
Formal proofs, variable binding,
and program extraction from proofs

Colloquium Logicum 2016
(10 - 12 September 2016, Hamburg)

Gyesik Lee
Hankyong National University

1

/ 43

Overview

1. Verification of proofs

2. Hales’ proof of the Kepler conjecture

3. Computerization of mathematical proofs

4. Issues in computerizing proofs

5. Extraction of programs from proofs

2

/ 43

Verification of proofs

How do we come to see that a mathematical argument is correct?

• Prove it, then

• check whether the proof provided uses only given assumptions, already
known facts, admitted axioms and inference rules.

3

/ 43

Verification of proofs

• However, many officially published work contains (un)detected errors.

• Still this process is considered generally reliable.

4

/ 43

Verification of proofs

There are however cases where this seemingly
obvious process has difficulties.

5

/ 43

Hales’ proof of the Kepler conjecture
• The Kepler conjecture

– No arrangement of equally sized spheres filling space has a greater
average density than that of the cubic close packing and hexagonal
close packing arrangements.

– The density of these arrangements is around 0.7404.⇡/3
p
2 '

6

https://en.wikipedia.org/wiki/Sphere
https://en.wikipedia.org/wiki/Packing_density
https://en.wikipedia.org/wiki/Hexagonal_close_packing

/ 43

Hales’ proof of the Kepler conjecture
• Hales’ proof in August 1998 consisted of

– 300 pages of texts and
– 3 Gigabytes of computer programs and data.

• Submitted to Ann. Math.
– after 5 years of refereeing process
– the panel of 12 referees was 99% certain of the correctness of the

proof.
– Ann. Math. published the text proofs (121 pages long) only.

7

/ 43

Hales’ proof of the Kepler conjecture

What does “99% certainty” mean in mathematics?

8

/ 43

Hales’ proof of the Kepler conjecture

What was the problem?

9

/ 43

Geuvers’ comments
• Hales needed to prove that 1039 complicated inequalities hold.

• He used computer programs to verify the inequalities.

• The referees had problems with his approach:

– verifying the inequalities themselves by hand would be impossible

– one week per inequality is still 25 man years of work.

• They did not considered to verify the computer programs Hales used.

• To say the truth, they could not.

10

/ 43

Worse cases

There are even cases in which some wrong statements were
considered to be proved for a long period of time.

11

/ 43

Worse case 1
• In the mathematical theory of knots, the Perko pair, named after Kenneth

Perko, found in 1973, is a pair of entries in classical knot tables that actually
represent the same knot.

• The Perko pair gives a counterexample to a theorem claimed by Little in
1885 that they are separate knots.

12

/ 43

Worse case 2
• Gödel claimed in the last sentence of the paper “On the decision problem

for the functional calculus of logic” (1933): 
 
“In conclusion, I would still like to remark that Theorem I can also be
proved, by the same method, for formulas that contain the identity sign.”  

• Theorem 1 concerns the decidability of the class called [∃*∀2∃*, all, (0)].

• This claim was believed to be true for more than thirty years.
• But Stål Aanderaa showed in the mid-1960s that Gödel's proof would not

actually work if the formulas contained equality.
• Finally, in 1983 Warren D. Goldfarb proved that the class mentioned by

Gödel was not decidable.

13

/ 43

Response

Mathematicians seem to have recognized the unreliability of
checking process.

14

/ 43

Response
• In 2000 the Clay Mathematics Institute (CMI) announced million dollar

prizes for the solution of seven Millennium Problems.
• But there are conditions according to which the prize would be awarded:

– two years after the appearance of the solution in a refereed
mathematics publication of worldwide repute;

– and after general acceptance in the mathematics community.
• But why wait two years?
• What does the ``general acceptance in the mathematics community" mean?
• Still these two conditions prove against the reliability of the traditional

proof checking process.

15

/ 43

Suggested solutions
• People like Doron Zeilberger suggest two ways to improve the process.

– In his blog post “If You Want Mathematical Truth, You Better Pay For

It!”

– or Computerization

16

/ 43

Computerization of mathematical proofs
• Back to Hales’ proof of the Kepler conjecture
• In 2004, Hales himself announced his intention to have formal version of

his original proof.
• His aim was to remove any remaining uncertainty about the validity of his

proof by creating a formal proof that can be verified by some automated
proof checking software, that is by some computer programs.

• His intention was then realized through a project called Flyspeck on 10th
August 2014, 10 years after his announcement.

• A formal proof of the Kepler conjecture (Arxiv, 01.2015) with 22 authors.
• He used the two proof assistants, HOL Light and Isabelle.

17

/ 43

Computerization of mathematical proofs

What does it mean to have a formal version of proofs?

18

/ 43

Understanding proof assistants
• Geuvers’ paper gives a detailed and kind explanation of the basic ideas of

proof assistants, targeting mathematicians without any background in
computer science:  
 
H. Geuvers, Proof assistants: History, ideas and future, 2009.  

• With some interest, it would not be so difficult to read the paper.

19

/ 43

Understanding proof assistants
• In order to understand how proof assistants like HOL Light and Isabelle

work, it is necessary to understand
– how mathematicians set up a theory and
– how they define and prove mathematical properties.

20

/ 43

Understanding proof assistants
• A proof assistant

– is a computer software to assist with the development of proofs by
human-machine interaction

– and contains some sort of interactive proof editor with which a human
can guide the search for proofs, the details of which are stored in a
computer.

21

/ 43

Foundation for proof assistants
• Mizar

– Tarski–Grothendieck set theory with classical logic
• PVS

– A classical, typed higher-order logic
• HOL family (HOL4, HOL Light, ProofPower)

– A classical higher-order logic
• Isabelle

– Zermelo-Fraenkel set theory (ZFC), higher-order logic
• Coq

– Calculus of Inductive Constructions (CIC)
• Agda

– Unified Theory of Dependent Types (UTT)
• Lean

– Homotopy Type Theory (?)

22

/ 43

Curry-Howard-de Bruijn correspondence
• A proof assistant provides a meta-theory where one can develop concrete

mathematical theories using the idea of Curry-Howard-de Bruin
correspondence:  

– Curry(1958): Hilber-style propositional logic corresponds to simply-
typed combinatory logic.

– Howard(1969): Gentzen’s natural deduction corresponds to some
simply-typed lambda-calculus.

– de Bruijn’s Automath(1967): the first practical system that exploited
the Curry-Howard correspondence.

– Martin-Löf’s type theory with W-type(1980): corresponding to an
intuitionistic logic with the strength of .

– Griffin(1990): The idea of Curry-Howard-de Bruin correspondence
can be extended to classical logic.

23

⇧1
1-CA0

/ 43

Curry-Howard-de Bruijn correspondence
• The base idea of the Curry-Howard-de Bruijn correspondence:

• The term M codes the proof of .
• Proving becomes constructing proof terms.
• Checking correctness of a proof corresponds to type checking.
• Type checking is decidable in many theories.

24

'

/ 43

Curry-Howard-de Bruijn correspondence
• In case of the Coq proof assistant:

25

/ 43

State of affairs
• Proof assistants are already successfully adopted by programming language

groups.
• On the other hand, many mathematicians use computer algebra systems and

Latex, but not that much of proof assistants.

26

/ 43

A side-trip
• But, don’t trust too much in computer algebra systems.

– See Notices of AMS, Oct. 2014.

27

The Misfortunes of a Trio
of Mathematicians Using

Computer Algebra Systems.
Can We Trust in Them?

Antonio J. Durán, Mario Pérez, and Juan L. Varona

Introduction
Nowadays, mathematicians often use a computer
algebra system as an aid in their mathematical
research; they do the thinking and leave the tedious
calculations to the computer. Everybody “knows”
that computers perform this work better than
people. But, of course, we must trust in the results
derived via these powerful computer algebra
systems. First of all, let us clarify that this paper is
not, in any way, a comparison between different
computer algebra systems, but a sample of the
current state of the art of what mathematicians
can expect when they use this kind of software.
Although our example deals with a concrete system,
we are sure that similar situations may occur with
other programs.

We are currently using Mathematica to find
examples and counterexamples of some mathemat-
ical results that we are working out, with the aim
of finding the correct hypotheses and eventually
constructing a mathematical proof. Our goal was
to improve some results of Karlin and Szegő [4]
related to orthogonal polynomials on the real
line. The details are not important; this is just an
example of the use of a computer algebra system

Antonio J. Durán is professor of mathematics at Universidad
de Sevilla (Spain). His email address is duran@us.es.

Mario Pérez is professor of mathematics at Universidad de
Zaragoza (Spain). His email address is mperez@unizar.es.

Juan L. Varona is professor of mathematics and computa-
tion at Universidad de La Rioja (Spain). His email address is
jvarona@unirioja.es.

This work was partially supported by grants MTM2012-
36732-C03-02, MTM2012-36732-C03-03 (Ministerio de
Economía y Competitividad), FQM-262, FQM-4643, FQM-
7276 (Junta de Andalucía) and Feder Funds (European
Union).

DOI: http://dx.doi.org/10.1090/noti1173

by a typical research mathematician, but let us
explain it briefly. It is not necessary to completely
understand the mathematics, just to realize that it
is typical mathematical research using computer
algebra as a tool.

Our starting point is a discrete positive measure
on the real line, µ =

P
n�0Mn�an (where �a denotes

the Dirac delta at a, and an < an+1) having
a sequence of orthogonal polynomials {Pn}n�0

(where Pn has degree n and positive leading
coefficient). Karlin and Szegő considered in 1961
(see [4]) the l ⇥ l Casorati determinants

(1) det

0
BBBB@

Pn(ak) Pn(ak+1) . . . Pn(ak+l�1)
Pn+1(ak) Pn+1(ak+1) . . . Pn+1(ak+l�1)

...
...

...
...

Pn+l�1(ak) Pn+l�1(ak+1) . . . Pn+l�1(ak+l�1)

1
CCCCA
,

n, k � 0.

They proved that, under the assumption that l
is even, these determinants are positive for all
nonnegative integers n, k. Notice that the set of
indices {n,n+ 1, . . . , n+ l� 1} for the polynomials
Pn consists of consecutive nonnegative integers.
We are working out an extension of this remarkable
result for more general sets of indices F than those
formed by consecutive nonnegative integers. We
have some conjectures that we want to prove or
disprove.

We have not been able to prove our conjectures
yet, and, as far as we can see, this task seems
to be rather difficult. On the other hand, just in
case our conjectures are wrong, we have been
trying to find counterexamples with the help of
our computer algebra system. Eventually we hope
these experiments can shed some light on the
problem as well.

We have then proceeded to construct orthogonal
polynomials with respect to discrete positive

November 2014 Notices of the AMS 1249

/ 43

State of affairs in Math
• Proof of the 4 color theorem
• Proof of the Odd Order theorem
• Proof of the Kepler conjecture
• Some projects formalizing mathematics using a proof assistant

– group theory
– algebra
– analysis
– real number computation
– algebraic topology
– category theory
– homotopy type theory

28

/ 43

Issues in computerizing proofs

How close are we to a world where every paper on
programming languages is accompanied by an electronic
appendix with machine-checked proofs?

-POPLmark Challenge

29

/ 43

Issues in computerizing proofs

To gauge progress in this area, we issue here a set of
challenge problems, dubbed the POPLmark Challenge,
chosen to exercise many aspects of programming
languages that are known to be difficult to formalize.

• variable binding
• alpha-conversion
• substitution
• quantification

30

/ 43

Issues about variable binding

A main issue in formal developments of meta-theory
concerns the representation and manipulation of terms with
variable binding.

31

/ 43

Issues about variable binding

Close to pen-and-paper developments
and easy to handle?

32

/ 43

Variable convention
• Barendregt’s Variable Convention:

• This convention implicitly requires alpha-conversion:

• Alpha-equivalence:

If M1, M2, …, Mk occur in a certain mathematical context (e.g.
definition, proof), then in these terms all bound variables are chosen to
be different from the free variables.

Two expressions are identified when they differ only in the names of
used bound variables.

8x (x < x+ 1) ⌘ 8y (y < y + 1)

33

/ 43

Variable convention

But dealing with alpha-conversion in a formal way is a
nightmare, in particular when substitution and reduction
are involved.

34

/ 43

Representation of variables
• There have been many suggestions to overcome the problems related to

variable binding.

• de Bruijn indices  
-  

• locally nameless  
- (well-formed)  
- (not well-formed)  

• locally-named  
- (well-formed)  
- (not well-formed)  

• traditional (nominal)  
-

35

�.(0 1)

�.(0 a)
�.(1 a)

�x.(x a)

�x.(y a)

�x.(x y)

/ 43

Representation of variables
• de Bruijn style

– no alpha-conversion necessary
– less infrastructure and popular in implementation
– but not human readable

• locally nameless style
– compromise between de Bruijn style and traditional style
– very popular in formalization work

• locally named style
– corresponds to usual usage of variables in math and logic  

(Frege, Gentzen, …)
– human readable
– avoids much of alpha-conversion, but not 100%

• traditional style
– not practical in many proof assistants
– but some like Isabelle/HOL provide nominal techniques.

36

/ 43

Safety of System F< using locally names
• 65% of Aydemir et al.(2008)’s work: infrastructure operations and lemmas

37

/ 43

GMeta: Reducing infrastructure
• A Generic Formal Metatheory Framework for First-order Representations

(G.L., Oliveira, Cho, and Yi, ESOP 2012)
• A DGP(data type generic programming) universe is used to represent a large

family of object languages.
• The DGP universe is independent of the particular choice of first-order

representations.
• GMeta library

– Sound, generic, reusable and extensible infrastructure for first-order
representations

38

/ 43

GMeta: Reducing infrastructure

39

DGP

Locally Nameless Locally Named de Bruijn Nominal

Isomorphism

LNTemplate dBTemplate

System F
Simply typed

lambda-calculus

Untyped

lambda-calculus

DGP Layer

Representations

Layer

Templates

Layer

End User

Layer

Isomorphisms

Layer

library

user’s work

iso1

iso2 iso2

iso1

/ 43

GMeta: Reducing infrastructure

40

/ 43

Extraction of programs from proofs

41

• Many proof assistants like Coq provide the facility to extract programs from
proofs.

• Coq e.g. can be used to build certified and relatively efficient functional
programs, extracting them from either Coq functions or Coq proofs of
specifications.

• The functional languages available in Coq are OCaml, Haskell, and
Scheme.

/ 43

Extraction of programs from proofs

42

• Example: Cut elimination process
• A first-order intuitionistic logic with cut and Kripke style semantics

– sound and complete w.r.t. a Kripke style semantics
– in particular, the completeness part produces always cut-free proofs
– then the combination of soundness and completeness becomes a

process which produces a cut-free proof given a proof with cuts.

/ 4343

Thank you for your attention.

