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Random sequences

When is an infinite sequence random?
In other words, we would like to formalize the properties of a sequence
obtained by infinitely many tosses of an unbiased coin.
The intuition: an object is random if it satisfies no exceptional properties.

Example

• Every second digit is 0.
• In the limit, there are at least twice as many 0s as 1s.

The above sets are null classes.
We can formalize ‘exceptional property’ by null classes.
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Random sequences

Using algorithmic tools, we introduce effective null classes, also called tests.
To be random in an algorithmic sense, a real merely has to avoid these
effective null classes, that is, pass those tests.

Definition
• A Martin-Löf test is a uniformly computably enumerable sequence

xUn ∣ n P ωy

of open subsets of the Cantor space 2ω such that

µpUnq ď 2´n

for all n.
• A real x is Martin-Löf random if x passes each ML-test, in the sense
that x is not in all of the Un.
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Incompressibility

When is an infinite sequence random?
A different answer is: when its initial segments are incompressible.

Definition
• A partial computable function on finite words is prefix-free if there are
no s, t in its domain with s Ď t.

• Let
xMn ∣ n P ωy

be an effective listing of all prefix-free machines. We define a universal
prefix free machine U by

Up0nσq “Mdpσq.

• Given a string τ , the prefix-free descriptive string complexity Kpτq is
the length of a shortest U -description of x:

Kpτq “mint|σ| ∶ Upσq “ τu.
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Incompressibility

Informally, a finite string σ is compressible if Kpσq ! |σ|
ML-random sequences can be characterized by their initial segment
complexity.

Theorem (Levin-Schnorr 1973)
The following are equivalent.

• x is ML-random.
• Db @n Kpx æ nq ě n´ b.
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Hypercomputation

The field hypercomputation (higher recursion theory) studies notions of
computability beyond Turing computability.

• Π1
1 sets are a higher analogue of computably enumerable sets, where

the steps of an effective enumeration are computable ordinals.
• Hyperarithmetical (i.e. ∆1

1) sets are a higher analogue of computable
sets.

Satz (Gandy, Spector)
The following are equivalent for any subset A of the Cantor space 2ω.
1. A is Π1

1.
2. There is a Σ1-formula ϕ such that

x P Aðñ Lωx
1
rxs ⊧ ϕpxq

for all x.
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Higher randomness

Already Martin-Löf criticized the classical randomness notions as too weak.

Hjorth and Nies (2007), Yu and Bienvenu, Greenberg and Monin (2015)
studied randomness notions at the level of Π1

1.



Random sequences Infinite time Turing machines Results Questions

Higher randomness

These notions satisfy variants of desirable features of the classical
randomness notions, for instance the following.

Theorem (van Lambalgen)
x‘ y is ML-random if and only x is ML-random and y is ML-random
relative to x.

In this situation, we say that x and y are mutually random.

We will focus on the property: Mutual randoms do not share common
information.

This is false for ML-random, but holds for many higher randomness notions.
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Higher randomness

Question
Do notions of randomness beyond Π1

1 have similar desirable properties as
the classical randomness notions?

On the level of Σ1
2, many properties of randomness are independent.

Therefore, we study randomness notions between Π1
1 and Σ1

2, defined by
infinite Turing machines.
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Infinite time Turing machines

Infinite time Turing machines were introduced by Hamkins and Kidder
(Hamkins-Lewis 2000).

Hardware:
• tape of length ω
• read/write head.

Software:

• finite alphabet A
• finite set S of states, including some end states
• transition function Aˆ S ˆ tsucc, limu Ñ Aˆ S ˆ tleft, rightu
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Infinite time Turing machines

We can assume that the letters and states are natural numbers.

The machine runs through steps of the computation at every ordinal time.

At limits λ

• form the lim inf in each cell
• form the lim inf of the previous states
• move the head to the beginning of the tape

0. . .1 . . . 1

q
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Snapshots of a computation

tape cells Ñ

time Ó

time state head 0 1 2 3 4 5 ⋯

0 0 0 – – – – – – ⋯

1 1 1 1 – – – – – ⋯

2 0 2 1 – – – – – ⋯

3 1 3 1 – 1 – – – ⋯

4 0 4 1 – 1 – – – ⋯

5 1 5 1 – 1 – 1 – ⋯

6 0 6 1 – 1 – 1 – ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ω 0 0 1 – 1 – 1 – ⋯

ω` 1 1 1 0 – 1 – 1 – ⋯

ω` 1 0 2 0 – 1 – 1 – ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

ω ¨ 2 0 0 0 – 0 – 0 – ⋯

ω ¨ 2` 1 1 1 1 – 0 – 0 – ⋯

ω ¨ 2` 2 0 2 1 – 0 – 0 – ⋯
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Example

Example
Does the letter 0 appear infinitely often in the input word?

q0start q`

q1 q´

–,–,right,limit

–,–,right

0,–,right

0,–,right

–,–,right,limit

–,–,right
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Strength of infinite time Turing machines

ITTMs can do the following.

• compute the halting problem (for Turing machines)
• test whether a tree is wellfounded, and hence can decide Π1

1 sets
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Writable ordinals

Definition
• x ist writable if it can be written, with empty input, by a program
which then halts.

• x is eventually writable if it can be written and eventually the tape
contents is stable.

• x is accidentally writable if it can be written at some time in some
computation.

Example
The halting problem for ITTMs is eventually writable.

By coding ordinals by reals, we define the writable ordinals etc.
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Writable ordinals

Definition
• λ is the supremum of the writable ordinals.
• ζ is the supremum of the eventually writable ordinals.
• Σ is the supremum of the accidentally writable ordinals.

Then λ is equal to the supremum of the clockable ordinals (halting times).

An important characterization:

Theorem (Welch)
λ, ζ,Σ is the lexicographically least triple α, β, γ with

Lα ăΣ1 Lβ ăΣ2 Lγ .
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Preservation by random forcing

We distinguish between random generic and random (quasi-generic).

Definition
x is random (quasi-generic) over Lα if x avoids every Borel null set with a
code in Lα.

Theorem (CS)
λ, ζ and Σ are preserved by random reals over LΣ`1.

This result is proved via an analysis of a quasi-forcing relation for random
reals over admissible sets.
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Writable reals from non-null sets

To prove properties of randomness, we need the following analogue to a
results of Sacks.

We write x ďw y (x ďew y, x ďaw y) if x is (eventually, accidentally)
writable from y.

Theorem (CS)

1. x is writable if and only if µpty ∶ x ďw yuq ą 0

2. x is eventually writable if and only if µpty ∶ x ďew yuq ą 0

3. x is accidentally writable if and only if µpty ∶ x ďaw yuq ą 0

This is proved via the preservation of λ, ζ and Σ by sufficiently randoms.
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ITTM-random reals

A higher analogue of Π1
1-random:

Definition
A real x is ITTM-random if it avoids every ITTM-semidecidable null set.

Mutual ITTM-randoms have no common information:

Theorem
Suppose that x‘ y is ITTM-random. If z is writable from x and from y,
then z is writable.

This is proved via the previous result about writable reals from non-null
sets.
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Characterization of ITTM-randoms

By results of Spector and Sacks, the following conditions are equivalent.
• x is Π1

1-random.
• x is ∆1

1-random and ωx1 “ ωCK
1 .

A higher analogue:

Theorem (CS)
The following are equivalent.

• x is ITTM-random.
• x is random over LΣ and Σx “ Σ.
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Further results

• similar results for recognizable reals instead of writable reals
• similar results for an ITTM-decidable variant of ITTM-random
• similar results as Hjorth-Nies for a Martin-Löf variant of ITTM-random
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Questions

Question
Is ζx “ ζ for every ITTM-random?

Question
Is the set of ITTM-randoms Π0

3?

Question
Is there a concrete description of the set NCR of reals that are not
ITTM-random with respect to any continuous measure?
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