before the massive
expansion of mathematical publication that these now ubiquitous tools have
enabled, with mathematical publications quadrupling since 1996.2

Yet what has remained remarkably stable is the notion of an academic
mathematical paper: a document, now digital rather than paper, but other-
wise still published in a journal sponsored by a recognised entity, attributed
to a small number of named authors, accredited by the journal’s refereeing
process, with a fairly standard kind of structure, content, argument and ci-
tation practice established within particular subdisciplines. While there are
undoubted triumphs of the use of proof assistants—e.g., Gonthier’s work
on the Odd-Order Theorem, or Hales’s proof of the Kepler conjecture—the
contribution to published mathematical papers of proof assistants is at a low
level, by contrast with the contribution of software such as GAP, Mathemat-
ica or MATLAB. Thus, while one might argue that academic mathematical
practice has the potential to be radically transformed by proof assistants,
it is less easy to claim that this has so far happened.

To look at the reasons for this, one might look, not at the nuances
of particular proof assistants, but more generally at how technological, or

2Cf., e.g., the World Report on the Scimago Journal & Country Rank webpage, listing
53,564 mathematics publications in 1996 and 183,582 mathematics publications in 2019.
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other, change comes about within the institutions involved in the creation of
academic mathematics: universities, funding bodies, and publishers, and at
how institutions, or individuals within them, are incentivized to bring about
far-reaching changes to current practices, when such practices, e.g., journal
publications, are so entrenched in traditional mechanisms for credit and
reward. It is noteworthy, e.g., that Gonthier did his work while employed
by a company (Microsoft Research), and one might speculate on whether
Hales would have felt able to do his lengthy machine proof of the Kepler
conjecture if he had not had tenure. By contrast, in commercial software
development, if proof technology is needed to achieve the commercial ends
of the company, the infrastructure and workflow can be restructured to
accommodate it—cf., e.g., Facebook’s use of the Infer static analyser, which
is based on separation logic [27].

As to the impact of having many different software tools—proof assis-
tants among them—certainly uptake and use of such tools might be en-
hanced if a single proof assistant became as ubiquitous and as taken for
granted as LATEX, Maple or Jupyter Notebooks, or indeed embedded in
such platforms. Is the reason for a diversity of tools a positive one—the
need the research community feels, at this stage of development, for diver-
sity and for experiment rather than being forced into a common approach?
Or is it rather a lack of institutional or individual incentives, enthusiasm,
leadership or skill for the trade-offs and political activity involved in uniting
behind a common approach?

Lawrence C. Paulson, Computer Laboratory, University of Cam-
bridge & Clare College, Cambridge.

K.-A. You are the Principal Investigator of the ERC Project
“ALEXANDRIA—Large Scale Formal Proof For the Working Mathemati-
cian” which started in Autumn 2017 at the University of Cambridge and
aims at the investigation of the formalisation of mathematics in practice
using Isabelle/HOL and, more broadly, at contributing to the creation of
a proof development environment attractive to working mathematicians.
What do you think are the main takeaways from the project so far?

Paulson. ALEXANDRIA has made it possible to engage with the math-
ematical community and fully explore the issues surrounding the formali-
sation of mathematics. This engagement was primarily but not exclusively
with Isabelle/HOL, since some experiments were also done using Lean.
Roughly speaking, our objectives were to explore what could be accom-
plished using our tools, and where weaknesses were identified, to try to
mitigate them.

I’ve been immensely satisfied with our progress. A group of people from
quite different backgrounds have pursued a variety of subprojects, some
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individually and some in smaller groups, sometimes with outside collabora-
tors. We accomplished things that some observers thought were impossible,
notably the formalisation of schemes in Isabelle/HOL [12, 13]. Time and
again we saw that advanced material such as Szemerédi’s Regularity Lemma
[32] weren’t really that difficult and much of the difficulty we did encounter
lay in the errors and inconsistencies of our source material.

A separate but essential effort was aimed at reducing the labour that
goes into formalisation. This produced the SErAPIS search engine [77, 78],
which is the first example of true intelligent search for an interactive theorem
prover: material from all the libraries can be sought on the basis of concepts
as well as syntax. Other research, less well advanced but deeply important,
is aimed at using machine learning and other technologies to recognise proof
patterns and assist the interactive process of formalisation by suggesting
solution fragments.

K.-A. As one of the creators [65, 64] (and a very experienced user) of
Isabelle, you have stressed many times that, when it comes to different
formal systems, pluralism is both important and inevitable. At the same
time, the answer to the question of whether simple [66] or dependent type
theory is more practical for formalising mathematics (or rather: each area
of mathematics) and what is the best way to use each formalism, is far from
being clear. Would you like to elaborate a bit on this topic?

Paulson. I’m glad you say that “the question of whether simple or depen-
dent type theory is more practical for formalising mathematics... is far from
being clear”. Plenty of people have made up their minds already. But that’s
premature in such a rapidly developing field. We have seen that we can go
a long way in simple type theory (interestingly, with rather little reliance
on axiomatic type classes). We have not encountered any no-go areas so
far. We have the benefit of extensional functions and ordinary equality as
well as strong automation, and full set theory when we need it. Dependent
type theories are lacking in those particular areas, but have the benefit of
greater expressiveness; and as they continue to evolve, who can say what
things will look like in five or ten years?

3 A final comment

Our discussion has merely scratched the surface of this vast topic, yet it is
already obvious that foundations, as the basis of proof assistants, can poten-
tially be of substantial service to mathematical practice in many different
ways.

But let us conclude with acknowledging that when it comes to computers
and the future of mathematics, proof assistants and foundations are only
one side of the story.
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This is not only because computer algebra systems, natural language
processing and automatic proof discovery can provide indispensable tools
too, as already mentioned in the above discussions. This is because it ap-
pears that the axiomatic/ symbolic approach as conceived by Leibniz, fol-
lowing his vision of calculus ratiocinator, could take us only so far—even
assuming we eventually manage to formalise “all” mathematics as wished in
the QED Manifesto from the 1990es [2]. Progress seems to require the com-
bination of alternative approaches. An interesting analogy due to Georg
Gottlob is seeing “rule knowledge and logical reasoning versus machine
learning, e.g., neural networks” as “left part of the brain versus right part
of the brain”: they have different, but complementary functions, the former
inducing rationality and the latter inducing imagination and creativity.

To achieve the creation of interactive tools that would actively and ef-
ficiently help research mathematicians in their creative work, it is also new
advances in artificial intelligence and machine learning that can promise
novel developments in mathematical practice through their applications to
automated theorem proving and proof assistants. E.g., pattern recognition
tools from machine learning could find applications not only in searching
the libraries of formal proofs, but also in recognising proof patterns and pro-
viding proof recommendation methods thus enhancing automation. Some
promising efforts in this direction are, e.g., [8, 54, 61, 6, 72]. A new book
by Holden [49] provides a comprehensive review of research applications
on incorporating machine learning into automated theorem proving which
has the potential of developing tools that could improve automation tools
featured by interactive theorem provers.

The communities of machine learning and formal verification have indeed
been growing increasingly close during the past few years. Some highlights
are successful ongoing conference series such as Artificial Intelligence and
Theorem Proving (AITP) and Intelligent Computer Mathematics (CICM)
as well as workshops such as MATH-AI “The Role of Mathematical Rea-
soning in General Artificial Intelligence” organised within ICLR 2021. The
ERC funded projects AI4REASON (2015–2020) led by Josef Urban at the
Czech Technical University in Prague (CTU) and SMART (2017–2022) led
by Cezary Kaliszyk at the University of Innsbruck have in particular pro-
duced a vast number of results. It is also worth noting that one of the
six working groups within the new European COST Action CA20111 Euro-
ProofNet (mentioned previously) is devoted to Machine learning in proofs
(WG5) and led by Kaliszyk.

Though unrelated to proof assistants, it is worthwhile to mention an im-
pressive breakthrough in machine learning for pure mathematics that has
been very recently achieved thanks to a collaboration between DeepMind
researchers and research mathematicians [21, 22]. More specifically, im-
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portant results in knot theory [23] and representation theory [10] have been
achieved by employing machine learning tools. This reinforces the hope that
artificial intelligence in itself is powerful enough to provide useful auxiliary
technology for research mathematics—and thus may be a very promising
candidate for progress acceleration when combined with proof assistants
too.
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J. & Hähnle, R. (eds.), Automated Reasoning, 5th International Joint
Conference, IJCAR 2010, Edinburgh, UK, July 16–19, 2010. Proceed-
ings. Lecture Notes in Computer Science Vol. 6173. Springer, 2010, pp.
107–121.

[12] Bordg, A., Paulson, L. C., & Li, W., Simple Type Theory is not too
Simple: Grothendieck’s Schemes without Dependent Types. Preprint,
2021 (arXiv:2104.09366).

[13] Bordg, A., Paulson, L.C., & Li, W., Grothendieck’s Schemes in Alge-
braic Geometry. Archive of Formal Proofs, 2021, 29 March 2021.

[14] Buzzard, K., Computers and Mathematics. Newsletter of the London
Mathematical Society, 484, 32–36, 2019.

[15] Buzzard, K., Commelin, J., & Massot, P., Formalising perfectoid
spaces. In: Blanchette, J. & Hritcu, C. (eds.), Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2020, New Orleans, LA, USA, January 20–21, 2020. As-
sociation for Computing Machinery, 2020, pp. 299–312.

[16] Buzzard, K., Hughes, C., Lau, K., Livingston, A., Fernández Mir, R.,
& Morrison, S., Schemes in Lean. To appear in: Experimental Mathe-
matics (doi: 10.1080/10586458.2021.1983489).

[17] Buzzard, K., What is the point of computers? A question for pure
mathematicians. Preprint, 2022 (arXiv:2112.11598v2).

[18] Castelvecchi, D., Mathematicians welcome computer-assisted proof in
‘grand unification’ theory. Nature 595, 18–19, 2021.



164 A. Koutsoukou-Argyraki

[19] Commelin, J., Liquid Tensor Experiment: an update. Blog post on the
Lean community blog, 31 December 2021.

[20] Dahmen, S. R., Hölzl, J., & Lewis, R. Y., Formalizing the solution
to the cap set problem. In: Harrison, J., O’Leary, J., & Tolmach, A.
(eds.), 10th International Conference on Interactive Theorem Proving,
ITP 2019, September 9–12, 2019, Portland, OR, USA. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), Vol. 141. Leibniz-Zentrum
für Informatik, 2019, pp. 15:1–15:19.
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