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Theorem. The theory of (R, <, +,N) is decidable.
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Theorem. The theory of (R, <, +,N) is decidable.

o Arguably due to Skolem (1931) in Uber einige Satzfunktionen in der
Arithmetik (see Smoryriski (1991)).

@ Indeed, a quantifier elimination result in a suitably extended language
holds.

@ Rediscovered independently by Gordon (1977), Weispfenning (1999)
and C. Miller (2001).

e Decidability also follows easily from Biichi's theorem (1962) on the
decidability of monadic second order theory of one successor.
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Theorem. The theory of (R, <, +,N) is decidable.

o Arguably due to Skolem (1931) in Uber einige Satzfunktionen in der
Arithmetik (see Smoryriski (1991)).

@ Indeed, a quantifier elimination result in a suitably extended language
holds.

@ Rediscovered independently by Gordon (1977), Weispfenning (1999)
and C. Miller (2001).

e Decidability also follows easily from Biichi's theorem (1962) on the
decidability of monadic second order theory of one successor.

Theorem - Godel (1931). The theory of (R, <, +, -, N) is undecidable.
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Motivating question. How many traces of multiplication can one add to
(R, <, +,N) without making the theory undecidable?
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(R, <, +,N) without making the theory undecidable?

Precise question. Let « be irrational. What can be said about
(R, <,+,N,x = ax) and (R, <, +,N, aN)?
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Motivating question. How many traces of multiplication can one add to
(R, <, 4+, N) without making the theory undecidable?

Precise question. Let o be irrational. What can be said about
(R, <, +,N, x — ax) and (R, <, +,N, aN)?

Surprisingly little was know, in particular given the fact that (R, <, +,N)
was (and still is) extensively used by computer scientists. Very partial
results due to Weisspfenning (1999). Some results claimed by Gordon in
1970Q’s, but the proofs were incorrect.
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Connection to Diophantine Approximations/Dynamical Systems. Let

a €[0,1]. For 6 € R, we define f, 5 : N — [0,1] by
fas(n) = [(n+1)a+3d] — [na+4].

The word

fos=fas(1)fas(2)fas(3)...

is called a Sturmian word with slope a.
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Connection to Diophantine Approximations/Dynamical Systems. Let

a €[0,1]. For 6 € R, we define f, 5 : N — [0,1] by
fas(n) = [(n+1)a+3d] — [na+4].

The word
fos=Tfos(1)fas(2)f0s(3). ..

is called a Sturmian word with slope a.

When o = ﬁ, where ¢ is the golden ratio, then f, ¢ is the Fibonacci
word: 0,1,0,0.1,0,1,0,0,1,0,0,1,0,1,0,0,1,. ..
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Connection to Diophantine Approximations/Dynamical Systems. Let
a €[0,1]. For 6 € R, we define f, 5 : N — [0,1] by

fas(n) = [(n+1)a+3d] — [na+4].
The word
fos = fas(Dfas(2)fas(3) ..
is called a Sturmian word with slope a.

When o = ﬁ, where ¢ is the golden ratio, then f, ¢ is the Fibonacci
word: 0,1,0,0.1,0,1,0,0,1,0,0,1,0,1,0,0,1,. ..

These functions are definable in (R, <, +, N, x — ax). Decidability yields
decision procedure for questions about the Fibonacci word, like

IpeNp>0ATneNVi € N(i > n) = (faoli) = faoli + p))

(cp. Decision Algorithms for Fibonacci-Automatic Words by Mousavi,
Schaeffer and Shallit)
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Results - H. 2015.

Theorem. The theory of (R, <,+,N, x — ax) is decidable if and only if
« is quadratic.
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Results - H. 2015.
Theorem. The theory of (R, <,+,N, x — ax) is decidable if and only if
« is quadratic.
Theorem. Let S C R. Then the structure (R, <,+,N, (x — 8x)ges)
defines the same sets as exactly one of the following structures:
() R, <,+N),
(i) (R, <,4+,N, x — ax), for some quadratic « € R\ Q,
(i) (R, <,+,-,N).
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Theorem. Let S C R. Then the structure (R, <,+,N, (x — 8x)ges)
defines the same sets as exactly one of the following structures:

() (R, <,+,N),
(i) (R, <,4+,N, x — ax), for some quadratic « € R\ Q,
(i) (R, <,+,-,N).

Consequence. When « is a quadratic real number, then the theory of
(R, <,+,N, aN) is decidable.
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Results - H. 2015.

Theorem. The theory of (R, <,+,N, x — ax) is decidable if and only if
« is quadratic.

Theorem. Let S C R. Then the structure (R, <,+,N, (x — 8x)ges)
defines the same sets as exactly one of the following structures:

() (R, <,+,N),
(i) (R, <,4+,N, x — ax), for some quadratic « € R\ Q,
(i) (R, <,+,-,N).

Consequence. When « is a quadratic real number, then the theory of
(R, <,+,N, aN) is decidable.

Is the theory of (R, <, +, N, aN) decidable for any non-quadratic a?
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Prior results.

H., Tychonievich (2014). Let o, € R be such that 1, a, 3 are linearly
independent over Q. Then (R, <,+, N, aN, N) defines multiplication on
R.
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Prior results.

H., Tychonievich (2014). Let o, € R be such that 1, a, 3 are linearly
independent over Q. Then (R, <,+, N, aN, N) defines multiplication on
R.

Consequence: Let o € R be a non-quadratic irrational number. Then
(R, <, +,N, x — ax) defines multiplication on R.
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Prior results.

H., Tychonievich (2014). Let o, 5 € R be such that 1, «, § are linearly
independent over Q. Then (R, <,+, N, aN, N) defines multiplication on
R.

Consequence: Let o € R be a non-quadratic irrational number. Then
(R, <, +,N, x — ax) defines multiplication on R.

Why? Morally, because (R, <,+,N, aN, 5N) allows you define the
Sturmian word f, s and fg 5 for each 6. If 1, 3 are linearly independent
over Q, then you can find § such that the pair of Sturmian words is
arbitrarily complicated.
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Today | want to talk about the proof of:

Theorem. If a is quadratic, then the theory of (R, <,+,N, x — ax) is
decidable.
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Today | want to talk about the proof of:

Theorem. If a is quadratic, then the theory of (R, <,+,N, x — ax) is
decidable.

Consider the two-sorted structure
B = (N,P(N), sy, €),

where sy is the successor function on N and € is the relation on N x P(N)
such that € (t, X) iff t € X.
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Theorem. If « is quadratic, then the theory of (R, <, +,N, x — ax) is
decidable.

Consider the two-sorted structure
B = (N, P(N), sy, €),

where sy is the successor function on N and € is the relation on N x P(N)
such that € (t, X) iff t € X.

Theorem - Biichi (1962). The theory of B is decidable.
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Today | want to talk about the proof of:

Theorem. If « is quadratic, then the theory of (R, <, +,N, x — ax) is
decidable.

Consider the two-sorted structure
B = (N, P(N), sy, €),

where sy is the successor function on N and € is the relation on N x P(N)
such that € (t, X) iff t € X.
Theorem - Biichi (1962). The theory of B is decidable.

Theorem - H. (2014). Let « be a quadratic irrational number. Then
(R, <,+,N, x — ax) and B are bi-interpretable.
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Observation: (R, <,+,N) is interpretable in B using binary coding.

Philipp Hieronymi (lllinois)

Diophantine approximation



Observation: (R, <,+,N) is interpretable in B using binary coding.

x € R «w pair of a finite and an infinite sequence of 0,1's:

b_n...bg.by...
x € N «w pair of a finite and an infinite sequence of 0,1's of the form
b_pn...bg.0...

< on R « lexicographic order on pairs of sequences

+ on R «w usual carry algorithm of adding two numbers

in binary representation
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Observation: (R, <,+,N) is interpretable in B using binary coding.

x € R «w pair of a finite and an infinite sequence of 0,1's:
b_p...bg.by...

x € N «w pair of a finite and an infinite sequence of 0,1's of the form

b_p...bp.0...
< on R « lexicographic order on pairs of sequences
+ on R «w usual carry algorithm of adding two numbers

in binary representation

Conclusion. B interprets (R, <,+,N). Decidability of the theory of
(R, <, +,N) follows.
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Idea. How can we interpret (R, <,+,N, x — ax) in B? Replace binary
representations by Ostrowski (Zeckendorf) representations.

For simplicity, we just consider @ = ¢ = —1+2\/§-
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Zeckendorf representation (1972). Let N € N and Fy be the k-th
Fibonacci number. Then N can be written uniquely as

N=>"bi1Fi,
k=1

where by € {0,1} and if b1 =1, then by = 0.
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Zeckendorf representation (1972). Let N € N and Fy be the k-th
Fibonacci number. Then N can be written uniquely as

N=>"bi1Fi,
k=1

where by € {0,1} and if bx 1 =1, then by = 0.
Fi1=0F=1F=1F=2F—=3F =5 F—38,.

Zeckendorf representation of 9 is 8+ 1 and not 5+ 3 + 1.
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Zeckendorf representation (1972). Let N € N and Fy be the k-th
Fibonacci number. Then N can be written uniquely as

N=>"bi1Fi,
k=1

where by € {0,1} and if bx 1 =1, then by = 0.
F1=0F=1FfR=1,FHR=2FR=3F =5, FfF=38,...
Zeckendorf representation of 9 is 8+ 1 and not 5+ 3 + 1.

Take away: A natural number corresponds to a finite sequence of 0,1’s
with no consecutive 1’s , and

< on N «~ lexicographic order on the representation
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Zeckendorf representation for real numbers. Let ¢ € R be such that
—%D <c<l- %. Then ¢ can be written uniquely in the form

c=> bip1(Fip — Fira),
k=1

where by € {0,1} and if bxr1 =1, then by =0, and byy1 # 1 for
infinitely many even k.
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Zeckendorf representation for real numbers. Let ¢ € R be such that
—% <c<l1l- é. Then ¢ can be written uniquely in the form

c = bir1(Fup — Figa),
k=1

where by € {0,1} and if bxr1 =1, then by =0, and byy1 # 1 for
infinitely many even k.

Note that Frp — Fryr1 < 0 iff k is odd! Therefore the sequence of partial
sums is not strictly increasing.
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Zeckendorf representation for real numbers. Let ¢ € R be such that
—% <c<1l-— é. Then ¢ can be written uniquely in the form

c = bir1(Fup — Figa),
k=1

where by € {0,1} and if bxr1 =1, then by =0, and byy1 # 1 for
infinitely many even k.

Note that Frp — Fryr1 < 0 iff k is odd! Therefore the sequence of partial
sums is not strictly increasing.

Let b= b1by,... and b = b} b, ... be two sequences of 0,1's. We say
b < b’ if there is n € N minimal such that b, # b), and either

(i) b, > b}, and n is even,
(ii) b), > b, and n is odd.
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Zeckendorf representation for real numbers. Let ¢ € R be such that
—% <c<1l-— é. Then ¢ can be written uniquely in the form

c = bir1(Fup — Figa),
k=1

where by € {0,1} and if bxr1 =1, then by =0, and byy1 # 1 for
infinitely many even k.

Note that Frp — Fryr1 < 0 iff k is odd! Therefore the sequence of partial
sums is not strictly increasing.

Let b= b1by,... and b = b} b, ... be two sequences of 0,1's. We say
b < b’ if there is n € N minimal such that b, # b), and either

(i) b, > b}, and n is even,
(ii) b), > b, and n is odd.

< on (—%, 1-—- %) «~ < on the representations
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Interpretation of (R, <,+,N) in B:

x € N &~ finite of 0, 1's with no consecutive 1's
1 e : .
x € RN(——,1— =) « infinite sequence of 0,1's with no consecutive 1's
¥ ¥

< on N «~ |exicographic order on the sequences
< on (—%0, — %) e~ < on the sequences
+onR e~ 7
X — pxonR«w?
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Interpretation of (R, <,+,N) in B:

x € N & finite of 0,1's with no consecutive 1's
xeRN (—;, 1- 30) «~ infinite sequence of 0,1's with no consecutive 1's
< on N «w lexicographic order on the sequences
< on (—é, — %) e~ < on the sequences
+onR e« ?

X = px on R s 7

Addition in Zeckendorf representation. Let M, N € N given in
Zeckendorf representation. Then the Zeckendorf representation of M + N
can be recognized by a finite automaton.

This is due to Frougny (1992). There is an elegant, elementary three-pass
algorithm due to Ahlbach, Usatine, Frougny, Pippenger (2013).
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Zeckendorf representation. Then the Zeckendorf representation of M + N
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Interpretation of (R, <,+,N) in B:

x € N e finite of 0,1's with no consecutive 1's

1 1
x € RN(—=,1— =) «~ infinite sequence of 0,1's with no consecutive 1's
¥ 4

< on N « lexicographic order on the sequences
< on (—— 1-— l) «~s < on the sequences

4+ on R «~ Addition in Zeckendorf representations

X — pxonRew?
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Interpretation of (R, <,+,N) in B:

x € N e finite of 0,1's with no consecutive 1's

1 1
x € RN(—=,1— =) «~ infinite sequence of 0,1's with no consecutive 1's
¥ ¥

< on N «w lexicographic order on the sequences
< on —é, 1-— é) «~ < on the sequences

4+ on R «~ Addition in Zeckendorf representations

X = @px on R e 7

Since (Fxp — Fxki1) = —p(Fike19 — Fii2), we have

—¢ Y bu(Frp = Fis1) = Y biya(Fup = Fipn)-
kEN>1 keN
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Interpretation of (R, <,+,N) in B:

x € N e finite of 0, 1's with no consecutive 1's

1 1
x € RN(—=,1— =) «~ infinite sequence of 0,1's with no consecutive 1's
¥

< on N «w lexicographic order on the sequences
< on —%, 1-— é) «~ < on the sequences

4+ on R «~ Addition in Zeckendorf representations

X = @px on R e 7
Since (Fxp — Fxki1) = —p(Fike19 — Fii2), we have

—¢ Y bu(Frp = Fis1) = Y biya(Fup = Fipn)-
kEN>1 keN

Thus multiplication by ¢ is a shift operation in the Zeckendorf
representation.
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Interpretation of (R, <,+,N) in B:

x € N e finite of 0, 1's with no consecutive 1's

1 1
x € RN(—=,1— =) «~ infinite sequence of 0,1's with no consecutive 1's
¥

< on N «w lexicographic order on the sequences
< on —é, 1-— é) «~ < on the sequences

4+ on R «~ Addition in Zeckendorf representations

x — @x on R «~ shift operation on Zeckendorf representations
Since (Fxp — Fxki1) = —p(Fike19 — Fii2), we have

—¢ Y bu(Frp = Fis1) = Y biya(Fup = Fipn)-
k€N>1 keN

Thus multiplication by ¢ is a shift operation in the Zeckendorf
representation.
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General case. When « is quadratic, then the theory of (R, <, +,N, aN)
is decidable. Same proof works, but one has to use Ostrowski

representations - a generalization of Zeckendorf representations.
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Bemerkungen zur Theorie
der Diophantischen Approximationen.

Von ALEXANDER OSTROWSKI in Hamburg.
(Aus Mitteilangen &1 Herrn E. BECEE,)

L
Nach unserer letzten Unterhaltung habe ich versucht, das Problem
der Absehitzung der Summen S(z) mit Hilfe der Kettenbruchtheorie in
Angriff zn nehmen, und bin zn sehr einfachen Resultaten gelangt. Ins-
besondere hat sich ein 4uBerst elementarer Beweis fir den von dem
Herren HARDY und LITTLEWOOD ausgesprochenen Satz ergeben, daf

E(R(ﬂﬂ]——;—} == Oflogz) ist im Falle einer Irrationalitdt mit be-
=

schrinkten Ket also e fiir jede reelle qua-
dratische Trrationalitit!).
s sei « eine positive Irrati hl mit der Ki ul

1
Tmty
a5+
Ich bilde die Reihe der Niherungsbriiche von a:%:. Dann gilt
G gty @=L ag=a  (ral=1
Ferner gilt bekanntlich
a B e
9 figi+tr
Ieh bezeichne nun durch K(#) die nicht negative Zahl £—[8] und
betrachte fiir ganze x =1 die Summe
s —3 {Rm} —i}
i 2/

%) G.H. HarDY snd J. E. LITTLRW0OD, Some Problems of Diophantine Approxi-
mation. Proceedings of the fifth int. congress of math. in Cambridge, 1913, Vol.T,
9229, Deor HARDY-LITTLEWOODsche Bewels dieses Satzea ist meines Wissens bisher
moch nicht verbffentlicht worden.

2) rber dis benutaten Jitae der Kettenbruchtheorie vergleiche man etws 0, PERRON,
Dis Lebre von den Kettenbritchen, Leipzig und Berlin, 1813, besonders das sweite Kapitel,
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An introduction to Diophantine approximation

Definition A continued fraction expansion [ag; a1, ..., ak,...] is an
expression of the form

For a real number a, we say [ag; a1, ..., ax, .. .| is continued fraction
expansion of a if a =[ap;a1,...,ak, -] and ag € Z, a; € N5 for i > 0.

Fact. The continued fraction expansion of a is periodic iff a is a quadratic
irrational.

©=[11,...,]and V2 =[1;2,...,] and V3 =[1;1,2,1,2,...].
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Definition. Let g1 :=0, p_1 :=1and gg =1, pg = ag and for k > 0,

Qk+1 ‘= Ak+1 Gk + Qk—1,
Pk+1 ‘= 3k+1* Pk + Pk—1-
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Definition. Let g1 :=0, p_1 :=1and gg =1, pg = ag and for k > 0,

Qk+1 ‘= Ak+1 Gk + Qk—1,
Pk+1 ‘= 3k+1* Pk + Pk—1-

For ¢: qx = Fx and px = Fiy1, so Bk = Frp — Fr+1.
For \/5: g1=2,q=5qg3=12,.... ;1 =3, pp =7, p3=17,...
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Definition. Let g1 :=0, p_1 :=1and gg =1, pg = ag and for k > 0,

Qk+1 ‘= Ak+1 Gk + Qk—1,
Pk+1 ‘= 3k+1* Pk + Pk—1-

For ¢: qx = Fx and px = Fiy1, so Bk = Frp — Fr+1.
For v/2: g1=2,q=5qg3=12,.... ;1 =3, pp =7, p3=17,...

Definition. The k-th difference of a is defined as 5 := gxa — p«.
Fact. By > 0 iff Bky1 <O.
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Ostrowski representation (1921). Let N € N. Then N can be written
uniquely as

n
N = Z br119xk,
k=0

where b, € N such that b; < a1, b, < ax and, if bx+1 = ak41, bk = 0.
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Ostrowski representation (1921). Let N € N. Then N can be written
uniquely as

n
N = Z br119xk,
k=0

where by € N such that b; < a1, by < ak and, if bgy1 = aky1, by = 0.

Zeckendorf representation (1972). Let N € N and Fy be the k-th
Fibonacci number. Then N can be written uniquely as

n
N=>"bip1Fi,
k=1

where by € {0,1} and if b1 =1, then by = 0.
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Ostrowski representation of a real number. Let ¢ € R be such that
_4_11 <c<l1l-— C_ll Then ¢ can be written uniquely in the form

o
c=> bip1Br
k=0

where by € N, 0 < by < a1 —1, by < ag, for k>1, and by =0 if
bxt+1 = ak+1, and by # ay for infinitely many odd k.
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Ostrowski representation of a real number. Let ¢ € R be such that

_?11 <c<l- ?11 Then ¢ can be written uniquely in the form

o
c= Z br418k,
k=0

where by € N, 0 < by < a1 —1, by < ag, for k>1, and by =0 if
bxt+1 = ak+1, and by # ay for infinitely many odd k.

Zeckendorf representation for real numbers. Let ¢ € R be such that
—é <c<l1l-— é. Then ¢ can be written uniquely in the form

c=> bip1(Fip — Fira),

k=1

where by € {0,1} and if bxr1 =1, then by =0, and by # 1 for infinitely
many odd k.

Philipp Hieronymi (lllinois) Diophantine approximation Colloquium Logicum 2016 22 /25



Addition in Ostrowski representation (H.-Terry (2015)). Suppose a is
quadratic. Then the graph of addition of natural numbers in Ostrowski
representation can be recognized by a finite automaton.

Surprisingly this was only known for some quadratic numbers (for example

when a = ¢). We used the ideas of Ahlbach, Usatine, Frougny, Pippenger
(2013) to give an elementary three-pass algorithm.
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If « is a quadratic real number, then the theory of (R, <, +,N,aN) is
decidable. What if « is not quadratic?
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If « is a quadratic real number, then the theory of (R, <, +,N,aN) is
decidable. What if « is not quadratic?

Observation. If the continued fraction expansion of « is non-computable,
then the theory of (R, <, +, N, aN) is undecidable.

Open question I: What happens when the continued fraction expansion is
nice, but not periodic? For example, e =[2;1,2,1,1,4,1,1,6,...].

Open question Il: For arbitrary o what can be said about definable sets
in (R, <,+,N,aN)?
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Recall: Let a, b € R be such that 1, a, b is Q-linearly independent. Then
(R, <,+,N, aN, bN) defines multiplication on R.
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Recall: Let a, b € R be such that 1, a, b is Q-linearly independent. Then
(R, <,+,N, aN, bN) defines multiplication on R.

Open question Ill: (Cobham'’s theorem) Is there a set definable in both
(R, <,+,N,aN) and (R, <, +, N, bN) that is not definable in (R, <, +,N)?
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(R, <,+,N, aN, bN) defines multiplication on R.

Open question Ill: (Cobham'’s theorem) Is there a set definable in both
(R, <,+,N,aN) and (R, <, +, N, bN) that is not definable in (R, <, +,N)?

By Robinson the structure (R, <, +,-,Q) defines N and therefore its
theory is undecidable. On the other hand, the theory of (R, <,+,Q) is
decidable.
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(R, <,+,N,aN) and (R, <, +, N, bN) that is not definable in (R, <, +,N)?

By Robinson the structure (R, <, +,-,Q) defines N and therefore its
theory is undecidable. On the other hand, the theory of (R, <,+,Q) is
decidable.

Open question IV: What about (R, <, +,Q, x — ax)?
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Recall: Let a, b € R be such that 1, a, b is Q-linearly independent. Then
(R, <,+,N, aN, bN) defines multiplication on R.

Open question Ill: (Cobham'’s theorem) Is there a set definable in both
(R, <,+,N,aN) and (R, <, +, N, bN) that is not definable in (R, <, +,N)?

By Robinson the structure (R, <, +,-,Q) defines N and therefore its
theory is undecidable. On the other hand, the theory of (R, <,+,Q) is
decidable.

Open question IV: What about (R, <, +,Q, x — ax)?

(R, <, +,Q, x — ax) definable in (R, <, +,-,22, x — x®). There are
non-algebraic « for which the latter structure is well-behaved.
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