
The ubiquity of Psi-matroids

Nathan Bowler Johannes Carmesin

May 13, 2013

Abstract

Solving (for tame matroids) a problem of Aigner-Horev, Diestel and
Postle, we prove that every tame matroid M can be reconstructed from
its canonical tree decomposition into 3-connected pieces, circuits and co-
circuits together with information about which ends of the decomposition
tree are used by M .

For every locally finite graph G, we show that every tame matroid
whose circuits are topological circles of G and whose cocircuits are bonds
of G is determined by the set Ψ of ends it uses, that is, it is a Ψ-matroid.

1 Introduction

There is a canonical matroid associated to any finite graph G, whose circuits
are the (edge sets of) cycles in G and whose cocircuits are the bonds of G
(the minimal nonempty cuts). However, when G is infinite there is no longer
a canoncical choice of matroid. Instead, there are at least two very natural
choices. The first is the finite cycle matroid MFC(G), defined as above, which
is always finitary (all its circuits are finite). The second is the topological
cycle matroid MC(G) whose circuits are (edge sets of) topological circles in a
suitable compactification |G| of G and whose cocircuits are the finite bonds of
G [13]. These topological circles arise naturally in the generalisations of some
fundamental theorems from finite to infinite graphs [12]. The topological cycle
matroid is always cofinitary (all its cocircuits are finite).

If G is an infinite planar graph then we cannot hope to find a dual graph G∗

such that MFC(G∗) = (MFC(G))∗ since the first of these is finitary whilst the
second need not be. Instead, what happens (under some weak assumptions) is
that there is a dual graph G∗ such that MC(G∗) = (MFC(G))∗ and MFC(G∗) =
(MC(G))∗ [8].

There is a whole range of matroids sitting in between these two. The new
points added in the compactification |G| are called the ends of G. For a set Ψ
of ends and a countable graph G, we very often get a matroid MΨ(G), called
the Ψ-matroid of G, whose circuits are the topological circles in G that only use
ends from Ψ. In particular, we always get a matroid in this way if Ψ is Borel [4].
The extreme cases – where Ψ is empty or the set of all ends – give rise to the
finite and topological cycle matroids respectively. The Ψ-matroids also reflect
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Figure 1: The graph Q

duality of graphs. If G∗ is the dual of G then they have homeomorphic spaces of
ends [10] and for any Borel set Ψ of ends we have MΨ{(G∗) = (MΨ(G))∗ [14, 4]
(this specialises to the results above by taking Ψ to be empty or the set of all
ends).

From now on we fix some locally finite graph G. All Ψ-matroids for G have
the property that all their circuits are topological circles of G and all their
cocircuits are bonds of G. We will call matroids with this property G-matroids.
This paper is concerned with the question:

Question 1.1. Characterise the G-matroids of locally finite graphs G.

Not all G-matroids are Ψ-matroids.

Example 1.2. Let Q be the graph depicted in Figure 1. We say that two
topological circuits of Q are equivalent if their symmetric difference is finite.
Let C be any union of equivalence classes which includes all finite circuits. Then
it can be shown that C is the set of circuits of a Q-matroid [7].

In cases like the above example, we can get a large set of badly behaved1

matroids, each specified by a great deal of information ‘at infinity’. In order to
characterise theG-matroids of a general graphG we would require a specification
of complex information distributed somehow over the ends of G, and this is
currently intractable. However, there is a simple and natural restriction on the
G-matroids which makes this problem much more tractable.

We say that a matroid M is tame if the intersection of any circuit with
any cocircuit is finite. Otherwise, we say M is wild. The concept goes back
to Dress [15], though not under this name: he introduced a different notion of
infinite matroid to which tameness was fundamental. As recently as 2010 it was
suggested that all infinite matroids might necessarily be tame [9]. Tameness and
countability are the only extra restrictions we need to add to Minty’s axiomati-
sation of finite matroids [16] to get an axiomatisation of the class of countable
tame matroids: there is no need for an extra axiom requiring the existence of
bases [4]. However, there are many wild matroids, as first shown in [5]. In fact,
all but 2 of the Q-matroids in Example 1.2 are wild [7].

Nevertheless, the class of tame matroids is closed under duality and under
taking minors, and includes most natural examples of matroids. For example,
all finitary or cofinitary matroids and all Ψ-matroids are tame. Tameness gives
a natural context for the consideration of representability of infinitary matroids.

1for example, such matroids can be non-binary in the sense that there are 3 circuits whose
symmetric difference does not include a circuit
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The notion of thin sums representability was introduced in [8] as a generalisa-
tion of representability to infinitary matroids. Although there is a wild matroid
which is thin sums representable over Q but whose dual is not thin sums rep-
resentable over any field [5], the class of tame thin sums matroids is closed
under duality and under taking minors [1]. Moreover, forbidden minor charac-
terisations extend readily from finite to tame thin sums matroids [3], so that
for example a tame matroid is thin sums representable over F2 if and only if it
does not have U2,4 as a minor. Finally, tameness plays an essential role in the
construction of an infinitary version of the class of graphic matroids [6], so that
the badly behaved Q-matroids are not graphic in this sense.

We therefore restrict our attention to the class of tame G-matroids, for which
we are now able to provide a simple characterisation.

Theorem 1.3. The tame G-matroids are exactly the Ψ-matroids for G.

However the set Ψ need not be Borel. The question of which sets Ψ of ends
give rise to matroids is tied to subtle set theoretic questions about determinacy
of games [4].

Restricting our attention to tame matroids also allows us to resolve a problem
due to Aigner-Horev, Diestel and Postle from [2] about the reconstruction of
connected matroids from their 3-connected pieces. Any finite connected matroid
M can be decomposed canonically into a tree of pieces, each of which is 3-
connected, a circuit or a cocircuit [11, 19]. Any two adjacent pieces share only a
single edge, and M can be reconstructed from this tree by taking 2-sums along
all these edges.

Recall that for any two matroids M1 and M2 that share only one edge, the
2-sum M1⊕2M2 of M1 and M2 is the matroid whose edge set is the symmetric
difference of those of M1 and M2 and whose circuits are of the following 3 types:
circuits of M1 avoiding e, circuits of M2 avoiding e, and symmetric differences of
an M1-circuit containing e with an M2-circuit containing e. This construction
is associative, in the sense that if M1 and M2 meet in only one edge and M2

and M3 meet in only one edge, and M1 has no edge in common with M3, then
(M1⊕2M2)⊕2M3 = M1⊕2 (M2⊕2M3). Because of this associativity, it doesn’t
matter in what order we take the 2-sums at the edges of the tree: we always get
back the original matroid M .

Aigner-Horev, Diestel and Postle partially extended this result to infinite ma-
troids: they were able to show that there is such a canonical tree decomposition
of any connected matroid [2]. It is a little surprising that the structure obtained
is a genuine graph-theoretic tree, rather than one of the more order-theoretic or
topological notions of infinite tree discussed in [17]. However, reconstruction of
the original matroid from this tree is not so straightforward if the tree is infinite.
For example, every Q-matroid decomposes into a ray of pieces, each of which is
isomorphic to M(K4), as in Figure 2.

This example shows that the tree decomposition alone does not provide
enough information to reconstruct the matroid: more information is needed. In
[7], we answer the question of which extra information is needed to carry out
this reconstruction. The answer is complicated and beyond the scope of this
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Figure 2: The tree decomposition of the graph Q

paper. However, if we once more restrict our attention to tame matroids then
there is a much more natural solution. In this paper, we give a self-contained
account of this more natural solution, for which the necessary arguments are
much simpler than in [7].

The tree alone is still not enough information - the finite and topological cycle
matroids of Q are both tame, and they give rise to the same tree of matroids.
Just as in the graphic case, we may think of the topological cycle matroid as
the matroid we get by allowing the end of the ray to be used by circuits and
the finite cycle matroid as the matroid we get by forbidding circuits to use the
end. This suggests what is in fact the right answer: the extra information we
need is simply the set Ψ of ends of the tree which may be used by circuits.

More precisely, in Section 3 we give a construction which can be thought of
as taking infinitely many 2-sums simultaneously. Given a suitable tree T of ma-
troids and a suitable set Ψ of ends of T , we showed in [4] that this construction
allows us to build a matroid MΨ(T ) by (roughly speaking) sticking together
the matroids along the edges of the tree and only allowing circuits to use the
ends in Ψ. We can show that this construction suffices to rebuild any tame ma-
troid from its canonical decomposition into circuits, cocircuits, and 3-connected
pieces, together with information about which ends are used by circuits:

Theorem 1.4. Let N be a tame matroid and let T be the tree of matroids T
arising from the canonical tree decomposition of N .

Then there is some Ψ ⊆ Ω(T ) such that N = MΨ(T ).

The proof that the Ψ-matroids of a locally finite graph really are matroids
also relied on gluing together an infinite tree of finite pieces. In this case, the tree
structure arose from a tree decomposition of the graph. So both of the results
mentioned above say that, for some particular tree structure, if we have any
tame matroid whose circuits and cocircuits all fit, in some sense, with that tree
structure, then this constrains the matroid to be of a very special type, which
we call a Ψ-matroid. We give a general result of this type for trees of matroids
in which any two adjacent matroids share at most one edge. See Theorem 4.10.

The paper is arranged as follows: we begin by recalling some preliminary
results about infinite matroids in general and Ψ-matroids in particular in Sec-
tion 2. Then we recall the basic theory of trees of matroids, including the
infinitary version of 2-sums, in Section 3. We prove Theorem 1.4 in Section 4
and Theorem 1.3 in Section 5. We conclude by discussing open questions and
the future outlook in Section 6.

4



2 Preliminaries

Throughout, notation and terminology for (infinite) graphs are those of [13],
and for matroids those of [18, 9].

2.1 Infinite matroids

M always denotes a matroid and E(M) (or just E), I(M) and C(M) denote its
ground set and its sets of independent sets and circuits, respectively.

A set system I ⊆ P(E) is the set of independent sets of a matroid if and
only if it satisfies the following independence axioms [9].

(I1) ∅ ∈ I(M).

(I2) I(M) is closed under taking subsets.

(I3) Whenever I, I ′ ∈ I(M) with I ′ maximal and I not maximal, there exists
an x ∈ I ′ \ I such that I + x ∈ I(M).

(IM) Whenever I ⊆ X ⊆ E and I ∈ I(M), the set {I ′ ∈ I(M) | I ⊆ I ′ ⊆ X}
has a maximal element.

A set system C ⊆ P(E) is the set of circuits of a matroid if and only if it
satisfies the following circuit axioms [9].

(C1) ∅ /∈ C.

(C2) No element of C is a subset of another.

(C3) (Circuit elimination) Whenever X ⊆ o ∈ C(M) and {ox | x ∈ X} ⊆ C(M)
satisfies x ∈ oy ⇔ x = y for all x, y ∈ X, then for every z ∈ o \

(⋃
x∈X ox

)
there exists a o′ ∈ C(M) such that z ∈ o′ ⊆

(
o ∪⋃x∈X ox) \X.

(CM) I satisfies (IM), where I is the set of those subsets of E not including an
element of C.

Lemma 2.1. Let M be a matroid and s be a base. Let oe and bf a fundamental
circuit and a fundamental cocircuit with respect to s, then

1. oe ∩ bf is empty or oe ∩ bf = {e, f} and

2. f ∈ oe if and only if e ∈ bf .

Proof. To see the first note that oe ⊆ s+ e and bf ⊆ (E \ s) + f . So oe ∩ bf ⊆
{e, f}. As a circuit and a cocircuit can never meet in only one edge, the assertion
follows.

To see the second, first let f ∈ oe. Then f ∈ oe∩bf , so by (1) oe∩bf = {e, f}
and so e ∈ bf . The converse implication is the dual statement of the above
implication.
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Lemma 2.2. For any circuit o containing two edges e and f , there is a cocircuit
b such that o ∩ b = {e, f}.
Proof. As o− e is independent, there is a base including o− e. By Lemma 2.1,
the fundamental cocircuit of f of this base intersects o in e and f , as desired.

Lemma 2.3. Let M be a matroid with ground set E = C∪̇X∪̇D and let o′ be
a circuit of M ′ = M/C\D. Then there is an M -circuit o with o′ ⊆ o ⊆ o′ ∪ C.

Proof. Let s be any M -base of C. Then s ∪ o′ is M -dependent since o′ is M ′-
dependent. On the other hand, s ∪ o′ − e is M -independent whenever e ∈ o′
since o′ − e is M ′-independent. Putting this together yields that s∪ o′ contains
an M -circuit o, and this circuit must not avoid any e ∈ o′, as desired.

A scrawl is a union of circuits. In [3], (infinite) matroids are axiomatised in
terms of scrawls. The set S(M) denotes the set of scrawls of the matroid M .
Dually a coscrawl is a union of cocircuits. Since no circuit and cocircuit can
meet in only one element, no scrawl and coscrawl can meet in only one element.
In fact, this property gives us a simple characterisation of scrawls in terms of
coscrawls and vice versa.

Lemma 2.4. [3] Let M be a matroid, and let w ⊆ E. The following are
equivalent:

1. w is a scrawl of M .

2. w never meets a cocircuit of M just once.

3. w never meets a coscrawl of M just once.

Proof. It is clear that (1) implies (3) and (3) implies (2), so it suffices to show
that (2) implies (1). Suppose that (2) holds and let e ∈ w. Then in the minor
M/(w− e) \ (E \w) on the groundset {e}, e cannot be a co-loop, by the dual of
Lemma 2.3 and (2). So e must be a loop, and by Lemma 2.3 there is a circuit
oe with e ∈ oe ⊆ w. Thus w is the union of the oe, and so is a scrawl.

Lemma 2.5. Let M be a matroid and C,D ⊆ P(E) such that every M -circuit
is a union of elements of C, every M -cocircuit is a union of elements of D and
|C ∩D| 6= 1 for every C ∈ C and every D ∈ D.

Then C(M) ⊆ C ⊆ S(M) and C(M∗) ⊆ D ⊆ S(M∗)

Proof. We begin by showing that C(M) ⊆ C. For any circuit o of M , pick an
element e of o. Since o is a union of elements of C there is o′ ∈ C with e ∈ o′ ⊆ o.
Suppose for a contradiction that o′ isn’t the whole of o, so that there is f ∈ o\o′.
By Lemma 2.2 there is some cocircuit b of M with o′ ∩ b = {e}. Then we can
find b′ ∈ D with e ∈ b′ ⊆ b, and so o′∩b′ = {e}, giving the desired contradiction.
Similarly we obtain that C(M∗) ⊆ D.

The fact that C ⊆ S(M) is immediate from Lemma 2.4 since C(M∗) ⊆ D,
and the proof that D ⊆ S(M∗) is similar.
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2.2 Ψ-matroids

In this subsection we shall review the definitions of Ψ-circuits and Ψ{-bonds for
a locally finite graph G with a specified set Ψ of ends. Much of what we say
will be a review of the early parts of [14] and [4]. We say that two rays in G are
equivalent if they cannot be separated by removing finitely many vertices from
G. In other words, two rays are equivalent if they may be joined by infinitely
many vertex-disjoint paths. An end of G is an equivalence class of rays under
this relation, and the set of ends of G is denoted Ω(G).

Let d be the distance function on V (G) t (0, 1) × E(G) considered as the
ground set of the simplicial 1-complex formed from the vertices and edges of G.
We define a topology on the set V (G) t Ω(G) t (0, 1) × E(G) by taking basic
open neighbourhoods as follows:

• For v ∈ V (G), the basic open neighbourhoods of v are the ε-balls Bε(v) =
{x|d(v, x) < ε} for ε ≤ 1.

• For (x, e) ∈ (0, 1) × E we say (x, e) is an interior point of e, and take
the basic open neighbourhoods to be the ε-balls about (x, e) with ε ≤
min(x, 1− x).

• For ω ∈ Ω(G), the basic open neighbourhoods of ω will be parametrised
by the finite subsets S of V (G). Given such a subset, we let C(S, ω) be the
unique component of G − S that contains a ray from ω, and let Ĉ(S, ω)
be the set of all vertices and inner points of edges contained in or incident
with C(S, ω), and of all ends represented by a ray in C(S, ω). We take the
basic open neighbourhoods of ω to be the sets Ĉ(S, ω).

We call the topological space obtained in this way |G|.
For any set Ψ of ends of G, we set Ψ{ = Ω(G)\Ψ and |G|Ψ = |G|\Ψ{. Since

G is locally finite, |G|Ψ can be given the structure of a graph-like space in the
sense of [6] (and closely related to the earlier work of [20]): see [4].

A Ψ-circuit of G is an edge set whose |G|Ψ-closure is homeomorphic to the
unit circle. A Ψ{-bond of G is a bond of G that has no ends from Ψ in its
closure.

We say that (G,Ψ) induces a matroid M if E(M) = E(G) and the M -
circuits are the Ψ-circuits and the M -cocircuits are the Ψ{-bonds. In this case,
we call M the Ψ-matroid MΨ(G) of G. In the following sense the Ψ-circuits and
Ψ{-bonds always behave like the circuits and cocircuits of a matroid.

Lemma 2.6. No Ψ-circuit meets any Ψ{-bond in a single edge.

Proof. Suppose for a contradiction that some Ψ-circuit o meets some Ψ{-bond
b in a single edge f

Then |G|Ψ with all the interior points of edges of b removed has two con-
nected components, namely the two sides of the bond. This contradicts the fact
that o− f is connected and contains both endvertices of f .

More is shown in [4]. If Ψ is Borel, then the Ψ-matroid MΨ(G) always exists.
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3 Trees of matroids

In this section we review the relationship between trees of matroids and tree
decompositions of matroids.

Definition 3.1. A tree T of matroids consists of a tree T , together with a
function M assigning to each node t of T a matroid M(t) on ground set E(t),
such that for any two nodes t and t′ of T , if E(t) ∩ E(t′) is nonempty then tt′

is an edge of T .
For any edge tt′ of T we set E(tt′) = E(t)∩E(t′). We also define the ground

set of T to be E = E(T ) =
(⋃

t∈V (T )E(t)
)
\
(⋃

tt′∈E(T )E(tt′)
)

.

We shall refer to the edges which appear in some E(t) but not in E as dummy
edges of M(t): thus the set of such dummy edges is

⋃
tt′∈E(T )E(tt′).

The idea is that the dummy edges are to be used only to give information
about how the matroids are to be pasted together, but they will not be present
in the final pasted matroid, which will have ground set E(T ).

Definition 3.2. If T is a tree, and tu is a (directed) edge of T , we take Tt→u
to be the connected component of T − t that contains u. If T = (T,M) is a tree
of matroids, we take Tt→u to be the tree of matroids (Tt→u,M�Tt→u

).

Definition 3.3. A tree T = (T,M) of matroids is of overlap 1 if, for every edge
tt′ of T , |E(tt′)| = 1. In this case, we denote the unique element of E(tt′) by
e(tt′).

Given a tree of matroids of overlap 1 as above, a precircuit of T consists of
a connected subtree C of T together with a function o assigning to each vertex
t of C a circuit of M(t), such that for any vertex t of C and any vertex t′

adjacent to t in T , e(tt′) ∈ o(t) if and only if t′ ∈ C. Given a set Ψ of ends of
T , such a precircuit is called a Ψ-precircuit if all ends of C are in Ψ. The set of
Ψ-precircuits is denoted C(T ,Ψ).

Any Ψ-precircuit (C, o) has an underlying set (C, o) = E ∩ ⋃t∈V (C) o(t).
Minimal nonempty subsets of E arising in this way are called Ψ-circuits of T .
The set of Ψ-circuits of T is denoted C(T ,Ψ).

Definition 3.4. Let T = (T,M) be a tree of matroids. Then the dual T ∗ of T
is given by (T,M∗), where M∗ is the function sending t to (M(t))∗. For a subset
C of the ground set, the tree of matroids T /C obtained from T by contracting C
is given by (T,M/C), where M/C is the function sending t to M(t)/(C ∩E(t)).
For a subset D of the ground set, the tree of matroids T \D obtained from T
by deleting D is given by (T,M\D), where M\D is the function sending t to
M(t)\(C ∩ E(t)).

Lemma 3.5. For any tree T of matroids, T = T ∗∗. For any disjoint subsets C
and D of the ground set of T we have (T /C)∗ = T ∗\C, (T \D)∗ = T ∗/D and
T /C\D = T \D/C. If T has overlap 1 and (T ,Ψ) induces a matroid M , then
(T /C\D,Ψ) induces the matroid M/C\D and (T ∗,Ψ{) induces the matroid
M∗.
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We will sometimes use the expression Ψ{-cocircuits of T for the Ψ{-circuits
of T ∗. If there is a matroid whose circuits are the Ψ-circuits of T and whose
cocircuits are the Ψ{-cocircuits of T then we will call that matroid the Ψ-matroid
for T , and denote it MΨ(T ).

Lemma 3.6 (Lemma 5.5, [4]). Let T = (T,M) be a tree of matroids of overlap
1, Ψ a set of ends of T , and let (C, o) and (D, b) be respectively a Ψ-precircuit
of T and a Ψ{-precircuit of T ∗. Then |(C, o) ∩ (D, b)| 6= 1.

Theorem 3.7 ([4]). If T = (T,M) is a tree of matroids of overlap 1, and Ψ is
a Borel set of ends of T , then there is a Ψ-matroid for T .

Remark 3.8. In particular, we always get a Ψ-matroid when Ψ is the empty
set or the set Ω(T ) of all ends of T . It is clear that if each matroid M(t) is
finitary, then so is M∅(T ).

So far we have discussed how to construct matroids by gluing together trees
of ‘smaller’ matroids. Now we turn to a notion, taken from [2], of a decomposi-
tion of a matroid into a tree of such smaller parts.

Definition 3.9. A tree decomposition of adhesion 2 of a matroid N consists
of a tree T and a partition R = (Rv)v∈V (T ) of the ground set E of N such
that for any edge tt′ of T the partition (

⋃
v∈V (Tt→t′ )

Rv,
⋃
v∈V (Tt′→t)

Rv) is a
2-separation of N .

Given such a tree decomposition, and a vertex v of T , we define a matroid
M(v), called the torso of T at v, as follows: the ground set of M(v) consists
of Rv together with a new edge e(vv′) for each edge vv′ of T incident with v.
For any circuit o of N not included in any set

⋃
t∈V (Tv→v′ )Rv, we have a circuit

ô(v) of M(v) given by (o∩Rv)∪{e(vv′) ∈ E(v)|o∩⋃t∈V (Tv→v′ )Rv 6= ∅}. These

are all the circuits of M(v).
In this way we get a tree of matroids T (N,T,R) = (T, v 7→M(v)) of overlap

1 from any tree decomposition of adhesion 2. For any circuit o of N we get a
corresponding precircuit (So, ô), where So is just the subtree of T consisting of
those vertices v for which ô(v) is defined.

Note that (So, ô) = o. Each M(v) really is a matroid [2, §4, §8], isomorphic
to a minor of N [7], and that T (N∗, T,R) = (T (N,T,R))∗. [2] also contains
the following theorem.

Theorem 3.10 (Aigner-Horev, Diestel, Postle). For any matroid N there is a
tree decomposition D(N) of adhesion 2 of N such that all torsos have size at
least 3 and are either circuits, cocircuits or 3-connected, and in which no two
circuits and no two cocircuits are adjacent in the tree. This decomposition is
unique in the sense that any other tree decomposition with these properties must
be isomorphic to it.

The above theorem is a generalisation to infinite matroids of a standard
result about finite matroids [11, 19]. If N is a finite matroid, it is possible
to reconstruct N from the decomposition D(N). However, as noted in the
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introduction, it is not in general possible to reconstruct N from D(N) if N is
infinite. Our aim in the next section will be to show that if N is tame, then
not much extra information is needed to recover N . All we need is the set Ψ
consisting of those ends of T that appear in the closure of some circuit of N .

4 Reconstruction

Let N be a tame matroid and let (T,R) be a tree decomposition of N of adhesion
2. We begin by considering the case that T is a ray t1, t2, . . .. In this case, we
can show that the tree T (N,T,R) is well behaved.

Definition 4.1. A precircuit (S, o) for a tree T = (T,M) of matroids of overlap
1 is called a phantom precircuit if there is an edge tt′ of S such that o(v)∩E(T ) =
∅ for v ∈ V (St→t′).
T = (T,M) is nice if neither T nor T ∗ has any phantom precircuits.

Note that T = (T,M) is nice iff there is not tt′ ∈ E(T ) such that in Tt→t′ =
(Tt→t′ ,M�V (Tt→t′ )

) the edge e(tt′) is either a loop inMΩ(Tt→t′ )
(Tt→t′) or a coloop

M∅(Tt→t′).
Lemma 4.2. Let N be a matroid with a tree decomposition (T,R) of adhesion
2.

1. For every N -circuit o its corresponding precircuit (So, ô) is not phantom.

2. If T is a ray, and there is a circuit o and a cocircuit b of N that both have
edges in infinitely many of the Rv, then T (N,T,R) is nice.

Proof. (1) follows from the definition of So.
For (2), let T = t1, t2, . . . be a ray. Now suppose for a contradiction that there

is a phantom precircuit (Sc, c). Then for all sufficiently large n, the circuit c(tn)
consists of e(tn−1tn) and e(tntn+1). In other words, e(tn−1tn) and e(tntn+1) are
in parallel.

So c(tn) ⊆ ô(tn), hence c(tn) = ô(tn). This contradicts (1). The case that
there is a phantom precocircuit (Sc, c) is similar. Hence T (N,T,R) is nice.

Lemma 4.3. Let T = (T,M) be a nice tree of matroids, then every ∅-circuit is
an Ω(T )-circuit.

By duality, an analogue of Lemma 4.3 is also true for cocircuits.

Lemma 4.4. Let T = (T,M) be a nice tree of matroids, and N be a matroid
such that C(N) ⊆ C(MΩ(T )(T )) and C(N∗) ⊆ C(M∗∅ (T )).

Then C(M∅(T )) ⊆ C(N) and C(M∗Ω(T )(T )) ⊆ C(N∗).

Proof. By duality, it suffices to prove only that C(M∅(T )) ⊆ C(N). So let
o ∈ C(M∅(T )). Since o never meets an element of C(M∗∅ (T )) just once, it never
meets an element of C(N∗) just once. Hence o includes an N -circuit o′ by
Lemma 2.4. Thus o′ ∈ C(MΩ(T )(T )). By Lemma 4.3, we must have o′ = o. So
o ∈ C(N), as desired.
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Lemma 4.5. Let N be a tame matroid with a tree decomposition (T,R) of
adhesion 2. Assume that T = t1t2 . . . is a ray.

Then there are not a circuit o and a cocircuit b of N that both converge to
the end ω of T .

Indeed, either N = M∅(T (N,T,R)) or N = M{ω}(T (N,T,R))

Proof. Suppose for a contradiction that there are such o and b. Then there are
l < m < n and el, em, en ∈ E(N) such that el ∈ b ∩ E(tl), and em ∈ o ∩ E(tm),
and en ∈ b ∩ E(tn). Using the tameness of N , we make these choices in such a
way that for any i ≥ m, the intersection of o ∩ b with E(ti) is empty. We may
also assume that o has an edge in some E(tk) with k < m, so that both dummy
edges of E(tm) are in ô(tm).

Now b is a cocircuit of M(T (N,T,R), ∅) since (Sb, b̂) is a precocircuit, and

there cannot be a precocircuit whose cocircuit at any node t is a subset of b̂(t).
By the dual of Lemma 2.2 there is some M∅(T )-circuit ob meeting b only in el
and en. Note that ob is also a circuit of N by Lemma 4.4 since T (N,T,R) is
nice by Lemma 4.2.

Now we build an ∅-precircuit (SC , Ĉ) as follows. First we set SC = (Sob \
{t1 . . . tm}) ∪ (So ∩ {t1 . . . tm}). We take Ĉ(tj) = ôb(tj) for j > m, and Ĉ(tj) =

ô(tj) for j ≤ m. Let C be the underlying circuit of (SC , Ĉ). Note that C is a
circuit of M∅(T ) and so also a circuit of N by Lemma 4.4 and Lemma 4.2 as
before.

We now apply circuit elimination in N to the circuits o and C, eliminating
the edge em and keeping the edge en. Call the resulting circuit C ′.

If tm ∈ SC′ , then Ĉ ′(tm) ⊆ ô(tm)−em (since both dummy edges of E(tm) are
in ô(tm)), which is impossible. So SC′ ⊆ {tm+1, tm+2, . . .}. Hence C ′∩b = {en},
which is also impossible.

We have now established that there cannot be a circuit o and a cocircuit b
of N such that ω is in the closure of both o and b.

If ω is in the closure of some N -circuit, then every N -circuit is a {ω}-
circuit, and every N -cocircuit is an ∅-cocircuit. Since by Lemma 3.6 no Ψ-circuit
ever meets a Ψ{-cocircuit just once, we may apply Lemma 2.5 to deduce that
N = M{ω}(T ). In the case that ω is not in the closure of any N -circuit a similar
argument yields that N = M∅(T ). This completes the proof.

Having considered the case that the tree T is a ray, we now reduce the
general case to this special case. Let N be a matroid with a tree decomposition
(T,R) of adhesion 2. Let Q = q1, q2, . . . be a ray in T . We define RQ to be the
following coarsening of R. We define RQqi to be the union of all the Rv such that
in T the vertices v and qi can be joined by a path that does not contain any
other qj .

Then (Q,RQ) is a tree decomposition of N of adhesion 2. An N -circuit o
has the end ω of Q in its closure with respect to (T,R) if and only if o has ω
in its closure with respect to (Q,RQ). So by Lemma 4.5, we deduce that there
cannot be a circuit and a cocircuit of N that have a common end in both of
their closures (with respect to (T,R)).
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Figure 3: A non-nice tree of matroids

Let Ψ be the set of ends of T that appear in the closure of some circuit of
N . Thus every N -circuit is a Ψ-circuit and every N -cocircuit is a Ψ{-cocircuit.
Since by Lemma 3.6 no Ψ-circuit ever meets a Ψ{-cocircuit just once, we may
apply Lemma 2.5 to deduce that N = MΨ(T ). Hence we get the following
theorem.

Theorem 4.6. Let N be a tame matroid with a tree decomposition (T,R) of
adhesion 2.

Then there is some Ψ ⊆ Ω(T ) such that N = M(T (N,T,R),Ψ).

Combining this theorem with Theorem 3.10 yields:

Theorem 4.7. Let N be a connected tame matroid. Then N = MΨ(T ) where
each M(t) is either a circuit, a cocircuit or else is 3-connected.

Remark 4.8. In the proof of this theorem, it might look as if we would have
some freedom in choosing the set Ψ, namely that we could take Ψ to be any set
containing all the ends to which some circuit converges and avoiding all ends to
which some cocircuit converges. However, it can be shown that for every end in
Ψ, there is a Ψ-circuit having this end in the closure.

The arguments above make use of the fact that the matroid N is severly con-
strained by the restriction that each of its circuits comes from some precircuit
of the tree, and each of its cocircuits comes from some precocircuit. In investi-
gating how restrictive constraints of this form might be in general, we are led
to the following question. Suppose that we have a tree T = (T,M) of matroids.
We say a matroid N is a T -matroid if every circuit of N is an Ω(T )-circuit and
every cocircuit of N is an ∅-cocircuit. How constrained is N? If T is not nice,
then N can be quite unconstrained.

Example 4.9. Here the tree T is a ray and each M(t) = M(C4), arranged as
in Figure 3. Then M∅(T ) is the free matroid but MΩ(T )(T ) consists of a single
infinite circuit. So any pair of edges forms an MΩ(T )(T )-cocircuit which is not
an M∅(T )-cocircuit.

However, if T is nice and N is tame then N has to be of the form MΨ(T ):

Theorem 4.10. Let T = (T,M) be a nice tree of matroids of overlap 1, and let
N be a tame T -matroid. Then there is some Ψ ⊆ Ω(T ) such that N = MΨ(T ).
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Figure 4: Objects appearing in the proof of Theorem 4.10

Proof. We begin by showing that there cannot be a circuit o and a cocircuit
b of N such that there is some end ω of T in the closure of both o and b.
So suppose for a contradiction that there are such o, b, and ω. We fix some
notation, as illustrated in Figure 4. Pick a ray R = v1, v2, . . . in T to ω. By
taking a suitable tail of R if necessary, we may assume that there is some edge
f of b in E(T )\E(Tv1→v2), some edge g of o in E(Tv1→v2)\E(Tv2→v3) and some
edge h of b in E(Tv2→v3) (here we use that T is nice). Since o ∩ b is finite, we
may even assume that no edge of o ∩ b lies in E(Tv1→v2).

We may also assume that o has an edge in E(Tv2→v1), so that both dummy
edges of E(v2) are in ô(v2).

By Lemma 2.2 there is some M∅(T )-circuit ob meeting b only in f and h.
Let (S, ô) be an Ω(T )-precircuit representing o, and (Sb, ôb) be an ∅-precircuit
representing ob. Let vg be the node of T with g ∈ E(v). Let P be the path
joining v2 to vg in T . Let ∂ be the set of edges tt′ of T with t in V (P ) but t′ not
in either V (P ) or V (Tv2→v3). For each edge tt′ ∈ ∂ there is by niceness of T
some M∅(Tt→t′)-circuit ot→t′ through e(tt′). Let (St→t′ , ôt→t′) be an M∅(Tt→t′)-
precircuit representing ot→t′ .

Now we build a ∅-precircuit (SC , Ĉ) from all this data as follows. First we
set

SC = (Sb ∩ Tv2→v3) ∪ P ∪
⋃
tt′∈∂

St→t′ .

Then we take Ĉ(u) to be ôb(u) for u ∈ (Sb∩Tv2→v3), ô(u) for u ∈ P and ôt→t′(u)
for u ∈ St→t′ . Let C be the underlying circuit of (SC , Ĉ). By Lemma 4.4, C is
an N -circuit.

We now apply circuit elimination in N to the circuits o and C, eliminating
the edge g and keeping the edge h. Call the resulting circuit C ′, and let (SC′ , Ĉ ′)
be an Ω(T )-precircuit representing C ′. Let the vertices of P be, in order, vg =
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p1, p2, . . . pk = v2. We shall show by induction on i that pi 6∈ SC′ . For the base
case, we note that if vg were in SC′ we would have to have Ĉ ′(vg) ⊆ ô(vg) \ {g},
which is impossible. For the induction step, we similarly note that if pi+1 were
in SC′ we would have to have Ĉ ′(pi+1) ⊆ ô(pi+1)\{e(pipi+1)}, by the induction
hypothesis, which is impossible. In particular, we deduce that v2 6∈ SC′ . On the
other hand, we know that h ∈ C ′ so that SC′ ⊆ Tv2→v3 , so that C ′ ∩ b = {h}, a
contradiction.

We have now established that there cannot be a circuit o and a cocircuit b
of N such that there is some end ω of T in the closure of both o and b. Let Ψ
be the set of ends of T that appear in the closure of some circuit of N . Thus
every N -circuit is a Ψ-circuit and every N -cocircuit is a Ψ{-cocircuit. Since
by Lemma 3.6 no Ψ-circuit ever meets a Ψ{-cocircuit just once, we may apply
Lemma 2.5 to deduce that N = MΨ(T ) as required.

5 Tame G-matroids are Ψ-matroids

Let G be a locally finite graph. Recall that a matroid N on the ground set
E(G) is a G-matroid if C(N) ⊆ C(MC(G)) and C(N∗) ⊆ C(MFC(G)∗). Since
C(MFC(G)) ⊆ C(MC(G)) and C(M∗C(G)) ⊆ C(M∗FC(G)) both MFC(G) and
MC(G) are G-matroids, and an argument like that for Lemma 4.4 shows that
for any G-matroid N we have C(MFC(G)) ⊆ C(N) and C(M∗C(G)) ⊆ C(N∗).
The aim of this section is to prove the following.

Theorem 5.1. Let G be a locally finite graph, and let N be a tame G-matroid.
There there is some Ψ ⊆ Ω(G) such that N = MΨ(G).

For the rest of this section we fix some locally finite graph G and some tame
G-matroid N .

In this section, we will have to use two different notions of path. Finite paths
in graphs will simply be called paths, whereas paths in the topological sense,
namely continuous images of the closed unit interval, will be called topological
paths.

For a pair of points on a topological circle, there are two arcs joining them
through the circle. To allow us to distinguish them, we shall make use of ori-
entations of circles and topological paths. For distinct points x and y on an
oriented circle ~o we use x~oy to denote the (oriented) topological path from x
to y through o whose orientation agrees with that of ~o. We denote the other
topological path by x ~oy. If x = y, we do not take the trivial topological path
but the topological path that goes all the way around the circle.

Lemma 5.2. Let o be a topological circle in G. Let v, w ∈ V (o) and let S be a
finite set of vertices avoiding V (o). Then for any orientation ~o of o, there is a
finite v-w-path Pv,w not meeting v~ow in interior points and avoiding S.

Moreover if v~ow has at least two edges, then there is a bond b′ of G that has
Pv,w ∪ v ~ow on one side and all interior vertices of v~ow on the other side.

Figure 5 gives an overview of the terminology used in this lemma.
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Figure 5: The situation of Lemma 5.2.

x

x′
ex

y

y′
ey

b′

x~oy

Px′,y′

P

Figure 6: The situation of Lemma 5.3.

Proof. The proof is trivial if v = w. Thus we may assume that v 6= w. Let ev
be the first edge on v~ow and ew be the last edge on v~ow. Note that ev and ew
exist since v and w are vertices. If ev = ew, we pick Pv,w = ev. So we may
assume that ev 6= ew.

Let G′ = G \ S. Since o is a topological circle in |G′|, there is a finite bond
b of G′ meeting o in precisely ev and ew.

All edges and vertices of v~ow − ev − ew − v − w are on the same side of b.
Let C be the other side. Note that v and w are in C. Now let Pv,w be some
path in C joining v and w.

The bond b extends to a finite bond b′ of G by adding finitely many deleted
edges. The bond b′ has the desired property.

Lemma 5.3. Let o be a circuit of the G-matroid N , and ~o be some orientation
of o. Further, let x, y ∈ V (o) and let ~P be an x-y-path meeting o in precisely x
and y.

Then x~oy ~Px ∈ C(N).

Proof. The proof is trivial if x = y. Thus we may assume that x 6= y. Let ex be
the first edge on x ~oy and ey be the last edge on x ~oy. Let x′ be the endvertex
of ex that is not x, and y′ be the endvertex of ey that is not y, as depicted in
Figure 6.

Applying Lemma 5.2 to ~o with S = V (P ) − x − y, yields an x′-y′-path
Px′,y′ , and a bond b′ as in that lemma. By assumption the finite circuit

x~Pyeyy
′ ~Px′,y′x

′exx is an N -circuit. See Figure 6 to get an overview of all the
definitions.

Now we apply circuit elimination in N to this new circuit and o eliminating
ex and keeping some z ∈ E(P ). Note that z exists since x 6= y. We obtain an
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N -circuit o′ ⊆ (o− ex) ∪ P ∪ Px′,y′ including z.
It remains to show that o′ = x~oy ∪ P . Since each vertex of G is incident

with 0 or 2 edges of o′, we conclude that each edge adjacent to z on P is in o′.
In fact an inductive argument yields that P ⊆ o′.

If x ~oy consists of a singe edge xy, then by the same argument xy also cannot
be in o′. Thus o′ ⊆ x~oy ~Px. Since the latter is a topological cycle, we must have
equality, hence x~oy ~Px ∈ C(N). Thus we may assume that x ~oy includes at least
two edges.

We know that o′ is the union of P and some topological arc A from x to y.
The edge set of this arc is included in L := (o− ex)∪Px′,y′ . The set L meets b′

precisely in ey. Let K be the side of b′ not containing x and y. Suppose for a
contradiction that L includes an edge ek from K. Then there are two disjoint
arcs Lx and Ly from ek to x and from ek to y. By the Jumping-Arc Lemma [13,
Lemma 8.5.3], both of these have to meet b′, contradicting the fact that L meets
b′ just in ey.

This means that L ⊆ x~oy. Since x~oy is an x-y-arc, we actually get L = x~oy.
Thus we have shown that o′ = x~oy ∪ P , which completes the proof.

Corollary 5.4. Let o ∈ C(N), and ~o be some orientation of o. Further, let

x, y ∈ V (o) and let ~P be an x-y-path meeting x~oy not in interior points.

Then x~oy ~Px ∈ C(N).

Remark 5.5. The only difference between Lemma 5.3 and Corollary 5.4 is that
in the second the path P may meet o in some of the interior points.

Proof. We prove this by strong induction on |P ∩ o|. Let z be the second point
in the order of P in P ∩ o (the first such point is x). Now we apply Lemma 5.3

to o and xPz and obtain a new circuit oz := x~oz ~Px and a new path Pz := zPy.
Since |oz ∩ Pz| < |o ∩ P |, we may apply the induction hypothesis.

Lemma 5.6. Let o ∈ C(N) and let ω be an end of o. Then there is o′ ∈ C(N)
that has only the end ω in its closure.

Proof. First we pick an orientation ~o of o. Then we pick a Z-indexed family of
distinct edges ei such that their ordering on ω~oω is the same as the ordering of
their indices and (ei|i > 0) and (ei|i < 0) both converge to ω.

Let si and ti be the endvertices of ei such that si < ti on ω~oω. We repeatedly
apply Corollary 5.4 to get a Z-indexed family of vertex-disjoint ti-si+1-paths Pi
with Pi disjoint from ti+1~osi.

Let D be the double ray obtained from sticking the Pi and the ei together,
formally:

. . . t−1P−1s0e0t0P0s1e1t1P1 . . .

By construction, both tails of D belong to ω. So D is a topological cycle.
It remains to show that D ∈ C(N). Suppose not, for a contradiction: Then
D ∈ I(N), so there is a N -bond b with b ∩D = {e0}.
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Since N is tame, o ∩ b is finite, so there are only finitely many i ∈ Z such
that b meets ti~osi+1. Let K be the set of such i.

By applying Corollary 5.4 finitely often, we get a circuit o′′ that meets b
precisely in e0. Formally,

o′′ = o \
(⋃
i∈K

(ti~osi+1)

)
∪
(⋃
i∈K

Pi

)

So there are a circuit and a cocircuit of N which meet just once, which is the
desired contradiction.

Lemma 5.7. Let b ∈ C(N∗) and ω be an end in the closure of b. Assume there
is a double ray o ∈ C(N) both of whose tails converge to ω.

Then there is such an o that does not meet b.

Proof. We prove this by induction on |o∩b|; the base case |o∩b| = 0 is clear. The
case |o∩ b| = 1 is impossible. So suppose for the induction step that |o∩ b| ≥ 2.
Thus we may pick e, f ∈ o ∩ b. Since b ∈ C(MFC(G)), there is a finite circuit o′

meeting b in precisely e and f . Note that o′ is an N -circuit. Now pick z in the
infinite component of o \ o′ containing ω.

Applying circuit elimination to o and o′ eliminating e and keeping z yields
an N -circuit o′′ ⊆ o ∪ o′ − e through z. By the choice of z, the subgraph with
edge set o ∪ o′ − e − z has two components one of which is a ray R from one
endvertex of z converging to ω. Since each vertex is incident with 0 or 2 edges
of o′′ and z ∈ o′′, the ray R must be included in o′′. Hence o′′ must be infinite,
it also has only the end ω in its closure since o′′ ⊆ o ∪ o′ − e has no other end
in its closure. Now o′′ ∩ b ⊆ (o ∩ b)− e. This completes the induction step.

Lemma 5.8. Let b ∈ C(N∗) and ω be an end in the closure of b.
Then there is no double ray o ∈ C(N) both of whose tails converge to ω with

o ∩ b = ∅.

Proof. Suppose for a contradiction that there is such an N -circuit o. Let C1

and C2 be the two sides of b. Since o ∩ b = ∅ and since the double ray o is
connected as a subgraph, it lies entirely on one side, say C1. Since G is locally
finite, C2 includes a ray R converging to ω.

Now we construct o-R-paths Pi as in Figure 7. Since o and R both have ω
in their closure, there are infinitely many vertex disjoint R-o-paths (Pi|i ∈ N).
We enumerate the Pi such that in the linear order on R, the starting vertex
of Pi is less than the starting vertex of Pj if and only if i > j. By Ramsey’s
theorem there is a tail Ro of o and N ⊆ N such that all Pi with i ∈ N have their
endvertex on Ro, and in the linear order on Ro, the endvertex of Pi is less than
the endvertex of Pj if and only if i > j. By relabeling the indices of the Pi if
necessary, we may assume that N = N. Let si be the starting vertex of Pi, and
ti be its endvertex.

Now we prepare to apply the infinite circuit elimination axiom. We pick
some edge xi between t2i−1 and t2i on Ro, and pick some z ∈ o \ Ro. Then
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Figure 7: The o-R-paths Pi.

Cxi = t2i−1Rot2iP2isiRs2i−1P2i−1t2i−1 is a finite circuit. So Cxi is an N -circuit.
We apply circuit elimination to o and the Cxi

eliminating the xi and keeping z.
Thus there is an N -circuit o′ through z that is included in:(

o ∪
(⋃
i∈N

t2iP2isiRs2i−1P2i−1t2i−1

))
\ {xi|i ∈ N}

Since each vertex has degree 0 or 2 on o′, no edge from any of the finite
paths Xi := t2i−1Rot2i is in o′. Hence o′ is included in:

D := (o \Ro) ∪
(⋃
i∈N

Cxi
\Xi

)
But D is a double ray. So D = o′ and is an N -circuit. But D ∩ b is infinite.

This contradicts the tameness of N .

Proof of Theorem 5.1. First we show that there cannot be an N -circuit o, and
an N -cocircuit b that have a common end in their closure. Suppose for a con-
tradiction there are such o and b. By Lemma 5.6, we get that there is such an
o with only the end ω in its closure. By Lemma 5.7, we get there is such an
o that additionally does not meet b. By Lemma 5.8, we then get the desired
contradiction. So no end ω is ever in the closure of both a N -circuit and a
N -cocircuit.

This motivates the following definition. Let Ψ be the set of ends that are
in the closure of some N -circuit. Then every N -circuit is a Ψ-circuit and every
N -cocircuit is a Ψ{-cocircuit. Since N is a matroid, and the intersection of any
Ψ-circuit with any Ψ{-cocircuit is never of size 1 by Lemma 2.6, we are in a
position to apply Lemma 2.5. Hence N = M(G,Ψ).
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6 Outlook

Theorem 5.1 and Theorem 4.10 are closely related. Consider first Theorem 4.10,
applied to a tree T = (T,M) of finite matroids. Then the matroid M∅(T ) is
finitary and the matroid MΩ(T )(T ) is cofinitary. The niceness condition tells
us even more: M∅(T ) is the finitarisation of MΩ(T )(T ), that is, its circuits are
precisely the finite circuits ofMΩ(T )(T ). Dually, MΩ(T )(T ) is the cofinitarisation
of M∅(T ), that is, its cocircuits are precisely the finite cocircuits of M∅(T ).
Theorem 4.10 determines the lattice of tame matroids N lying between these
two in the sense that all their circuits are circuits of MΩ(T )(T ) and all their
cocircuits are cocircuits of M∅(T ).

The situation in Theorem 5.1 is similar. Since G is a locally finite graph,
MFC(G) is the finitarisation of MC(G) and MC(G) is the cofinitarisation of
MFC(G). Once more, we have characterised the lattice of tame matroids ly-
ing between these two. The similarity runs even deeper. In [4] we show that
Ψ-matroids for a locally finite graph G are naturally thought of as being con-
structed from trees of finite matroids associated to G (though these trees of
matroids need not have overlap 1).

This leads us to consider the following general context. We denote the
finitarisation of a matroid M by Mfin and the cofinitarisation of M by M cofin.
We say that matroids Mf and Mc are twinned if Mf = Mfin

c and Mc = M cofin
f .

Then we say that N lies between Mf and Mc if all of its circuits are Mc-circuits
and all of its cocircuits are Mf -cocircuits.

Open Question 6.1. What is the structure of the lattice of tame matroids
between Mf and Mc?

Examples of twinned pairs (Mf ,Mc) of matroids abound.

Proposition 6.2. Let M be any finitary matroid. Then ((M cofin)fin)cofin =
M cofin, so that (M cofin)fin and M cofin are twinned.

Proof. No circuit of (M cofin)fin ever meets a cocircuit of M cofin in just one
element, so every cocircuit b of M cofin is a coscrawl of (M cofin)fin by the dual of
Lemma 2.4. The cocircuits in the union must all be cocircuits of ((M cofin)fin)cofin

since b is finite. Similarly, every circuit of M is a scrawl of (M cofin)fin, so that
no cocircuit of ((M cofin)fin)cofin ever meets a circuit of M in just one element,
and so every cocircuit b of ((M cofin)fin)cofin is a coscrawl of M cofin by the dual of
Lemma 2.4 applied to M and finiteness of b. Thus ((M cofin)fin)cofin and M cofin

have the same cocircuits.

Thus for example if we begin with the finite cycle matroid of a graph G
then its cofinitarisation is twinned with the finitarisation of its cofinitarisation.
In fact these are just the topological cycle matroid and finite cycle matroid of
the finitely separable quotient of G, in which we identify any two vertices that
cannot be separated by removing finitely many edges of G.

Another example arises when we glue together finite matroids along a tree
T of arbitrary overlap. In such cases we need the matroids to be representable
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over a common field in order to define the gluing: see [4] for details. Once
more, if Ψ is a Borel set of ends then we get a matroid MΨ(T ) in which we
only allow circuits to use ends from Ψ. Once more, M∅(T ) is finitary and
MΩ(T ) is cofinitary. If the tree is nice then M∅(T ) and MΩ(T ) are twinned.
We conjecture that in such cases all tame matroids between M∅(T ) and MΩ(T )
are of the form MΨ(T ).

Even though there are lots of examples, the lattices of tame matroids between
twinned pairs of matroids are poorly understood. For example, if (Mf ,Mc) is a
twinned pair of matroids it is clear that every finite minor of Mf on a subset F
of their common ground set also arises as a minor on the same subset F of any
matroid lying between them. It isn’t clear whether the converse holds, even if
N has to be tame. Even the following question remains open:

Open Question 6.3. We say a tame matroid is binary if it does not have U2,4

as a minor [3]. Let (Mf ,Mc) be a twinned pair of binary matroids. Must every
tame matroid lying between them be binary?
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