Proof Compression and NP vs $PSPACE$

L. Gordeev

Uni-Tübingen, Uni-Ghent, PUC-Rio

1. Reminder

Classes NP, $coNP$, and $PSPACE$: $L \subseteq \{0, 1\}^*$ is in NP, resp. $coNP$, if there exists a polynomial p and a polytime TM M such that $x \in L \iff (\exists u \in \{0, 1\}^p(|x|)) M(x, u) = 1$, resp. $x \in L \iff (\forall u \in \{0, 1\}^p(|x|)) M(x, u) = 1$, holds for every $x \in \{0, 1\}^*$. $L \subseteq \{0, 1\}^*$ is in $PSPACE$ if there exists a polynomial p and a TM M such that for every input $x \in \{0, 1\}^*$, the total number of non-blank locations that occur during M's execution on x is at most $p(|x|)$, while $x \in L \iff M(x) = 1$.

L. Gordeev

Proof Compression and NP vs $PSPACE$
Classes \mathcal{NP}, coNP and \mathcal{PSPACE}:
Classes \(\text{NP}, \text{coNP} \) and \(\text{PSPACE} \):

- \(L \subseteq \{0, 1\}^* \) is in \(\text{NP} \), resp. \(\text{coNP} \), if there exists a polynomial \(p \) and a polytime TM \(M \) such that

\[
x \in L \iff \left(\exists u \in \{0, 1\}^{p(|x|)} \right) M(x, u) = 1,
\]

resp.

\[
x \in L \iff \left(\forall u \in \{0, 1\}^{p(|x|)} \right) M(x, u) = 1,
\]

holds for every \(x \in \{0, 1\}^* \).
Classes \mathcal{NP}, coNP and \mathcal{PSPACE}:

- $L \subseteq \{0, 1\}^*$ is in \mathcal{NP}, resp. coNP, if there exists a polynomial p and a polytime TM M such that

\[
x \in L \Leftrightarrow \left(\exists u \in \{0, 1\}^{p(|x|)} \right) M(x, u) = 1,
\]

resp.

\[
x \in L \Leftrightarrow \left(\forall u \in \{0, 1\}^{p(|x|)} \right) M(x, u) = 1,
\]

holds for every $x \in \{0, 1\}^*$.

- $L \subseteq \{0, 1\}^*$ is in \mathcal{PSPACE} if there exists a polynomial p and a TM M such that for every input $x \in \{0, 1\}^*$, the total number of non-blank locations that occur during M’s execution on x is at most $p(|x|)$, while $x \in L \Leftrightarrow M(x) = 1$.
§1. Reminder -2-

Known results and more:

\[\text{NP} \subseteq \text{PSPACE} \quad \text{and} \quad \text{co-NP} \subseteq \text{PSPACE}. \]

\[\text{NP} = \text{PSPACE} \] implies \[\text{NP} = \text{co-NP}. \] The latter conjecture seems more natural and/or plausible, as it reflects an idea of logical equivalence between model theoretical (re: \text{NP}) and proof theoretical (re: \text{co-NP}) interpretations of non-deterministic polytime computability.

\[\text{NP} = \text{co-NP} \] (resp. \[\text{NP} = \text{PSPACE} \]) follows from global polynomial-size provability of tautologies in classical and/or intuitionistic (resp. minimal) logic.

Claim [L.G.+E.H.Hæusler]: \[\text{NP} = \text{PSPACE} \] is provable by DAG-like proof-compression techniques in Prawitz’s Natural Deduction for minimal logic.
Known results and more:
Known results and more:

- $NP \subseteq PSPACE$ and $coNP \subseteq PSPACE$.

The latter conjecture seems more natural and/or plausible, as it reflects an idea of logical equivalence between model theoretical (re: NP) and proof theoretical (re: $coNP$) interpretations of non-deterministic polytime computability.

$NP = coNP$ (resp. $NP = PSPACE$) follows from global polynomial-size provability of tautologies in classical and/or intuitionistic (resp. minimal) logic.

Claim [L.H.G.+E.H.Haeusler]: $NP = PSPACE$ is provable by DAG-like proof-compression techniques in Prawitz's Natural Deduction for minimal logic.
Known results and more:

- $\mathsf{NP} \subseteq \mathsf{PSPACE}$ and $\mathsf{coNP} \subseteq \mathsf{PSPACE}$.
- $\mathsf{NP} = \mathsf{PSPACE}$ implies $\mathsf{NP} = \mathsf{coNP}$. The latter conjecture seems more natural and/or plausible, as it reflects an idea of logical equivalence between model theoretical (re: NP) and proof theoretical (re: coNP) interpretations of non-deterministic polytime computability.
Known results and more:

- $NP \subseteq \text{PSPACE}$ and $coNP \subseteq \text{PSPACE}$.
- $NP = \text{PSPACE}$ implies $NP = coNP$. The latter conjecture seems more natural and/or plausible, as it reflects an idea of logical equivalence between model theoretical (re: NP) and proof theoretical (re: $coNP$) interpretations of non-deterministic polytime computability.
- $NP = coNP$ (resp. $NP = \text{PSPACE}$) follows from global polynomial-size provability of tautologies in classical and/or intuitionistic (resp. minimal) logic.
Known results and more:

- $NP \subseteq PSPACE$ and $coNP \subseteq PSPACE$.
- $NP = PSPACE$ implies $NP = coNP$. The latter conjecture seems more natural and/or plausible, as it reflects an idea of logical equivalence between model theoretical (re: NP) and proof theoretical (re: $coNP$) interpretations of non-deterministic polytime computability.
- $NP = coNP$ (resp. $NP = PSPACE$) follows from global polynomial-size provability of tautologies in classical and/or intuitionistic (resp. minimal) logic.
- **Claim** [L.G.+E.H.Haeusler]: $NP = PSPACE$ is provable by DAG-like proof-compression techniques in Prawitz’s Natural Deduction for minimal logic.
§2. The proof [L.G.]: Overview

1. Formulate minimal propositional logic as fragment $\text{LM} \to$ of Hudelmaier's tree-like cutfree intuitionistic sequent calculus.

2. For any $\text{LM} \to$ proof ∂ of sequent $\Rightarrow \rho$:
 - $h(\partial)$ (= the height) is polynomial (actually linear) in $|\rho|$,
 - $\phi(\partial)$ (= total number of formulas) and $\mu(\partial)$ (= maximal formula length) are also polynomial in $|\rho|$.

3. Show that there exists a constructive (1)+(2) preserving embedding F of $\text{LM} \to$ into Prawitz's tree-like natural deduction formalism $\text{NM} \to$ for minimal logic.

4. Elaborate polytime verifiable DAG-like deducibility in $\text{NM} \to$.

5. Elaborate and apply horizontal tree-to-DAG proof compression in $\text{NM} \to$. For any tree-like $\text{NM} \to$ input ∂, the weight of DAG-like output ∂_c is bounded by $h(\partial) \times \phi(\partial) \times \mu(\partial)$.

Hence the weight of $(F(\partial))_c$ for any given tree-like $\text{LM} \to$ proof ∂ of ρ is polynomially bounded in $|\rho|$. Since minimal logic is PSPACE-complete, conclude that NP = PSPACE.
Formalize minimal propositional logic as fragment \(\text{LM} \rightarrow \) of Hudelmaier’s tree-like cutfree intuitionistic sequent calculus. For any \(\text{LM} \rightarrow \) proof \(\partial \) of sequent \(\Rightarrow \rho \):

1. \(h(\partial) \) (\(= \) the height) is polynomial (actually linear) in \(|\rho| \),
2. \(\phi(\partial) \) (\(= \) total number of formulas) and \(\mu(\partial) \) (\(= \) maximal formula length) are also polynomial in \(|\rho| \).

Show that there exists a constructive (1)+(2) preserving embedding \(F \) of \(\text{LM} \rightarrow \) into Prawitz’s tree-like natural deduction formalism \(\text{NM} \rightarrow \) for minimal logic.

Elaborate polytime verifiable DAG-like deducibility in \(\text{NM} \rightarrow \).

Elaborate and apply horizontal tree-to-DAG proof compression in \(\text{NM} \rightarrow \). For any tree-like \(\text{NM} \rightarrow \) input \(\partial \), the weight of DAG-like output \(\partial^C \) is bounded by \(h(\partial) \times \phi(\partial) \times \mu(\partial) \). Hence the weight of \((F(\partial))^C \) for any given tree-like \(\text{LM} \rightarrow \) proof \(\partial \) of \(\rho \) is polynomially bounded in \(|\rho| \). Since minimal logic is PSPACE-complete, conclude that \(\mathcal{NP} = \mathcal{PSPACE} \).
2. More on conclusion $NP = \text{PSPACE}$

Proof. Recall that the validity problem for minimal propositional logic is PSPACE-complete. It will suffice to show that it is a NP problem. So consider any purely implicational formula ρ. By Hudelmaier's result, ρ is valid in the minimal logic iff there exists a tree-like $LM \to$ proof ∂ of ρ. Hence, by the embedding theorem and soundness and completeness of DAG-like $NM \to$, ρ is valid in the minimal logic iff we can “guess” a DAG-like $NM \to$ proof $\hat{\partial}$ of ρ, whose weight is polynomial in $|\rho|$ (witness: $(F(\partial))^c$). Moreover, we know that ‘$\hat{\partial}$ is an encoded DAG-like $NM \to$ proof of ρ’ is decidable in polynomial time with respect to $|\rho|$. Thus the existence of DAG-like $NM \to$ proof of ρ is verifiable in polynomial time by a non-deterministic algorithm, and hence so is the problem of ρ validity in the minimal logic, Q.E.D.
Proof.

Recall that the validity problem for minimal propositional logic is PSPACE-complete. It will suffice to show that it is a NP problem. So consider any purely implicational formula ρ. By Hudelmaier’s result, ρ is valid in the minimal logic iff there exists a tree-like $\text{LM} \rightarrow \text{proof} \partial$ of ρ. Hence, by the embedding theorem and soundness and completeness of DAG-like $\text{NM} \rightarrow \text{proof}$, ρ is valid in the minimal logic iff we can “guess” a DAG-like $\text{NM} \rightarrow \text{proof}$ $\hat{\partial}$ of ρ, whose weight is polynomial in $|\rho| \ (\text{witness: } (F(\partial))^c)$. Moreover, we know that ‘$\hat{\partial}$ is an encoded DAG-like $\text{NM} \rightarrow \text{proof}$ of ρ’ is decidable in polynomial time with respect to $|\rho|$. Thus the existence of DAG-like $\text{NM} \rightarrow \text{proof}$ of ρ is verifiable in polynomial time by a non-deterministic algorithm, and hence so is the problem of ρ validity in the minimal logic, Q.E.D.
§2. More on conclusion $NP = PSPACE$

Proof.

Recall that the validity problem for minimal propositional logic is PSPACE-complete. It will suffice to show that it is a NP problem. So consider any purely implicational formula ρ. By Hudelmaier’s result, ρ is valid in the minimal logic iff there exists a tree-like LM_\rightarrow proof ϑ of ρ. Hence, by the embedding theorem and soundness and completeness of DAG-like NM_\rightarrow, ρ is valid in the minimal logic iff we can “guess” a DAG-like NM_\rightarrow proof $\hat{\vartheta}$ of ρ, whose weight is polynomial in $|\rho|$ (witness: $(F(\vartheta))^C$). Moreover, we know that ‘$\hat{\vartheta}$ is an encoded DAG-like NM_\rightarrow proof of ρ’ is decidable in polynomial time with respect to $|\rho|$. Thus the existence of DAG-like NM_\rightarrow proof of ρ is verifiable in polynomial time by a non-deterministic algorithm, and hence so is the problem of ρ validity in the minimal logic, Q.E.D.
§3. Background: Search for small propositional proofs

First question:

Which proof system(s) could/should be used?

Basic options:

1. Lukasiewicz-Tarski-Hilbert-Bernays style modus ponens calculi a/o Gentzen-Schütte-style sequent calculi with cut.
2. Cutfree sequent calculi.
3. Prawitz style natural deduction (not necessarily normal).

First answer:

2 and 3 interactive (1 is too loose).

Second question:

What about geometric structure of proofs involved?

Basic options:

2. DAG-like proofs (DAG = directed acyclic graph).

Second answer:

1 for 2 and 2 for 3.
First question: Which proof system(s) could/should be used?
First question: Which proof system(s) could/should be used?

Basic options:

1. Łukasiewicz-Tarski-Hilbert-Bernays style *modus ponens calculi* a/o Gentzen-Schütte-style *sequent calculi with cut*.
2. *Cutfree sequent calculi*.
3. Prawitz style *natural deduction* (not necessarily normal).

Second question: What about geometric structure of proofs involved?

Basic options:

2. *DAG* = directed acyclic graph.

Second answer: 1 for 2 and 2 for 3.
First question: Which proof system(s) could/should be used?

Basic options:

1. Łukasiewicz-Tarski-Hilbert-Bernays style \textit{modus ponens calculi} a/o Gentzen-Schütte-style \textit{sequent calculi with cut}.
2. \textit{Cutfree sequent calculi}.
3. Prawitz style \textit{natural deduction} (not necessarily normal).

First answer: 2 and 3 interactive (1 is too loose).
§3. Background: Search for small propositional proofs

First question: Which proof system(s) could/should be used?

Basic options:

1. Łukasiewicz-Tarski-Hilbert-Bernays style *modus ponens calculi* a/o Gentzen-Schütte-style *sequent calculi with cut*.
2. *Cutfree sequent calculi*.
3. Prawitz style *natural deduction* (not necessarily normal).

First answer: 2 and 3 interactive (1 is too loose).

Second question: What about geometric structure of proofs involved?
First question: Which proof system(s) could/should be used?
Basic options:
1. Łukasiewicz-Tarski-Hilbert-Bernays style *modus ponens calculi*
a/o Gentzen-Schütte-style *sequent calculi with cut*.
2. *Cutfree sequent calculi*.
3. Prawitz style *natural deduction* (not necessarily normal).

First answer: 2 and 3 interactive (1 is too loose).

Second question: What about geometric structure of proofs involved?
Basic options:
2. DAG-like proofs (DAG = *directed acyclic graph*).
First question: Which proof system(s) could/should be used?

Basic options:

1. Łukasiewicz-Tarski-Hilbert-Bernays style *modus ponens calculi* a/o Gentzen-Schütte-style *sequent calculi with cut*.
2. *Cutfree sequent calculi*.
3. Prawitz style *natural deduction* (not necessarily normal).

First answer: 2 and 3 interactive (1 is too loose).

Second question: What about geometric structure of proofs involved?

Basic options:

2. DAG-like proofs (DAG = *directed acyclic graph*).

Second answer: 1 for 2 and 2 for 3.
§3. Background: Why DAG-like natural deductions?

Proofs in (cutfree, et al) sequent calculi admit full DAG-like compression in which distinct nodes contain distinct sequents, which makes the size bounded by total number of sequents. This is good, but not good enough. Because polynomial bounds on the number of subformulas fail to provide polynomial bounds on the number of sequents involved. In contrast, proof objects of natural deductions are single formulas, so there is a hope to overcome this obstacle.

However, full compression of natural deductions should be weakened to (say) horizontal compression, to save Prawitz’s discharging rule(s). But this weakening still yields the result, provided that the height and the total number of formulas are polynomially bounded (via embedding of sequent proofs).
DAGs in question arise by proof compression that is obtained by merging distinct nodes labeled with identical proof objects (formulas or sequents) in tree-like inputs.
DAGs in question arise by proof compression that is obtained by merging distinct nodes labeled with identical proof objects (formulas or sequents) in tree-like inputs.

Proofs in (cutfree, et al) sequent calculi admit full DAG-like compression in which distinct nodes contain distinct sequents, which makes the size bounded by total number of sequents.

However, full compression of natural deductions should be weakened to (say) horizontal compression, to save Prawitz's discharging rule(s). But this weakening still yields the result, provided that the height and the total number of formulas are polynomially bounded (via embedding of sequent proofs).
3. Background: Why DAG-like natural deductions?

1. DAGs in question arise by proof compression that is obtained by merging distinct nodes labeled with identical proof objects (formulas or sequents) in tree-like inputs.

2. Proofs in (cutfree, et al) sequent calculi admit full DAG-like compression in which distinct nodes contain distinct sequents, which makes the size bounded by total number of sequents.

3. This is good, but not good enough. Because polynomial bounds on the number of subformulas fail to provide polynomial bounds on the number of sequents involved. In contrast, proof objects of natural deductions are single formulas, so there is a hope to overcome this obstacle.
DAGs in question arise by proof compression that is obtained by merging distinct nodes labeled with identical proof objects (formulas or sequents) in tree-like inputs.

Proofs in (cutfree, et al) sequent calculi admit full DAG-like compression in which distinct nodes contain distinct sequents, which makes the size bounded by total number of sequents.

This is good, but not good enough. Because polynomial bounds on the number of subformulas fail to provide polynomial bounds on the number of sequents involved. In contrast, proof objects of natural deductions are single formulas, so there is a hope to overcome this obstacle.

However, full compression of natural deductions should be weakened to (say) *horizontal compression*, to save Prawitz’s discharging rule(s). But this weakening still yields the result, provided that the height and the total number of formulas are polynomially bounded (via emebedding of sequent proofs).
§3. Background: Horizontal tree-to-dag compression

Any given tree-like deduction ∂ with root formula ρ can be compressed to a DAG-like deduction ∂_c of the same conclusion ρ such that the size of ∂_c is at most $h(\partial) \times \phi(\partial)$. The operation $\partial \mapsto \partial_c$ (called horizontal compression) runs by bottom-up recursion on $h(\partial)$ such that for any $n \leq h(\partial)$, the nth horizontal section of ∂_c is obtained by merging all nodes with identical formulas occurring in the nth horizontal section of ∂ (this operation is called horizontal collapsing). Thus the horizontal compression is obtained by bottom-up iteration of the horizontal collapsing.

The size and weight estimates $|\partial_c| \leq h(\partial) \times \phi(\partial)$ resp. $\|\partial_c\| \leq h(\partial) \times \phi(\partial) \times \mu(\partial)$ are obvious, as the size of every (compressed) nth horizontal section of ∂_c can't exceed $\phi(\partial)$.

L. Gordeev

Proof Compression and NP vs $PSPACE$
Any given tree-like deduction ∂ with root formula ρ can be compressed to a DAG-like deduction ∂^c of the same conclusion ρ such that the size of ∂^c is at most $h(\partial) \times \phi(\partial)$.
Any given tree-like deduction ∂ with root formula ρ can be compressed to a DAG-like deduction ∂^c of the same conclusion ρ such that the size of ∂^c is at most $h(\partial) \times \phi(\partial)$.

The operation $\partial \rightarrow \partial^c$ (called *horizontal compression*) runs by bottom-up recursion on $h(\partial)$ such that for any $n \leq h(\partial)$, the n^{th} horizontal section of ∂^c is obtained by merging all nodes with identical formulas occurring in the n^{th} horizontal section of ∂ (this operation is called *horizontal collapsing*).
Any given tree-like deduction ∂ with root formula ρ can be compressed to a DAG-like deduction ∂^c of the same conclusion ρ such that the size of ∂^c is at most $h(\partial) \times \phi(\partial)$.

The operation $\partial \mapsto \partial^c$ (called *horizontal compression*) runs by bottom-up recursion on $h(\partial)$ such that for any $n \leq h(\partial)$, the n^{th} horizontal section of ∂^c is obtained by merging all nodes with identical formulas occurring in the n^{th} horizontal section of ∂ (this operation is called *horizontal collapsing*).

Thus the horizontal compression is obtained by bottom-up iteration of the horizontal collapsing.
Any given tree-like deduction ∂ with root formula ρ can be compressed to a DAG-like deduction ∂^C of the same conclusion ρ such that the size of ∂^C is at most $h(\partial) \times \phi(\partial)$.

The operation $\partial \hookrightarrow \partial^C$ (called horizontal compression) runs by bottom-up recursion on $h(\partial)$ such that for any $n \leq h(\partial)$, the n^{th} horizontal section of ∂^C is obtained by merging all nodes with identical formulas occurring in the n^{th} horizontal section of ∂ (this operation is called horizontal collapsing).

Thus the horizontal compression is obtained by bottom-up iteration of the horizontal collapsing.

The size and weight estimates $|\partial^C| \leq h(\partial) \times \phi(\partial)$ resp. $\|\partial^C\| \leq h(\partial) \times \phi(\partial) \times \mu(\partial)$ are obvious, as the size of every (compressed) n^{th} horizontal section of ∂^C can’t exceed $\phi(\partial)$.
The notion of DAG-like deducibility/provability is highly untrivial due to the corresponding DAG-like discharging (of chosen assumptions α). For in a given DAG-like deduction ∂, there are different maximal threads connecting α with root formula ρ. This is due to inverse-branching nodes (which don't occur in tree-like deductions).

Thus every DAG-like deduction requires additional information on "legitimate" maximal deduction threads that determine the sets of open/closed assumptions. This is achieved by adding a suitable function ℓ_g that determines "legitimate" parents of inverse-branching nodes (regarded as "road signs" showing allowed ways from the leaves down to the root).

A given DAG-like deduction with root formula ρ is called a proof of ρ iff all assumptions are closed.
The notion of DAG-like deducibility/provability is highly untrivial due to the corresponding DAG-like discharging (of chosen assumptions α). For in a given DAG-like deduction ∂ there are different maximal threads connecting α with root formula ρ. This is due to inverse-branching nodes (which don’t occur in tree-like deductions).
The notion of DAG-like deducibility/provability is highly untrivial due to the corresponding DAG-like discharging (of chosen assumptions α). For in a given DAG-like deduction ∂ there are different maximal threads connecting α with root formula ρ. This is due to inverse-branching nodes (which don’t occur in tree-like deductions).

Thus every DAG-like deduction requires additional information on “legitimate” maximal deduction threads that determine the sets of open/closed assumptions. This is achieved by adding a suitable function ℓ^G that determines “legitimate” parents of inverse-branching nodes (regarded as “road signs” showing allowed ways from the leaves down to the root).
The notion of DAG-like deducibility/provability is highly untrivial due to the corresponding DAG-like discharging (of chosen assumptions α). For in a given DAG-like deduction ∂ there are different maximal threads connecting α with root formula ρ. This is due to inverse-branching nodes (which don’t occur in tree-like deductions).

Thus every DAG-like deduction requires additional information on “legitimate” maximal deduction threads that determine the sets of open/closed assumptions. This is achieved by adding a suitable function ℓ^G that determines “legitimate” parents of inverse-branching nodes (regarded as “road signs” showing allowed ways from the leaves down to the root).

A given DAG-like deduction with root formula ρ is called a proof of ρ iff all assumptions are closed.
Corresponding “legitimate” DAG-like provability remains sound and complete w.r.t. minimal logic (just as its canonical tree-like version).

Horizontal compression is supplied with corresponding \(\ell_g \) compression that preserves closed assumptions (and hence provability). So if \(\partial \) is a canonical tree-like proof of \(\rho \) then \(\partial_c \) is a DAG-like proof of \(\rho \).

DAG-like provability in question is encoded by appropriate local proof correctness conditions that are polytime verifiable (just as in standard tree-like case).
Corresponding “legitimate” DAG-like provability remains sound and complete w.r.t. minimal logic (just as its canonical tree-like version).

DAG-like provability in question is encoded by appropriate local proof correctness conditions that are polytime verifiable (just as in standard tree-like case).
Corresponding “legitimate” DAG-like provability remains sound and complete w.r.t. minimal logic (just as its canonical tree-like version).

Horizontal compression is supplied with corresponding \(\ell^G \) compression that preserves closed assumptions (and hence provability). So if \(\partial \) is a canonical tree-like proof of \(\rho \) then \(\partial^C \) is a DAG-like proof of \(\rho \).
Corresponding “legitimate” DAG-like provability remains sound and complete w.r.t. minimal logic (just as its canonical tree-like version).

Horizontal compression is supplied with corresponding ℓ^G compression that preserves closed assumptions (and hence provability). So if ∂ is a canonical tree-like proof of ρ then ∂^C is a DAG-like proof of ρ.

DAG-like provability in question is encoded by appropriate *local proof correctness* conditions that are polytime verifiable (just as in standard tree-like case).
4. Hudelmaier’s sequent calculus $LM\rightarrow -1-$

Axiom and rules of implicational minimal logic:

$(M\ A) : \Gamma, p = \Rightarrow p$

$(M\ I_1 \rightarrow) : \Gamma, \alpha = \Rightarrow \beta$

$\Gamma, (\alpha \rightarrow \beta) \rightarrow \gamma \in \Gamma$

$(M\ I_2 \rightarrow) : \Gamma, \alpha, \beta \rightarrow \gamma = \Rightarrow \beta$

$\Gamma, (\alpha \rightarrow \beta) \rightarrow \gamma = \Rightarrow \alpha \rightarrow \beta$

$(M\ E\ \rightarrow\ P) : \Gamma, p, \gamma = \Rightarrow q$

$\Gamma, p, p \rightarrow \gamma = \Rightarrow q [q \in \text{VAR}(\Gamma, \gamma), p \neq q]$

$(M\ E\ \rightarrow\ \rightarrow) : \Gamma, \alpha, \beta \rightarrow \gamma = \Rightarrow \beta$

$\Gamma, \gamma = \Rightarrow q [q \in \text{VAR}(\Gamma, \gamma)]$
4. Hudelmaier’s sequent calculus \(\mathcal{LM} \rightarrow -1 - \)

Axiom and rules of implicational minimal logic:

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MA)</td>
<td>(\Gamma, p \rightarrow p)</td>
</tr>
</tbody>
</table>
| **(M/1 \rightarrow)** | \[
\Gamma, \alpha \rightarrow \beta \\
\Gamma \rightarrow \alpha \rightarrow \beta
\]

\[\left(\exists \gamma : (\alpha \rightarrow \beta) \rightarrow \gamma \in \Gamma \right)\]

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
</table>
| **(M/2 \rightarrow)** | \[
\Gamma, \alpha, \beta \rightarrow \gamma \rightarrow \beta \\
\Gamma, (\alpha \rightarrow \beta) \rightarrow \gamma \rightarrow \alpha \rightarrow \beta
\] |
| **(ME \rightarrow P)** | \[
\Gamma, p, \gamma \rightarrow q \\
\Gamma, p, p \rightarrow \gamma \rightarrow q
\]

\[q \in \text{VAR}(\Gamma, \gamma), p \neq q\]

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
</table>
| **(ME \rightarrow→)** | \[
\Gamma, \alpha, \beta \rightarrow \gamma \rightarrow \beta \\
\Gamma, \gamma \rightarrow q
\]

\[q \in \text{VAR}(\Gamma, \gamma)\]
§4. Hudelmaier’s sequent calculus $\text{LM} \rightarrow -2$-

Theorem (Hudelmaier + L.G.)

LM \rightarrow is sound and complete with respect to minimal propositional logic and tree-like deducibility. So any given formula ρ is valid in the minimal logic iff sequent $\Rightarrow \rho$ is tree-like deducible in $\text{LM} \rightarrow$.

Moreover:

1. The height of any tree-like $\text{LM} \rightarrow$ deduction ∂ of sequent S is linear in $|S|$. In particular if S is $\Rightarrow \rho$, then $h(\partial) \leq 3 |\rho|$.

2. The foundation of any tree-like $\text{LM} \rightarrow$ deduction ∂ of sequent S is at most quadratic in $|S|$. In particular if S is $\Rightarrow \rho$, then $\phi(\partial) \leq (|\rho| + 1)^2$, while $|\alpha| \leq |\rho|$ for any α occurring in ∂.

L. Gordeev

Proof Compression and NP vs $PSPACE$
Theorem (Hudelmaier + L.G.)

Theorem (Hudelmaier + L.G.)
Theorem (Hudelmaier + L.G.)

\(\text{LM} \rightarrow \) is sound and complete with respect to minimal propositional logic and tree-like deducibility. So any given formula \(\rho \) is valid in the minimal logic iff sequent \(\Rightarrow \rho \) is tree-like deducible in \(\text{LM} \rightarrow \).

Moreover:

1. The height of any tree-like \(\text{LM} \rightarrow \) deduction \(\partial \) of sequent \(S \) is linear in \(|S| \). In particular if \(S \) is \(\Rightarrow \rho \), then \(h(\partial) \leq 3 \cdot |\rho| \).

2. The foundation of any tree-like \(\text{LM} \rightarrow \) deduction \(\partial \) of sequent \(S \) is at most quadratic in \(|S| \). In particular if \(S \) is \(\Rightarrow \rho \), then \(\phi(\partial) \leq (|\rho| + 1)^2 \), while \(|\alpha| \leq |\rho| \) for any \(\alpha \) occurring in \(\partial \).
Theorem (Hudelmaier + L.G.)

LM→ is sound and complete with respect to minimal propositional logic and tree-like deducibility. So any given formula ρ is valid in the minimal logic iff sequent ⇒ ρ is tree-like deducible in LM→.

Moreover:

1. The height of any tree-like LM→ deduction ∂ of sequent S is linear in |S|. In particular if S is ⇒ ρ, then h(∂) ≤ 3 |ρ|.
Theorem (Hudelmaier + L.G.)

LM_{\rightarrow} is sound and complete with respect to minimal propositional logic and tree-like deducibility. So any given formula ρ is valid in the minimal logic iff sequent $\Vdash \rho$ is tree-like deducible in LM_{\rightarrow}.

Moreover:

1. The height of any tree-like LM_{\rightarrow} deduction ∂ of sequent S is linear in $|S|$. In particular if $S \Vdash \rho$, then $h(\partial) \leq 3 |\rho|$.

2. The foundation of any tree-like LM_{\rightarrow} deduction ∂ of sequent S is at most quadratic in $|S|$. In particular if $S \Vdash \rho$, then $\phi(\partial) \leq (|\rho| + 1)^2$, while $|\alpha| \leq |\rho|$ for any α occurring in ∂.
§5. Basic natural deduction formalism $\text{NM} \rightarrow$

We consider Prawitz's purely implicational proof system $\text{NM} \rightarrow$ for minimal propositional logic that contains just two rules ($\rightarrow I$):

$\alpha \rightarrow \beta$

($\rightarrow E$):

$\alpha \alpha \rightarrow \beta \beta$

where $\alpha, \beta, \gamma, \cdots$ denote arbitrary formulas over propositional variables p, q, r, \cdots and one propositional connective \rightarrow.

Theorem (Prawitz) $\text{NM} \rightarrow$ is sound and complete with respect to minimal propositional logic and tree-like deducibility.
We consider Prawitz’s purely implicational proof system $\text{NM} \rightarrow$ for minimal propositional logic that contains just two rules.

\begin{align*}
\alpha & \rightarrow \beta \\
\alpha \rightarrow \beta & \rightarrow \\
\alpha & \beta \\
\beta & \beta
\end{align*}
We consider Prawitz’s purely implicational proof system $\text{NM} \rightarrow$ for minimal propositional logic that contains just two rules:

- $(→ I) : \begin{array}{c} [α] \\ \vdots \\ β \\ \hline \alpha \rightarrow β \end{array}$

- $(→ E) : \begin{array}{c} α \\ α \rightarrow β \\ \hline β \end{array}$
We consider Prawitz’s purely implicational proof system $\text{NM} \rightarrow$ for minimal propositional logic that contains just two rules

$$\begin{array}{c}
\frac{}{\frac{\alpha}{\beta}} \\
(\rightarrow I)
\end{array} \quad \begin{array}{c}
\frac{\alpha}{\frac{\alpha \rightarrow \beta}{\beta}} \\
(\rightarrow E)
\end{array}$$

where $\alpha, \beta, \gamma, \ldots$ denote arbitrary formulas over propositional variables p, q, r, \ldots and one propositional connective \rightarrow.
We consider Prawitz’s purely implicational proof system $\text{NM}\rightarrow$ for minimal propositional logic that contains just two rules

$$(\rightarrow I) : \frac{}{\beta} [\alpha]$$

$$(\rightarrow E) : \frac{\alpha \rightarrow \beta}{\beta}$$

where $\alpha, \beta, \gamma, \cdots$ denote arbitrary formulas over propositional variables p, q, r, \cdots and one propositional connective \rightarrow.

Theorem (Prawitz)

$\text{NM}\rightarrow$ is sound and complete with respect to minimal propositional logic and tree-like deducibility.
We consider Prawitz’s purely implicational proof system \(\text{NM} \rightarrow \) for minimal propositional logic that contains just two rules:

\[
\begin{align*}
\to I : & \quad \frac{\alpha}{\gamma} \\
\to E : & \quad \frac{\alpha \to \beta}{\gamma}
\end{align*}
\]

where \(\alpha, \beta, \gamma, \cdots \) denote arbitrary formulas over propositional variables \(p, q, r, \cdots \) and one propositional connective \(\to \).

Theorem (Prawitz)

\(\text{NM} \rightarrow \) is sound and complete with respect to minimal propositional logic and tree-like deducibility.
§6. Embedding theorem

Theorem (L.G.)
There exists a recursive operator F that transforms any given tree-like LM \to deduction ∂ of $\Gamma = \Rightarrow \rho$ into a tree-like NM \to deduction $F(\partial)$ with root-formula ρ and assumptions occurring in Γ. Moreover ∂ and $F(\partial)$ share the semi-subformula property, linearity of the height and polynomial upper bounds on the foundation. In particular if $\Gamma = \emptyset$, then $F(\partial)$ is a NM \to proof of ρ such that:

1. $h(F(\partial)) \leq 18 |\rho|,$
2. $\phi(F(\partial)) < (|\rho| + 1)^2 (|\rho| + 2),$
3. $\mu(F(\partial)) \leq 2 |\rho|.$
Theorem (L.G.)

There exists a recursive operator F that transforms any given tree-like $\text{LM} \to \text{deduction} \: \partial$ of $\Gamma \Rightarrow \rho$ into a tree-like $\text{NM} \to \text{deduction} \: F(\partial)$ with root-formula ρ and assumptions occurring in Γ. Moreover ∂ and $F(\partial)$ share the semi-subformula property, linearity of the height and polynomial upper bounds on the foundation. In particular if $\Gamma = \emptyset$, then $F(\partial)$ is a $\text{NM} \to \text{proof}$ of ρ such that:

1. $h(F(\partial)) \leq 18 |\rho|$,
2. $\phi(F(\partial)) < (|\rho| + 1)^2 (|\rho| + 2)$,
3. $\mu(F(\partial)) \leq 2 |\rho|$.
Theorem (L.G.)

There exists a recursive operator F that transforms any given tree-like $\text{LM} \rightarrow$ deduction ∂ of $\Gamma \implies \rho$ into a tree-like $\text{NM} \rightarrow$ deduction $F(\partial)$ with root-formula ρ and assumptions occurring in Γ. Moreover ∂ and $F(\partial)$ share the semi-subformula property, linearity of the height and polynomial upper bounds on the foundation. In particular if $\Gamma = \emptyset$, then $F(\partial)$ is a $\text{NM} \rightarrow$ proof of ρ such that:

1. $h(F(\partial)) \leq 18 |\rho|$
2. $\phi(F(\partial)) < (|\rho| + 1)^2 (|\rho| + 2)$
3. $\mu(F(\partial)) \leq 2 |\rho|$.

L. Gordeev
Proof Compression and \mathcal{NP} vs \mathcal{PSPACE}
There exists a recursive operator F that transforms any given tree-like LM_{\rightarrow} deduction ∂ of $\Gamma \Rightarrow \rho$ into a tree-like NM_{\rightarrow} deduction $F(\partial)$ with root-formula ρ and assumptions occurring in Γ. Moreover ∂ and $F(\partial)$ share the semi-subformula property, linearity of the height and polynomial upper bounds on the foundation. In particular if $\Gamma = \emptyset$, then $F(\partial)$ is a NM_{\rightarrow} proof of ρ such that:

1. $h(F(\partial)) \leq 18|\rho|$,

Proof Compression and \mathcal{NP} vs \mathcal{PSPACE}
Theorem (L.G.)

There exists a recursive operator F that transforms any given tree-like $\text{LM} \rightarrow$ deduction ∂ of $\Gamma \implies \rho$ into a tree-like $\text{NM} \rightarrow$ deduction $F(\partial)$ with root-formula ρ and assumptions occurring in Γ. Moreover ∂ and $F(\partial)$ share the semi-subformula property, linearity of the height and polynomial upper bounds on the foundation. In particular if $\Gamma = \emptyset$, then $F(\partial)$ is a $\text{NM} \rightarrow$ proof of ρ such that:

1. $h(F(\partial)) \leq 18|\rho|$,
2. $\phi(F(\partial)) < (|\rho| + 1)^2 (|\rho| + 2)$,
Theorem (L.G.)

There exists a recursive operator F that transforms any given tree-like $\text{LM} \rightarrow$ deduction ∂ of $\Gamma \implies \rho$ into a tree-like $\text{NM} \rightarrow$ deduction $F(\partial)$ with root-formula ρ and assumptions occurring in Γ. Moreover ∂ and $F(\partial)$ share the semi-subformula property, linearity of the height and polynomial upper bounds on the foundation. In particular if $\Gamma = \emptyset$, then $F(\partial)$ is a $\text{NM} \rightarrow$ proof of ρ such that:

1. $h(F(\partial)) \leq 18|\rho|,$
2. $\phi(F(\partial)) < (|\rho| + 1)^2 (|\rho| + 2),$
3. $\mu(F(\partial)) \leq 2|\rho|.$