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Chapter 1

Introduction

1.1 Historic overview
One of the most fundamental areas of study in graph theory is the analysis of
a graph’s connectivity. Most results in that area belong, roughly speaking, to
one of two types: the first type is concerned with finding a highly connected
substructure of the graph and wants, in the case of a graph not containing such
a structure, to find a ‘dual structure’ which witnesses the absence of that highly
connected substructure. Perhaps the first result of this type is Menger’s theorem
which characterizes high connectivity between two vertices via the existence
of a lot of disjoint paths. It states (in one form) that, for any k ∈ N and any
two vertices of a graph, there always exist either k disjoint paths between the
two vertices or a separator of size less than k which separates the two vertices
from another. Thus, we either find a structure witnessing the high connectivity
between the two vertices (the k disjoint paths) or we find a dual structure which
witnesses that such paths cannot exist (the separator of size < k).

The other type of connectivity result is not interested in finding a highly
connected substructure, but instead wants to decompose the graph into small
parts, so that each part contains just one such substructure. As a trivial example,
every graph is the disjoint union of its components, so we can ‘decompose’ the
graph into its 1-connected pieces. The well-known block-cutvertex-tree extends
this, in a way, to 2-connected pieces. It, roughly speaking, allows one to
decompose, in a tree-like way, a connected graph along its cut vertices into
2-connected components.

These two primary results of the second type motivated, starting in the 1960s,
the search for corresponding analogues for higher connectivity: we would like to
be able to decompose a graph in a tree-like way into its (k+ 1)-connected pieces.
However, for increasing k, this task becomes more and more challenging if one
interprets ‘(k + 1)-connected pieces’ as ‘(k + 1)-connected subgraphs’. Already
for k = 2, this does no longer seem to be possible in this naive way. Thus, the
well-known decomposition theorem by Tutte [74] does not give a decomposition
into 3-connected subgraphs: instead Tutte showed (formulated in modern terms)
that every graph admits a tree-decomposition of adhesion 2 such that every torso
of that decomposition is either 3-connected or a cycle.

Moving from 3-connected subgraphs to the torsos in this theorem is a first
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step in an important shift in perspective: instead of requiring that the parts of the
decomposition are 3-connected ‘in their own’, Tutte’s theorem only guarantees
that they are 3-connected ‘in the surrounding graph’.

This shift in perspective resulted in considering k-inseparable sets in a graph
instead of k-connected subgraphs. The first one to consider such sets was Mader
[65]. Formally, a k-inseparable set X in a graph G is a vertex set of size at least
k + 1 with the property that no two vertices in X can be separated in G by k
vertices. Nowadays, maximal such sets are called blocks. Dunwoody and Kröhn
[33] noticed that these k-blocks can be used to generalize, in a way, the classic
result from Tutte to greater values of k, by showing that the k-blocks of a finite
k-connected graph can be separated from another in a tree-like way. This result
has then been generalized by Carmesin, Diestel, Hundertmark and Stein [13] to
graphs of arbitrary connectivity.

Independently of this theory of k-blocks, Robertson and Seymour [68] invented
a new, and radically different notion of a ‘k-connected piece’ as a tool in their
graph minor project: tangles. Instead of characterizing a highly connected
substructure explicitly by some fixed set of vertices and/or edges, they capture a
k-connected piece in an indirect way, following the idea that, for every small (that
is of size less than k) vertex set X of our graph, the majority of a k-connected
piece should be contained in one component of G − X. This can easily be
modelled via separations of a graph: a separation (A,B) of order k in a graph
G consists of two vertex sets A and B such that A ∪B is the whole vertex set
of G, the intersection A ∩B has size k, and there are no edges from ArB to
B rA. Following the idea that a k-connected piece of a graph should always be
contained, with its majority, in one of the two sides, A or B, of such a separation,
Robertson and Seymour then defined their notion of a ‘k-connected piece’ via
the separations of order less than k: a k-tangle is a way to choose a side for each
such separation in a ‘consistent way’, which is traditionally given by requiring
that a tangle should not contain any three separations such that their small
sides, where the small side of a separation (A,B) in a tangle is G[A], cover the
whole graph.

This novel way of indirectly capturing the highly connected pieces of a graph
in particular includes another prototypical example of a substructure of a graph,
of which we might think of as ‘highly connected’, but which is not captured by
the notion of a k-block: large grids. Every large enough grid induces a k-tangle
by orienting every separation towards the side containing more of that grid,
however a large grid does not contain any k-block for k > 4. In fact, the famous
grid theorem by Robertson and Seymour implies that the existence of a high
order tangle is quantitatively bound to the existence of a large grid minor: a
graph contains a large grid as a minor if and only if the graph contains a high
order tangle.

Robertson and Seymour [68] gave theorems of both the types mentioned
above about these tangles: a ‘tangle-tree duality’ theorem and a ‘tree-of-tangles’
theorem. The first one, like Menger’s theorem, characterizes the existence of a
highly connected substructure, in that it shows that a graph contains no k-tangle
if and only if the graph has branch-width at most k − 1.1

The second of these two, like the traditional theorem by Tutte, allows the
1branch-width is a width-measure defined via a so called branch-decomposition. It is closely

related to tree-width in that the tree-width and the branch-width of a graph only differ by a
linear factor.
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decomposition of a graph into its ‘highly-connected’ pieces: there is a tree-
decomposition of the graph that distinguishes all the distinguishable tangles in
that they are contained in distinct bags of this decomposition. More precisely,
this theorem reads as follows:

Theorem 1.1.1 ([68]). Every graph has a tree-decomposition displaying its
maximal tangles.

Since neither does the existence of a k-tangle imply the existence of a k-
block, nor vice versa2, the two distinct notions of ‘highly-connected’ pieces are
independent, and consequently, a unified decomposition; one distinguishing all
the tangles and all the blocks simultaneously, would be a closer representation of
a decomposition into ‘highly-connected pieces’. Such a decomposition was found
by Diestel, Hundertmark and Lemanczyk by inventing the notion of a profile
[27]. Profiles are, in a sense, a weaker version of a tangle in that a k-profile is
again an orientation of the separations of order less than k, but with a weaker
consistency condition. Diestel, Hundertmark and Lemanczyk not only showed
the existence of a decomposition distinguishing all the profiles in a graph, but
even were able, unlike Robertson and Seymour in Theorem 1.1.1, to do so in
a canonical way: their decomposition is invariant under automorphisms of the
graph at hand.

Moreover, all they used in their proof was the relation between the separations
of a graph, apart from this they made no references to the graph structure at
all. Consequently, their theorem is formulated in a new, abstract framework:
‘abstract separation systems’. They were able to formulate their theorem just in
terms of a partially ordered set S together with an order-reversing involution ∗
on S . Here, the elements of S correspond to the oriented separations of a graph.
They observed that the set of all orientated separations of a graph is a lattice,
which they, in the abstract, called a universe of separations. So a universe of
separations is a lattice U together with an order reversing involution on U . Now
given any separation system S contained in such a universe, a profile P of S is
simply a way to choose exactly one orientation from {s, s∗} for every separation
s ∈ S in a consistent way: so that if P contains a separation s, and r is another
separation such that r∗ 6 s then r /∈ P , and so that, whenever r, s are contained
in P , then the inverse (r ∨ s)∗ of their supremum, taken in U , is not contained in
P . The order of the separations of a graph then corresponds to some symmetric
submodular function on U and a k-profile, which generalizes both the k-blocks
and the k-tangles mentioned above is just a profile of Sk , the set of all those
separations from U of order less than k. Consequently, their theorem reads as
follows:

Theorem 1.1.2 (Canonical tree-of-tangles theorem for separation universes
[27, Theorem 3.6]). Let U = (U,6, ∗,∨,∧, |·|) be a submodular universe of
separations. Then, for every robust set P of profiles in U , there is a nested set
T = T (P) ⊆ U of separations such that:

(i) every two profiles in P are efficiently distinguished by some separation
in T ;

(ii) every separation in T efficiently distinguishes a pair of profiles in P;
2although it can be shown that a k-block does give rise to a 2k

3 -tangle
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(iii) for every automorphism α of U we have T (Pα) = T (P)α; (canonicity)

(iv) if all the profiles in P are regular, then T is a regular tree set.

This general abstract setup allows the application of the theory of tangles to
a lot of other contexts such as matroids or arbitrary data sets.

Perhaps surprisingly, Diestel and Oum [29,30] showed that not only a tree-
of-tangles theorem can be formulated in this abstract context, but one can even
prove an abstract version of a tangle-tree duality theorem, which then again
could be applied to a lot of contexts other than graphs.

Consequently, the focus of tangle-theory shifted from the concrete graphs to
this more abstract setup of abstract separation systems. This led to Diestel, Erde
and Weißauer showing in [26] that both, a tree-of-tangles and a tangle-tree duality
theorem, can in fact be formulated without the previously required submodular
order function mentioned above. Instead, they distilled the properties of such an
order function needed in the proof into a structural property, called structural
submodularity. However, their tree-of-tangles theorem, unlike the original one for
profiles from [27] does no longer build a canonical decomposition and also, since
they do not require the existence of a submodular order function, they cannot
guarantee that the decomposition is ‘efficient’ in the sense that the distinct
profiles are always distinguished by separations of the lowest possible order.
Their theorem reads as follows:

Theorem 1.1.3 ([26, Theorem 6]). Let S be a structurally submodular separ-
ation system and P a set of profiles of S. Then S contains a nested set that
distinguishes P.

1.2 The contributions of this thesis
Building on this existing theory we start with the new results presented in
this thesis. Most of the work in this thesis can also be found in the papers
[24,25,36–43], other results will be indicated explicitly.

After giving a formal overview about the notation, definitions and existing
results in Chapter 2, we start in Chapter 3 with studying the following general
considerations: while capturing the highly connected pieces of a graph indirectly
via its tangles has a lot of advantages, it comes at the cost of no longer being able
to easily describe these highly connected regions. The existence of a k-tangle in a
graph does, a priori, not give us any information about that region. Consequently,
in Chapter 3 we try, from different angles, to find concrete witnesses for tangles
and other ‘highly-connected pieces’.

We start in Section 3.1, which is based on [37], with the following: while
in fact all the prototypical examples of a tangle, like for example a large grid,
have the property that there exists a vertex set X (in the context of the grid,
the vertex set of that grid) such that every separation in the tangle is oriented
towards the side containing more vertices from X, it is an open question by
Diestel [27] whether such a vertex set, which we call a decider set, exists for all
tangles in graphs. Our first main theorem from Section 3.1 provides a partial
solution to this:
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Theorem 1. Let G = (V,E) be a finite graph and τ a k-tangle in G. Then there
exists a function w : V → N such that a separation (A,B) of G of order < k lies
in τ if and only if w(A) < w(B), where w(U) :=

∑
u∈U w(u) for U ⊆ V .

While this theorem does not give us such a vertex set X as mentioned above,
it at least gives us a weighted version of such a set which as such guarantees
that a k-tangle in a graph at least ‘points to something’. Perhaps surprisingly,
this result extends to profiles of graphs and hypergraphs as well as to a variation
of tangles in a graph which deals with separations corresponding to edge cuts:

Theorem 2. Let G = (V,E) be a finite (multi-)graph and τ a k-edge-tangle in
G. Then there exists a function w : V → N such that a cut (A,B) of G of order
< k lies in τ if and only if w(A) < w(B).

However, we also show in Section 3.1 that an extension to a version of these
edge-tangles for hypergraphs is not possible, by giving an example of such a
tangle which does not have such a weighted decider, and thus also does not have
a decider set.

After that, we deal in Section 3.2, which is based on parts of [25], with other
ways to guarantee the existence of a decider, even if the considered setup is not
covered by Theorem 1 or Theorem 2, because we work, for example, with the
edge-tangles of hypergraphs. We obtain a sufficient condition on a tangle, which
we call a high enough resilience, which guarantees the existence of a weighted
decider for any tangle of set separations, independent of the concrete setup.
More specifically, we can show the following:

Theorem 3. Let U be the universe of all set separations of some finite set V ,
and let τ be an orientation of some set S ⊆ U of separations. Let m be the
number of maximal elements of τ . If τ is k-resilient for some k > m

2 , then τ
has a decider.

The other half of Section 3.2 is devoted to finding actual decider sets, rather
than just weighted versions of them. While we cannot show that every tangle,
even in a graph, has a decider set, we can at least show that a restriction of the
tangle to a lower order has. More precisely, we can show the following:

Theorem 4. Let U be a universe of set separations of some finite set V equipped
with the order function |(A,B)| = |A∩B| and let k ∈ N. If τ ′ is a k-profile in U
which extends to a regular 2k-profile τ in U , then τ ′ has a decider set X ⊆ V of
size |X| > 2k.

Another possible way to guarantee the existence of a tangle of a separation
system is via the existence of a tangle of a certain ‘dual’ separation system. In
Section 3.3, which is based on [24], we describe a naturally arising setup of two
separation systems of which we think as dual. In that setup, a tangle of one of
the separation systems naturally gives an orientation of the other one. We will
show that this orientation, restricted to a lower order, actually will be a tangle,
i.e. we show the following:

Theorem 5. Let τ be a tangle of S4k (X) and let τ ′ = .τ ∩ Sk (Y ), then τ ′ is a
tangle of Sk (Y ).
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In some sense, this tangle is then witnessed by the tangle of the other, ‘dual’
separation system.

After proving Theorem 5 which says that the ‘shift’ of a tangle of one
separation system gives, restricted to a lower order, again a tangle, a natural
question to ask is whether performing these shifting operation a second time
gives a restriction of the original tangle. As it turns out, this is indeed the case,
more precisely we can show the following:

Theorem 6. Let τ be a tangle of S16k (X), let τ ′ = .τ ∩ S4k (Y ), and let
τ ′′ = /τ ′ ∩ Sk (X). Then τ ′′ ⊆ τ .

We will also consider in Section 3.3 some variations and generalizations of
this idea of obtaining one tangle from another via a ‘shifting’ operation.

We end Chapter 3 with a result exclusive to this thesis in Section 3.4, where
we consider a different type of dense structures in graphs: ‘agile sets’. Weißauer
[76] proposed them as a possible generalization of the special case of ‘Z-linkages’
for sets Z of size 4, which were considered independently by Seymour in [70] and
Thomassen in [72]. Weißauer defined a vertex set X in a graph G to be agile if
there are, for any partition X = X1 ∪X2 of X into disjoint sets, two distinct
trees T1, T2 in G such that X1 is contained in T1 and X2 is contained in T2. In
that sense, every two partition classes of X can be connected independently.
Thus, a large agile set is another object of which we might think of as highly
connected. These large agile sets are not directly connected to profiles or tangles,
as for example the bipartite graph K2,k does contain an agile set of size k, but no
l-profile for l > 3. Weißauer asked whether, in a sense, these agile sets actually
measure high connectivity in terms of these bipartite graphs by asking whether
we can force the existence of a K2,k-minor in a graph by requiring the existence
of a large agile set.

In Section 3.4 we show that the general answer to this question is no, but
only because of one specific additional structure: a large regular strip, the graph
obtained from two long disjoint paths P1 = v1v2 . . . vk and P2 = w1w2 . . . wk by
adding all the diagonal edges viwi+1 and wivi+1. Concretely, building on the
characterization of large K2,k-minor free graphs by Ding [32] we can show the
following:

Theorem 7. There exists a function f : N → N, such that every graph with
an agile set of size f(k) either contains K2,k or a regular strip of length k as a
minor.

After proving this, we consider a possible generalization of agile sets. Instead
of partitioning X into just two sets we might allow a partition into at most m
classes, say, and consequently require that for any partition X = X1 ∪ · · · ∪Xm

we find disjoint trees T1, . . . , Tm so that Xi ⊆ Ti. This notion is what we call
m-agile. As it turns out, this time using a theorem by Geelen and Joeris from
[50] which generalizes the grid theorem, large m-agile sets are quantitatively
characterized by the existence of either a Km,N or a large rectangular grid minor:

Theorem 8. There is a function f : N2 → N such that every graph containing
an ((m − 1)2m + 1)-agile set of size at least f(m, k) contains Km,k or the
(2m− 1)× k-grid as a minor.
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Note however, that this theorem is quantitative not only in terms of the size
of the m-agile set, but also in terms of m: a Km,k and a (2m− 1)× k-grid both
only contain a large m-agile set, not a large ((m− 1)2m+ 1)-agile set.

In Chapter 4 we then return to tangles and profiles in abstract separation
systems and focus on generalizations of the existing tree-of-tangle theorems.
Prior to this thesis, there were two concurring tree-of-tangles theorems, both
of which can claim for themselves to be the one of greatest generality. On the
one hand we have Theorem 1.1.2 by Diestel, Hundertmark and Lemanczyk from
[27], on the other hand we have Theorem 1.1.3 by Diestel, Erde and Weißauer
from [26].

Since a structurally submodular separation system is a weaker object than a
submodular universe of separations, Theorem 1.1.3 is more widely applicable.
On the other hand, Theorem 1.1.2 improves over Theorem 1.1.3 in terms of
the strength of the statement: not only is the tree of tangles achieved by
Theorem 1.1.2, unlike the one from Theorem 1.1.3, canonical, i.e. invariant under
isomorphisms, it also distinguishes the used profiles efficiently, that is with a
separation of lowest possible order. Since Theorem 1.1.3 does not require the
existence of an order function, it cannot achieve this. Consequently, it would
be nice to have a theorem combining the strengths of these two: it should be
applicable even without an order function, but if something like an order function
exists, we should be able to obtain a tree of tangles which indeed distinguishes
any two profiles by a separation of lowest possible order. This is the first goal
we achieve in Section 4.1, which is based on [39]. There, we are able to show the
following:

Theorem 9. If S = (S1, . . . , Sn) is a compatible sequence of structurally submod-
ular separation systems inside a universe U, and P is a robust set of profiles in
S, then there is a nested set N of separations in U which efficiently distinguishes
all the distinguishable profiles in P.

Not only does Theorem 1.1.3 follow from Theorem 9 by applying it to a
sequence S consisting of just one S1, also a non-canonical version of Theorem 1.1.2
can be obtained from Theorem 9 as a simple corollary.

But even more interesting than the result of Theorem 9 is the way we proved
it. We observed that for proving tree-of-tangles theorems we actually do not
even need to keep the information about the considered profiles, actually all we
need is an information about the separations used to distinguish them. More
precisely, we only need to consider, for every pair P, P ′ of profiles we want to
distinguish, the set AP,P ′ of separations which (efficiently) distinguish them.
The information that the considered objects are actually profiles is then only
used to conclude one simple property of the relation of the sets AP,P ′ to one
another, which we call splinters. The main ingredient of the proof of Theorem 9
is then our following key lemma:

Lemma 10 (Splinter Lemma). Let U be a universe of separations and let
A = (Ai)i6n be a family of subsets of U. If A splinters, then we can pick an
element ai from each Ai so that {a1, . . . , an} is nested.

Although the proof of Lemma 10 only takes a little more than half a page, it
is the key tool to obtain various tree-of-tangles theorems. In particular, all that
is required to prove the reader’s favourite tree-of-tangles theorem is to check
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that corresponding sets AP,P ′ satisfy our splinter condition, whose definition is
simple and which is easy to check. We show this in Section 4.1.3 by applying
Lemma 10 in a variety of contexts.

The one remaining flaw of Theorem 9 compared to the existing Theorem 1.1.2
is the fact that our splinter Lemma 10 and thus also Theorem 9 cannot achieve
a canonical tree of tangles. This is due to the fact that our splinter condition is
formulated as the weakest possible condition to guarantee the existence of a tree
of tangles, and therefore is too weak to guarantee that the construction of such
a tree can be carried out canonically. Consequently, we obtain in Section 4.1.4 a
stronger, splinter-like condition which we call splinters hierarchically and which
does allow us to obtain a canonical version of Lemma 10. Namely, we can show
the following:

Lemma 11 (Canonical Splinter Lemma). Let U be a universe of separations and
let A = (Ai : i ∈ I) be a collection of subsets of U that splinters hierarchically
with respect to a partial order 4 on I. Then there exists a nested set N = N(A)
meeting every Ai in A.

Moreover, N(A) is canonical: if ϕ is an isomorphism of separation sys-
tems between

⋃
i∈I Ai and a subset of some universe U ′ such that the family

ϕ(A) := (ϕ(Ai) : i ∈ I) splinters hierarchically with respect to 4, then we have
that N(ϕ(A)) = ϕ(N(A)).

This lemma is again applicable in a variety of contexts, as we demonstrate
in Section 4.1.5.

In Section 4.2, which, at the time of writing, is exclusive to this thesis, we
are concerned with trees of tangles in one specific application: directed graphs.
For the corresponding notion of a separation in a directed graph, which we
call a directed separation, it is in general not possible to obtain a nested set of
separations distinguishing the corresponding (directed) tangles, due to the fact
that they do not allow the building of new separations out of existing ones in
the same way as ordinary separations in graphs do. Consequently, they do not
form a universe of separations and thus our splinter Lemma 10 cannot directly
be applied to them. The best distinguishing structure for directed graphs we
can hope for thus needs to be weaker, for example a tree-labelling as defined and
constructed by Giannopoulou, Kawarabayashi, Kreutzer and Kwon in [51].

We would like to obtain a result like theirs using the ideas of our splinter
Lemma 10. This cannot be done by directly applying Lemma 10, as the directed
separations, as mentioned above, do not form a universe of separations. But,
perhaps surprisingly, we can abstract Lemma 10 even further in order to be
able to apply it to directed separations. Namely, all that is needed from the
universe of separations and the separation systems in Lemma 10 is the nestedness
relation on the undirected separations and the existence of certain joins and
meets, which is guaranteed by the fact that the universe is a lattice. This
nestedness relation is just a reflexive and symmetric relation, and the properties
of a separation system required to prove Lemma 10 can entirely be described
via this nestedness relation. Consequently, we can give an abstract definition of
our splinter condition in terms of this nestedness relation. Using this idea we
can then obtain the following, abstract version of Lemma 10:

Lemma 12 (Abstract Splinter Lemma). Let A be a finite set and let ∼ be a
reflexive and symmetric relation on A. Let A = {A1, . . . ,An} be a family of
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subsets of A which splinters. Then there is a set N = {a1, . . . , an} ⊆ A such
that ai ∈ Ai for every 1 6 i 6 n and such that a ∼ a′ for any a, a′ ∈ N .

Using this abstract version of Lemma 10 we are then able to develop a theory
of directed separation systems in Section 4.2.3, together with a corresponding
notion of a profile, in a similar fashion as the abstract separation systems
generalized the separations of an undirected graph. In the context of these
directed separation systems and their profiles we can then define a weaker
relation, which we call weakly P-nested, and are able to show the existence of a
tree of tangles with respect to this relation:

Theorem 13. If P is a set of distinguishable profiles in a directed universe U ,
then there exists a weakly P-nested set of separations which efficiently distin-
guishes every two profiles from P.

This theorem can be applied to the directed separations of a directed graph
and with this application we obtain a tree-labelling like the one constructed by
Giannopoulou, Kawarabayashi, Kreutzer and Kwon in [51]. In that way, we give
an alternative proof of their theorem, based on our abstract splinter Lemma 12.

After this excursion to abstract directed structures, we are, once more,
concerned with the existence of canonical tree-of-tangles theorems in usual
abstract separation systems. Our canonical splinter Lemma 11 does not allow
us to give a canonical version of Theorem 1.1.3, due to the fact that the sets
AP,P ′ obtained from the profiles of a structurally submodular separation system
do not necessarily splinter hierarchically. Nevertheless, we can prove a canonical
version of Theorem 1.1.3, and we do so in Section 4.3, which is based on [36].
Concretely, we show the following:

Theorem 14. Let S be a structurally submodular separation system and P
a set of profiles of S. Then there is a nested set N = N(S ,P) ⊆ S which
distinguishes P. This N(S ,P) can be chosen canonically: if ϕ : S → S′

is an isomorphism of separation systems and P ′ := {ϕ(P ) : P ∈ P} then
ϕ(N(S ,P)) = N(S′,P ′).

After having dealt with distinguishing tangles in a lot of different finite
contexts, we turn our attention in Section 4.4, which is based on [42], towards
infinite structures. Lemma 10 does not hold in an infinite setting due to the
fact that it is proved via induction, and a transfinite version of this proof would
require us to perform a limit step, which unfortunately is not possible. However,
we can obtain a version of Lemma 11 in the infinite setting. We this time
formulate this Lemma directly in the more abstract from of Lemma 12, as we
will need to apply it in this more abstract form. Moreover, our corresponding
infinite version of ‘splinters hierarchically’, which we call ‘splinters thinly’ is
slightly stronger as this definition additionally requires, roughly speaking, that
the separation at hand only crosses with finitely many others of the same order.
Apart from that, we can obtain exactly the same theorem as Lemma 11 in an
infinite setting:

Lemma 15. If (Ai : i ∈ I ) thinly splinters with respect to some reflexive
symmetric relation ∼ on A :=

⋃
i∈I Ai, then there is a set N ⊆ A which meets

every Ai and is nested, i.e. n1 ∼ n2 for all n1, n2 ∈ N . Moreover, this set N
can be chosen invariant under isomorphisms: if ϕ is an isomorphism between
(A,∼) and (A′,∼′), then we have N((ϕ(Ai) : i ∈ I )) = ϕ(N((Ai : i ∈ I ))).
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Unlike for finite graphs, Lemma 15 cannot directly be applied in the context
of profiles (or tangles) of an infinite (not locally finite) graph, as the considered
separations there would not need to splinter thinly. This, however, is in line
with the existing theory: there does not in fact exist a theorem stating that all
tangles of an infinite graph can canonically be distinguished by a nested set of
separations, not even if one special type of ‘silly’ tangles, called ultrafilter tangles,
is excluded. In fact, such a nested set can only be obtained in a non-canonical
way, as shown by Carmesin [9]. However, as shown by Carmesin, Hamann,
Miraftab [14], there does exist a canonical structure to distinguish the tangles
of an infinite graph, which they call a tree of tree-decompositions. Both these
results can be deduced from Lemma 15, via an additional twist. We obtain
both of these results via an intermediate step which is interesting in its one
right: while it is not possible to find a canonical nested set of separations which
distinguishes all the tangles of an infinite graph, it is possible to define a notion
of nestedness for the separators of such separations for which this is possible.
Namely, we are able to show the following:

Theorem 16. Given a set of distinguishable robust regular profiles P of a graph
G there exists a canonical nested set of separators efficiently distinguishing any
pair of profiles in P.

This nested set of separators can then be, on the one hand, used to construct
a non-canonical nested set of separations like the one from [9], and on the other
hand to obtain a tree of tree-decompositions as defined by Carmesin, Hamann,
Miraftab.

While this application of Lemma 15 to classical separations of infinite graphs
is a bit tricky, there does in fact exist a prototypical application of Lemma 15:
it can be naturally applied to the edge-blocks of a graph, where a k-edge-block
shall be a ⊆-maximal subgraph which cannot be separated by a set of less than
k edges. Consequently, we show in Section 4.5, which is based on [43], the
following:

Theorem 17. Every connected graph G has a nested set of bonds that efficiently
distinguishes all the edge-blocks of G.

This theorem can also be deduced from the theory of edge-cuts developed
by Dicks and Dunwoody [17], as they showed that every graph contains a
canonical nested set of bonds which generates all other bonds. Here, a bond
can be generated from a set of bonds if the separation corresponding to that
bond can be obtained from the separations corresponding to the set of bonds
via finite combination of join and meet operations. As it turns out, not only
does such a set of bonds which generates all bonds need to distinguish all the
edge-blocks efficiently, also the other direction holds: every nested set of bonds
which efficiently distinguishes all the edge blocks will also generate all bonds, i.e.
we can show the following result:

Theorem 18. Let G be any connected graph and let M be any nested set of
bonds of G. Then the following assertions are equivalent:

1. M efficiently distinguishes all the edge-blocks of G;

2. For every k ∈ N, the 6k-sized bonds in M generate all the k-sized cuts
of G.
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Thus, Theorem 17 and Theorem 18 together give an alternative, combinatorial
proof based on Lemma 15 of the important result by Dicks and Dunwoody.

The last Section 4.6 of Chapter 4, which is based on [41], is devoted not to
the development of even more general tree-of-tangles theorems, but to obtaining
such a theorem via a completely different proof method. The theory of tangles
consists, as already stated in the introduction, of two major types of theorems:
on the one hand there are tree-of-tangles theorems which seek out to distinguish
all the given tangles of our structure, on the other hand there are tangle-tree
duality theorems which are concerned with structures witnessing the absence
of tangles. While these two types of theorems are fundamentally different, we
show in Section 4.6 that actually the most general form of a tangle-tree duality
theorem can be used to prove tree-of-tangles theorems, for example a version of
Theorem 1.1.3. Consequently, the two archetypical results from tangle theory
are not as fundamentally different, as one might think.

We prove a tree-of-tangles theorem via a tangle-tree duality theorem by
considering a hand crafted structure as a ‘tangle’, which cannot exist in the
given structure. Consequently, the tangle-tree duality theorem will then give us
a tree-like structure witnessing the absence of this type of tangle. This structure
can then be used to obtain the desired tree-of-tangles theorem. Proving a tree-
of-tangle theorem in this way actually has the benefit of allowing us, in some
cases, to give some bound on the degree of the nodes in such a tree, something
which is not so easy to do with the conventional methods. For example, we can
show the following:

Theorem 19. Let U be a submodular universe and let P be the set of regular
profiles of Sk . Then there exists a tree of tangles (T, α) such that, for every
profile P ∈ P, the degree of P in (T, α) is δe(P ) and the maximal degree of T is
at most max{δe(P), 3}.

The last Chapter 5 of this thesis deals with abstract separation systems as an
object of its own right. While a lot of results in this thesis are formulated in the
context of these separation systems, not so much is known about their general
properties. For example, one question we answer in Section 5.1, which is based
on [38], is the following: prior to this thesis, it was not known whether there
actually exists a submodular separation system which does not at all come from
a submodular order function. If in fact all such systems would come from some
submodular order function, then all the results about structurally submodular
separation systems would actually be just corollaries from the corresponding
result about separation systems with an order function. But, as it turns out,
there indeed are such examples and we construct one in Section 5.1.3:

Theorem 20. There exists a separation system S which is submodular in a
universe U of set bipartitions whose submodularity in U is not induced by a
submodular order function on U .

Another question about these abstract separation systems deals with their
interior structure. It has been characterized [3] which abstract separation systems
do arise as the special type of bipartitions of a finite set. What we are able to
show in Section 5.1.5 is that in fact every structurally submodular separation
system, in a distributive universe, can be built from these systems of bipartitions.
More specifically, we can show the following:
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Theorem 21. Every separation system S which is submodular in some dis-
tributive universe U of separations is a disjoint union of corner-closed subsystems
S1 , . . . , Sn of S (which are thus also submodular in U) each of which can be
corner-faithfully embedded into a universe of bipartitions.

Finally, in Section 5.2, which is based on [40], we focus again on the difference
between separation systems arising from an order function and the structurally
submodular ones. It can be shown that the former ones always have the following
property: if Sk is the set of all separations of order less than k, then we find
a separation in Sk so that after deleting this separation we are left with a
separation system that is still structurally submodular. If an equivalent property
would hold for every structurally submodular separation system S, then each
such system could be obtained via a sequence ∅ = S0 ⊆ S1 ⊆ · · · ⊆ Sn = S of
structurally submodular separation systems, where any two consecutive systems
differ in just one separation. We could then think of the ‘order’ of a separation
as the smallest k for which that separation appears in Sk and would hope that
some of the proofs using a submodular order function could still be carried out
for this definition of order. Unfortunately, at least for separation systems in a
non-distributive universe, such a sequence does not need to exist, as we show in
Section 5.2.5. For separation systems in distributive universes on the other hand,
the problem turns out to be equivalent to the following easy to state question
about subsets of a finite set:

Problem 22 (Unravelling problem). A finite set X of finite sets is woven if, for
all X,Y ∈ X , at least one of X ∪ Y and X ∩ Y is in X . Let X be a non-empty
woven set. Does there exist an X ∈ X for which X −X is again woven?

While we do not know the general answer to Problem 22, we still can provide
a partial positive answer to a variation of that problem.

Instead of measuring the submodularity of a separation system ‘externally’,
inside a surrounding universe of separations, we may as well measure this
submodularity ‘internally’ inside the separation system itself. That is, we may
say that a separation system S is submodular if for any two separations s and
t in that system there exists a common join or a common meet inside that
separation system. A similar property may also be defined just for arbitrary
posets: let us call a poset P woven if any two elements of that poset have a
join or a meet, calculated inside the poset. Now, an unravelling of such a woven
poset P is a sequence ∅ = P0 ⊆ · · · ⊆ Pn = P as above: with the property that
every Pi is woven and any two consecutive Pi differ by only one element. What
we can show in Section 5.2.6 is the following:

Theorem 23. Every woven poset can be unravelled.

An analogue statement also holds for the ‘internally’ submodular separation
systems mentioned above.
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Chapter 2

Preliminaries

We use the basic graph-theoretic notation from [20]. Moreover, this thesis is
build on the theory of (abstract) separation systems introduced for example in
[21, 27]. In what follows we will recap the definitions from that context that we
need and, in some cases, generalize them slightly to feed our needs.

2.1 Lattice Theory
The definitions in this section are based on [16]. A partially ordered set or poset is
a set P together with a binary relation 6 on P which is reflexive, antisymmetric,
and transitive. Given a poset (P,6) and a, b ∈ P we write a < b to mean that
both a 6 b and a 6= b hold.

A lattice is a non-empty partially ordered set (L,6), in which any two points
a and b have a join and a meet. Here, a join (or supremum) of a and b is an
element c ∈ L such that a 6 c and b 6 c with the additional property that c 6 d
whenever a 6 d and b 6 d. So there is a smallest upper bound for a and b. This
element is then denoted as a∨ b. Analogously, a meet (or infimum) of a and b is
an element c ∈ L such that c 6 a and c 6 b with the additional property that
d 6 c whenever d 6 a and d 6 b. So there is a largest lower bound for a and b.
This element is then denoted as a ∧ b.

Every finite lattice (L,6) has a top element > satisfying a 6 > for all a ∈ L
and a bottom element ⊥ satisfying ⊥ 6 a for all a ∈ L.

A lattice (L,6) is said to be distributive if the distributive laws hold, i.e.
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L.

An isomorphism between two lattices (L,6) and (L′,6′) is a bijection
ϕ : L→ L′ respecting the partial orders, that is for a, b ∈ L we have that
a 6 b if and only ϕ(a) 6 ϕ(b). Note that such an isomorphism needs to respect
joins and meets, i.e. ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b) and ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b) for all
a, b ∈ L.

A typical example of a lattice is the so called subset lattice of a set V : the
set of all subsets of V ordered by inclusion (so A 6 B if and only is A ⊆ B) is a
distributive lattice, where A ∨B = A ∪B and A ∧B = A ∩B for all A,B ⊆ V .
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2.2 Abstract Separation Systems
In this section, we follow the notation from [21]. A separation system (S ,6, ∗)
consists of a partially ordered set (S ,6) together with an order-reversing invol-
ution ∗. Here, an involution is a map ∗ : S → S such that (s∗)∗ = s and ∗ being
order-reversing means that s 6 t if and only if t∗ 6 s∗ for all s, t ∈ S . In most
parts of this thesis, we will assume that the considered separation systems are
finite, we will explicitly state where we do not require this. The definitions in
Chapter 2 however are formulated such that they also hold for infinite separation
systems.

The elements of S are called oriented separations. Given a separation s
inside a separation system S , we also write s as shorthand for the inverse s∗ of
s under ∗. For the set {s, s} consisting of an oriented separation s together with
its inverse, we use the shorthand notation s and call s an unoriented separation
or the underlying unoriented separation of s (or s). Moreover, we write S to
denote the set of all the unoriented separations belonging to separations in S .
The other way around, given an unoriented separation s the orientations of s
are the oriented separations contained in s and denoted by s and s. Given a set
T of unoriented separations we mean by T the set of all oriented separations
contained in the elements of T .

If there is no risk of confusion we may use the term separation to mean either
an oriented or an unoriented separation, and we will use terms and properties
only defined for one of the two types also for the other one if the meaning is
clear. Moreover, we may also talk about the separation system S to mean a
separation system (S ,6,∗ ) of which S is the set of unoriented separations.

An isomorphism between separation systems (S ,6,∗ ) and (S′,6′,◦ ) is a
bijection ϕ between S and S′ respecting the partial order and the involution, so
s∗ = ϕ(s)◦ and s 6 t if and only if ϕ(s) 6′ ϕ(t) for all s, t ∈ S .

Two unoriented separations s and t from a separation system S are nested
if there are orientations s and t of s and t such that s 6 t. Note that this is a
symmetric property, as s 6 t implies that t 6 s. If s and t are not nested, they
cross, or are crossing separations. We will use the terms of nested and crossing
separations also for oriented separations to mean that the unoriented separations
corresponding to them cross.

We say that two oriented separations s and t point towards each other if
s 6 t. Note that this implies that also t 6 s. The separation s and t point away
from each other if t 6 s, and thus also s 6 t. So, if two oriented separations s
and t are nested, they either are comparable (so s 6 t or t 6 s), or they point
towards each other, or they point away from each other.

A set N of unoriented separations is nested if the elements of N are pairwise
nested.

A separation s in S is called small if s 6 s. In that case we say that s is
co-small. A set N of oriented separations is regular if N does not contain any
co-small separations. Consequently, a set N of unoriented separations is regular
if N is regular, i.e. if no separation in N has a small orientation.

A separation s in S is called trivial in S if there is a separation t in S such
that s < t and s < t. As above, in that case we say that s is co-trivial in S
and that s is trivial in S. Note that every trivial separation is small, but the
opposite is not true in general. In particular, whether a separation is trivial or
not depends on the surrounding separation system.
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Given a separation system S, a nested set N of unoriented separations from
S is called a tree set if N does not contain any separation which is trivial in S.

A separation s is called degenerate if s = s.
A star of separations is a set σ of oriented separations which are not degenerate

and all point towards each other. That is, any two distinct separations s, r ∈ σ
satisfy that s 6 r. In particular, any two separations in a star are nested.

2.3 Universes of separations
Like for the previous section, the terms in this section are based on [21].

If a separation system (U,6,∗ ) happens to be a lattice we say that U or
(U,6,∗ ) is a universe of separations. In universes, DeMorgan’s law holds, i.e.
(s ∨ t)∗ = s ∧ t.

A homomorphism between universes (U,6,∗ ) and (U ′,6′,◦ ) is any map
ϕ : U → U ′ which respects the involutions and the joins and meets of U and
U ′, so ϕ(s) = ϕ(s)◦, ϕ(s ∨ t) = ϕ(s) ∨ ϕ(t), and ϕ(s ∧ t) = ϕ(s) ∧ ϕ(t) for
all s, t ∈ U . Note that each such homomorphism respects the partial order on
U , as given s 6 t in U we have that ϕ(t) = ϕ(s ∨ t) = ϕ(s) ∨ ϕ(t) and thus
ϕ(s) 6 ϕ(t).

Observe that, if U and U ′ are universes and ϕ : U → U ′ is an isomorphism
between the underlying separation systems (U,6,∗ ) and (U ′,6′,◦ ), then ϕ is also
a homomorphism between U and U ′, i.e. ϕ respects the join and meet operations.
Consequently, we say that such a map is an isomorphism of universes. Note
that if ϕ is an isomorphism of universes, then ϕ also is an isomorphism between
the underlying lattices. Like for separation systems, we say that two universes
are isomorphic if there is such an isomorphism.

Given two unoriented separations s and t inside a universe any separation
of the form s ∨ t or s ∧ t is called a corner or corner separation of s and t.
Moreover, we will also call any underlying unoriented separation of such a corner
separation a corner (or corner separation) of s and t. Consequently, the set of
unoriented corner separations consists of four separations (although it is possible
that some of these unoriented separations may coincide).

An important basic property of these corner separations is collected in the
so called fish lemma:

Lemma 2.3.1 ([21, Lemma 3.2]). Let r, s ∈ U be two crossing separations.
Every separation t that is nested with both r and s is also nested with all four
corner separations of r and s.

2.4 Submodularity
The notation in this section is also based on [21]. Usually (except for some part
of Chapter 5) we are interested in separation systems which are contained in
some surrounding universe of separations and fulfil some kind of submodularity
inside this universe.

One possible variant of this submodularity is the existence of a submodular
order function on U . Here, an order function is a function from the set U into
the natural numbers1, i.e. |·| : U → N which is symmetric in that |s| = |s| for all

1In this thesis, the set N of natural numbers includes 0.
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s ∈ U . We then also write |s| to mean |s| = |s|. That an order function |·| is
submodular means that |s|+ |t| > |s ∨ t|+ |s ∧ t| for all s, t ∈ U .

We say that a universe U is submodular or a submodular universe if it comes
with a submodular order function. Given such a submodular universe, we usually
consider the separation systems Sk := {s ∈ U : |s| < k} of all separations of
order less than k, for k some integer or k = ℵ0. Note that Sℵ0 = U .

In some parts of the literature such a submodular order function is also
considered to be a function f : U → R into the reals instead of the natural
numbers. This however only is the case in some parts of the literature which
deal with finite universes, and in finite universes, due to the fact that the reals
can be considered as a vector space over the rationals and moreover the rationals
are dense in the reals, every such function into the reals can be replaced by a
function into the natural numbers, without changing the family of the sets Sk,
as shown in the following lemma:

Lemma 2.4.1. Let U be a finite universe and let f : U → R be a function
that is symmetric and submodular. Then there is a submodular order function
|·| : U → N such that there is, for every real number b, a natural number k such
that {s ∈ U : f(s) < b} = Sk and conversely, for every natural number k there
is a real number b such that {s ∈ U : f(s) < b} = Sk .

Proof. We will first show that we can find a rational valued function with which
we can replace f . For this we note that, since U is finite, there are only finitely
many distinct values a1 < a2 < · · · < an the function f takes. Moreover,
there exists an ε > 0 such that submodularity is always satisfied with either
equality, or with a difference of size at least ε and that moreover the difference
between any two ai is at least ε. For example, we can choose ε so that for any
a, b, c, d ∈ {a1, . . . , an} we either have a+ b = c+ d or |a+ b− c− d| > ε.

We now choose a collection {b1, . . . , bk} of real numbers so that {b1, . . . , bk}
is ⊆-minimal with the property that there are, for every ai, rational numbers
q1,i, . . . , qk,i such that ai =

∑k
j=1 qj,ibj . Since {a1, . . . , an} is a candidate for

this collection, such a collection exists.
Now we choose, for 1 6 j 6 k, the number mj to be the maximal |qj,i|, where

this maximum is taken over all i from 1 to n. Moreover, let εj be smaller than
ε

4kmj . Since Q is dense in R, we find rational numbers rj so that |bj − rj | < εj

for every 1 6 j 6 k. We now construct a function fq : U → Q by declaring that
fq(s) =

∑k
j=1 qj,irj whenever f(s) = ai.

Clearly, fq is symmetric, we claim that fq is again submodular and that there
is, for every real number b, a rational number q such that

{s ∈ U : f(s) < b} = {s ∈ U : f(s) < q}.

To see that fq is submodular let s, t ∈ U . If f(s) + f(t) 6= f(s ∨ t) + f(s ∧ t)
we know, by the choice of ε, that f(s) + f(t) > f(s ∨ t) + f(s ∧ t) + ε. However,
by our choice of the rj we know that |fq(u) − f(u)| 6 ε

4 for any u ∈ U , thus
indeed fq(s) + fq(t) > fq(s ∨ t) + fq(s ∧ t).

If on the other hand f(s) + f(t) = f(s ∨ t) + f(s ∧ t), say because of
f(s) = aw, f(t) = ax, f(s ∨ t) = ay, f(s ∧ t) = az and aw + ax = ay + az, we
claim that qj,w + qj,x = qj,y + qj,z for every 1 6 j 6 k. Indeed, we know that
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k∑
j=1

qj,wbj +
k∑
j=1

qj,xbj =
k∑
j=1

qj,ybj +
k∑
j=1

qj,zbj

and if qm,w + qm,x 6= qm,y + qm,z, say, then

bm =
∑k
j=1,j 6=m qj,wbj +

∑k
j=1,j 6=m qj,xbj −

∑k
j=1,j 6=m qj,ybj −

∑k
j=1,j 6=m qj,zbj

qm,y + qm,z − qm,w − qm,x
which contradicts the choice of {b1, . . . bl}, as this means that bm is a rational
linear combination out of the other bj , hence {b1, . . . , bm−1, bm+1, . . . , bk} con-
tradicts the ⊆-minimality of {b1, . . . bl}.

Thus, indeed qj,w + qj,x = qj,y + qj,z for every 1 6 j 6 l and hence we also
have, by the construction of fq, that fq(s) + fq(t) = fq(s ∨ t) + fq(s ∧ t).

Since the value of fq only depends on the value of f , we clearly also have that
fq(s) = fq(t) whenever f(s) = f(t). Moreover, if f(s) < f(t), say, then clearly
our choice of ε implies that f(s) + ε 6 f(t), and thus, since |f(s)− fq(s)| 6 ε

4 ,
we have that also fq(s) < fq(t). Thus, it is easy to find for every real number
b a rational number r so that {s ∈ U : f(s) < b} = {s ∈ U : fq(s) < r}
and conversely, for every rational number r to find a real number b so that
{s ∈ U : f(s) < b} = {s ∈ U : fq(s) < r}.

Now to obtain an actual submodular order function out of fq we observe
that, again since U is finite, there is a natural number M such that Mfq is
a function with values in Z. Now let N be the minimal value of Mfq then
|s| = M · fq(s)−N is a function with values in N, and it is easy to show that
this is the required order function.

In the infinite setting however, a statement like Lemma 2.4.1 is no longer
possible. Since there the theory only works for an order function which indeed
takes it values in the natural numbers, order functions in this thesis are always
required to be N-valued. However, all statements about finite universe with
an order function can, using Lemma 2.4.1, be easily translated to also work if
instead a real-valued symmetric submodular function is given.

While all the theory of tangles was originally performed in these submodular
universes, nowadays one usually can work with a weaker property. Namely, with
the notion of (structurally) submodular separation systems inside a universe,
developed by Diestel, Erde and Weißauer in [26]. Given a universe U , we say
that a separation system S ⊆ U is (structurally) submodular in U if for any two
s, t ∈ S we have that s ∨ t ∈ S or s ∧ t ∈ S , where s ∨ t and s ∧ t are the joins
and meets taken in the surrounding universe U . Note that this is not the same as
requiring that there is a join or a meet of s and t in the poset S , this is another
possible notion of submodularity which is considered in parts of Chapter 5.

The notion of structural submodularity of S in U is weaker than requiring
that U is submodular in that, given a submodular universe U , every Sk needs to
be structurally submodular in U , due to the fact that the order function on U is
submodular.

2.5 Orientations
The definitions in this section are from [27]. Given a separation system S, a
subset O ⊆ S is antisymmetric if |O ∩ {s, s}| 6 1 for every separation s ∈ S . In
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that case we say, given some s ∈ S, that O orients s (as s) if s ∈ O.
If O contains exactly one orientation of every separation in S, that is

|O ∩ {s, s}| = 1 for every s ∈ S , i.e. O orients every separation from S, then O
is said to be an orientation of S.

Such an orientation O is consistent if O does not contain any two distinct
separations r and s such that r 6 s. In particular, a consistent orientation of S
cannot contain any separation which is co-trivial in S , as if s ∈ S is co-trivial,
witnessed by the separation t 6= s, then t 6 s and t 6 s and thus a consistent
orientation containing s can neither contain t nor t, i.e. would not orient t.

A separation s (or its orientations) distinguishes two orientations O and O′
(of potentially different separation systems) if s is not degenerate and one of the
two orientations contains s and the other contains s.

Two orientations of (potentially different) separation systems are distinguish-
able if there is a separation distinguishing them.

This notation naturally extend to sets of orientations, a set O of orientations
is distinguishable if any two orientations in that set are distinguishable, and a set
N of separations distinguishes O if any two orientations in O are distinguished
by a separation in N . Note that no separation distinguishing two consistent
orientations of the same separation system S can be trivial or co-trivial in S.

If we are given a submodular universe U and two orientations O and O′

of Sk and Sk′ , respectively, where k, k′ ∈ N ∪ {ℵ0}, then a separation s ∈ U
distinguishes O and O′ efficiently if s has minimal possible order among all
separations distinguishing O and O′.

One special type of consistent orientations are the profiles. Given a separation
system S that is contained in some universe U , we say that a consistent orientation
P of S is a profile of S if P satisfies the profile property (P):

∀ s, t ∈ P : (s ∧ t) /∈ P (P)

Note that here the meet is again taken in U . Further recall that a profile is
regular if it does not contain any co-small separations.

If we consider a submodular universe U , so a universe with a submodular
order function, a profile of Sk, for some k ∈ N∪ {ℵ0}, is said to be a k-profile in
U . If the k is not important we might omit it and say that P is a profile in U to
mean that there is some k such that P is a profile of Sk. In that case we say
that k is the order of P , note that if there are k and k′ such that Sk = Sk′ , any
k-profile is also a k′-profile and thus a profile may have multiple orders.

A k-profile P is said to be robust if

∀s ∈ P, t ∈ U : if |s∨t| < |s| and |s∨t| < |s|, then either s∨t ∈ P or s∨t ∈ P.

Note that this robustness property is usually only needed for separations t
that lie in a slightly smaller subset than the whole of U . This is why Diestel,
Hundertmark and Lemanczyk [27] defined the slightly weaker, but also much more
technical notion of profiles being n-robustly distinguishable and declared that a
robust set of profiles shall be a set of profiles that is n-robustly distinguishable
for a large enough n. Since the notion of robustness only plays a minor role
in this thesis, we are not going to define this slightly more general notion
formally. Instead, the statements in this thesis will be formulated for a set of
robust profiles. Every distinguishable set of robust profiles is a robust set of
profiles. Moreover, the reader familiar with the formal definition of n-robustly
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distinguishable profiles may replace every occurrence of ‘set of robust profiles’
with ‘robust set of profiles’.

2.6 Tree sets and S-trees
The definitions in this section are based on [22,52].

Given a graph-theoretic tree T , finite or infinite, let us denote the set of
orientations of its edges as E(T ), i.e. E(T ) contains for every edge e = vw ∈ E(T )
its two orientations (v, w) and (w, v). On this set of these orientations we have a
natural partial order by defining, for e = (v1, v2) and f = (w1, w2), that e 6 f if
and only if the unique path in T from v1 to w2 contains both v2 and w1. Together
with the involution ∗ on E(T ) which reverses the edges, i.e. (v, w)∗ = (w, v),
this partial order turns E(T ) into a separation system. In fact, since any two
directed edges are nested and no directed edge is small, this separation system
is a regular tree set which we call the edge tree set of T .

Given any separation system S , an S-tree (T, α) consists of a (finite or
infinite) tree T together with a map α from E(T ) to S that commutes with ∗ in
that α(e) = α(e)∗.

Such an S-tree (T, α) is called order-respecting if for any e 6 f ∈ E(T ) we
have that α(e) 6 α(f ), i.e. α preserves the partial order. Given a node t ∈ V (T )
the set {α(s, t) : s ∈ N(t)} of all the images under α of the ingoing edges to t is
denoted as α(t).

These S-trees are used to relate nested sets of separations to tree-like struc-
tures.

Given some (finite or infinite) separation system S and an ordinal number
α (we shall only use α ∈ N or α = ω or α = ω + 1), a chain of order type α or
an α-chain, or a chain of length α, is a collection {si : 0 6 i < α} of oriented
separations such that si < sj whenever i < j. Such a chain is contained in a set
N of unoriented separation if all the separations in that chain are orientations
of separations from N .

Now Kneip and Gollin [52] used these chains to characterize which tree sets
arise as the edge tree sets of trees:

Theorem 2.6.1 ([52], Theorem 3.9). A regular tree set is isomorphic to the
edge tree set of a suitable tree if and only if it does not contain a chain of order
type ω + 1.

This result also immediately gives the existence of a suitable order-respecting
S-tree. For finite separation systems, this was shown in [22]:

Lemma 2.6.2 (see also [22]). Let N be a regular tree which does not contain
an ω + 1-chain. Then there exists an order-respecting S-tree (T, α) such that the
image of α equals N .

Proof. By Theorem 2.6.1, the set N is isomorphic to the edge tree set of a tree
T . This implies that the corresponding isomorphism α is order-respecting, i.e.
(T, α) is an order-respecting S-tree, with image N .

Having established this connection between tree sets and order-respecting
S-trees, we would like to be able to explicitly characterize how the S-tree
corresponding to a tree set can be constructed. As it turns out, in the context
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were we need this, this is indeed possible: namely we will usually use tree sets
to distinguish orientations and, if a tree set is chosen ⊆-minimal with keeping
this property, we can explicitly construct the corresponding S-tree. For finite
separation systems in graphs, something like this was shown in [12], and our proof
is somewhat similar. For showing this we first need to observe how ⊆-minimal
nested sets of separations behave:

Lemma 2.6.3. Let O be a set of consistent orientations of some separation
system S (finite or infinite) and let N ⊆ S be a ⊆-minimal nested set with the
property that N distinguishes any two orientations in O from each other. Then
there is, for every separation s in N , a unique pair O,O′ of orientations from O
such that s is the only separation in N which distinguishes O and O′.

Proof. If for some s ∈ N there would be no such pair, then N r {s} would still
be a nested set which distinguishes O, contradicting the ⊆-minimality. Now
let s ∈ N and O1, O

′
1, O2, O

′
2 ∈ O, such that s ∈ O1, O2 and s ∈ O′1, O′2 and

let us suppose that O1 6= O2. Since N distinguishes all orientations in O from
another, N needs to contain some separation t 6= s which distinguishes O1 and
O2 from another, say because of t ∈ O1, t ∈ O2. Since s and t are nested we
either have s 6 t or s 6 t. In the first case t distinguishes O1 and O′1, whereas
in the second case t distinguishes O2 and O′2, in particular s is either not the
only separation from N distinguishing O1 and O′1, or not the only separation
from N distinguishing O2 and O′2.

Moreover, we can show that for finite separation systems the S-tree corres-
ponding to such a ⊆-minimal regular tree set is essentially unique:

Lemma 2.6.4. Let O be a set of consistent orientations of some separation
system S, let N ⊆ S be a ⊆-minimal regular tree set such that N distinguishes
all the orientations from O from one another. Given any order-respecting S-tree
(T, α) with the property that the image of α equals N , there is a bijection β
between V (T ) and O in such a way that there is an edge between two vertices v
and w from T if and only if there is a unique separation s in N which distinguishes
β(v) and β(w). Moreover, in that case α(v, w) = s, where s is the orientation
of s contained in β(w).

Proof. For every orientation O ∈ O consider the orientation of E(T ) given by
orienting e = vw as (v, w) if and only if α(v, w) ∈ O. Since O is a consistent
orientation and (T, α) is order-respecting, no two edges of T can be oriented
away from each other, thus this orientation has a unique sink v which we say
is the node of T containing O. Moreover, since any two orientations in O are
distinguished from each other by some separation in N and the image of α is
all of N , these sinks need to be distinct for distinct orientations from O. If on
the other hand there would be some node t of T which is not the sink for any
orientation in O, we could pick some edge e = vt incident with t and delete
the separation α(v, t) from N . Since any two orientations in O are contained
in distinct nodes of T , this set would then contradict the ⊆-minimality of N .
Thus, let us define β by mapping a node v ∈ T to the unique orientation in P
contained in that node.

Now given any two adjacent nodes t, t′ of T , the orientations of E(T ) induced
by β(t) and β(t′) are the same except for the edge tt′. Thus, the unoriented
separation corresponding to α(t, t′) is the only separation inN which distinguishes
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β(t) and β(t′), and clearly α(t, t′) ∈ β(t′). On the other hand, if two nodes t, t′
of T are not adjacent then all the separations corresponding to α(e) for an edge
e on the unique path between t and t′ distinguish β(t) and β(t′), in particular
there are at least two such separations.

In particular, the Lemmas 2.6.3 and 2.6.4 together imply that we can construct
an S-tree from such a ⊆-minimal nested set as follows:

Corollary 2.6.5. Let O be a set of consistent orientations of a finite separation
system S, let N be a ⊆-minimal tree set which distinguishes any pair of orienta-
tions from O from another. Let T be the graph with vertex set O in which we
add an edge to E(T ) between O and O′ if and only if there is a unique separation
in N which distinguishes O from O′. Let α : E(T )→ N map the directed edge
from O to O′ to the orientation of the unique separation in N distinguishing O
and O′ which is contained in O′. Then (T, α) is an order-respecting S-tree with
image N .

2.7 Tree-of-tangles theorems
Prior to this thesis, the two most general versions of a tree-of-tangles theorem
were the following from [27] and [26]:

Theorem 1.1.2 (Canonical tree-of-tangles theorem for separation universes
[27, Theorem 3.6]). Let U = (U,6, ∗,∨,∧, |·|) be a submodular universe of
separations. Then, for every robust set P of profiles in U , there is a nested set
T = T (P) ⊆ U of separations such that:

(i) every two profiles in P are efficiently distinguished by some separation
in T ;

(ii) every separation in T efficiently distinguishes a pair of profiles in P;

(iii) for every automorphism α of U we have T (Pα) = T (P)α; (canonicity)

(iv) if all the profiles in P are regular, then T is a regular tree set.

Theorem 1.1.3 ([26, Theorem 6]). Let S be a structurally submodular separ-
ation system and P a set of profiles of S. Then S contains a nested set that
distinguishes P.

While the second of these two theorems removed the requirement of the exist-
ence of a submodular order function, the first of these statements gives a stronger
result because of the resulting set distinguishing the profiles efficiently, and being
canonical, i.e. invariant under automorphisms. A large part of Chapter 4 is
devoted to obtain unified and more general versions of these two theorems, which
allows one to combine the fewer assumptions of Theorem 1.1.3 with the stronger
result of Theorem 1.1.2.

2.8 Examples
Let us now see some examples of these separation systems. These are mostly
taken from [20,21]. A typical example of a separation system are the separations
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of a graph. Given a (finite or infinite) graph G, an (oriented) separation of G
is a pair (A,B) of vertex sets such that A ∪ B = V (G) and there is no edge
from A r B to B r A. The set S (G) of all these separations is a universe of
separations when equipped with the involution (A,B)∗ = (B,A) and the partial
order of declaring (A,B) 6 (C,D) if and only if A ⊆ C and D ⊆ B. Then
(A,B)∨ (C,D) = (A∪C,B ∩D) and (A,B)∧ (C,D) = (A∩C,B ∪D). We say
that the order of a separation of G is |A ∩B| ∈ N ∪ {∞}. If we consider the set
Sℵ0 (G) of all those separations of G of finite order, then this definition gives us
a submodular order function on Sℵ0 (G), thus Sℵ0 (G) equipped with this order
function is a submodular universe of separations. By a (k-)profile in G we shall
mean a (k-)profile in Sℵ0 (G).

In graphs, one historically does not consider k-profiles, but the slightly more
restrictive notion of k-tangles. Given an integer k, a k-tangle of a graph is an
orientation τ of Sk with the tangle property:

∀ (A1, B1), (A2, B2), (A3, B3) ∈ P : G[A1] ∪G[A2] ∪G[A3] 6= G (T)

Note that every k-tangle τ of a graph needs to be a k-profile: if τ is not
consistent, say because (A,B), (C,D) ∈ τ but (B,A) 6 (C,D) then the pair
(A,B), (C,D) violates (T) as G[A] ∪G[C] = G. Similarly, τ cannot violate (P),
as if τ contains (A,B), (C,D) and (B ∩ D,A ∪ C), then this violates (T) as
G[A] ∪G[C] ∪G[B ∩D] = G. While every k-tangle is a regular k-profile, [27]
gave an example of a k-profile in a graph that is not a k-tangle ([27, Example 7]).

A k-tangle of G is a maximal tangle of G if it is not the subset of some
l-tangle of G for some l > k.

The notion of profiles originates in that of k-tangles of a graph. Likewise,
also the notion of an S-tree has its origin in an important notion in graphs which
is, as for example shown in [68], closely related to these tangles: the notion of
a tree-decomposition of a graph G. A tree-decomposition is a pair (T,V) of a
tree T and a family V = (Vt)t∈T of vertex sets Vt ⊆ V (G) which satisfies the
following three properties (see also [20]):

(T1) V (G) =
⋃
t∈T Vt;

(T2) Given e ∈ E[G] there exists a t ∈ T such that e ⊆ Vt;

(T3) Given a path P in T from t1 to t3 and a vertex t2 ∈ P we have that
Vt1 ∩ Vt3 ⊆ Vt2 .

The edges xy of the tree T of a tree-decomposition naturally induce a separation
of the underlying graph: let Tx and Ty be the components of T − xy containing
x or y, respectively, and consider the separation ⋃

z∈Tx

Vx,
⋃
z∈Ty

Vy

 .

Consequently, a tree-decomposition corresponds to an S-tree by mapping every
edge of T to the separation of G induced by that edge (see also [20, §12.5]).
The width of a tree-decomposition is the largest size of a bag Vt minus 1. The
adhesion of the tree-decomposition is the largest size of one of the sets Vt ∩ Vt′ ,
for distinct nodes t and t′ of T .
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The relation between k-tangles and tree-decompositions of low width (say
less than l) lies in two important properties. On the one hand there is a ‘duality’:
a graph has a tree-decomposition of low width only if the graph does not contain
a k-tangle for a large k. While for tangles this relation is not 1:1 (in that k = l),
the parameters depend on each other only by a linear factor (i.e. if a graph
has a tree-decomposition of width less than l, the graph does not contain an
(l+ 1)-tangle, and conversely, if the graph does not contain a tree-decomposition
of width less than l, then the graph contains a d l3e-tangle).

On the other hand, tree-decompositions can be used to distinguish distinct
tangles. Let us say that a tree-decomposition (T,V) of G displays its maximal
tangles if the set of separations induced by (T,V) efficiently distinguishes the set
of all maximal tangles of G. The classic tree-of-tangles theorem by Robertson
and Seymour can then be phrased as follows:

Theorem 1.1.1 ([68]). Every graph has a tree-decomposition displaying its
maximal tangles.

The separations of a graph can be naturally generalized to another important
class of separation systems, the set separations of a given set V . We say that,
given A,B ⊆ V , that (A,B) is an (oriented) set separation of V if and only
if A ∪ B = V . For set separations, and also for separations of a graph, we
usually write {A,B} to denote the unoriented separation {(A,B), (B,A)}. Like
the separations of a graph, these set separations form a universe of separations
equipped with the partial order of defining (A,B) 6 (C,D) if and only if A ⊆ C
and D ⊆ B. Moreover, if restricted to all the separations (A,B) with A ∩ B
finite, there is a natural order function on the set separations of a set V given
by |(A,B)| = |A ∩ B|. A universe of set separations shall be any universe of
these separations of a set with the above partial order. If we do not explicitly
specify otherwise, we will implicitly assume that this universe comes with the
order function mentioned above.

A subclass of these set separations is given by the bipartition universe B(V )
consisting of only the bipartitions (A,B), that is only those separations (A,B)
where B = V r A. Note that B(V ) as a lattice corresponds exactly to the
subset lattice on V via the map (A,B) 7→ A, since (A,B), (C,D) ∈ B(V ) satisfy
(A,B) 6 (C,D) precisely if A ⊆ C.
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Chapter 3

Witnessing dense structures
We start the presentation of the results of this dissertation with results concerning
concrete witnesses for the existence of dense structures both in graphs and
abstract separation systems. The leading task in this chapter is to find concrete
structures witnessing the existence of a ‘highly connected substructure’, for
various notions of such structures. We start in Section 3.1 with tangles in graphs.
We show that every such tangle admits a (weighted) decider, that is there is a
weight function on the vertices of the graph, such that every separation in the
tangle is oriented towards the side of higher weight. This weight function thus
is, in some sense, a concrete ‘highly connected substructure’ corresponding to
that tangle. This result is joint work with Jakob Kneip and Maximilian Teegen
and can also be found in [37].

In Section 3.2 we are then concerned with the question, whether such weighted
deciders exist for tangles in other contexts. While we already in Section 3.1 given
an example of a context in which not every tangle admits a weighted decider,
we in Section 3.2 search for sufficient conditions on tangles in contexts other
than graphs to admit a weighted decider. We find a sufficient condition for this
property to hold. Moreover, we also again consider tangles in graphs and ask
under which condition we can actually find a decider set for such tangles, that is
under which conditions does there exist a vertex set X in our graph, such that
every separation (A,B) in our tangle satisfies |A ∩X| < |B ∩X|. These results
are joint work with Reinhard Diestel and Raphael Jacobs and can also be found
in [25].

After that, in Section 3.3, we consider another possible way to witness the
existence of a tangle: via a tangle of a ‘dual’ separation system. We will describe
a concrete setup of separation systems which are dual in some sense. In that
setup we can then show that, a tangle of one of the two separation systems
involved naturally defines an orientation of the other system which will, restricted
to a slightly lower order, also be a tangle. Moreover, we will consider some
variations of this idea. This joint work with Reinhard Diestel, Joshua Erde and
Maximilian Teegen can also be found in [24].

Finally, in Section 3.4 we are concerned with another type of dense structures
in graphs. Weißauer [76] suggested the notion of agile sets in graphs and asked
whether the existence of large agile subsets of a graph can, quantitatively, be
characterized via the existence of concrete minors of the graph. We are able
to give such a characterization, and also consider some generalizations of these
agile sets. These results are joint work with Maximilian Teegen and partly Jakob
Kneip (see Appendix D) and are, at the time of writing, not published elsewhere.
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3.1 Tangles are Decided byWeighted Vertex Sets
3.1.1 Introduction
A concrete example of a tangle in a graph is the following: if a graph G contains
an n× n-grid for large n, then the vertex set of that grid defines a tangle τ in G
as follows. Take note that no separation of low order can divide the grid into
two parts of roughly equal size: if the grid is large enough then at least 90% of
its vertices, say, will lie on the same side of such a separation. Orienting towards
that side all the separations of order < k for some fixed k much smaller than n
then gives a tangle τ . In this way, the vertex set of the n× n-grid ‘defines τ by
majority vote’. It results from this idea that every tangle is defined by ‘majority
vote’, that we think, given some tangle τ in G containing a separation (A,B), of
A and B as the ‘small’ and the ‘big’ side of (A,B) in that tangle, respectively.
The main result of this section will make this intuition concrete.

Consequently, in [27] Diestel raised the question whether indeed all tangles in
graphs arise in the above fashion, that is, whether all graph tangles are decided
by majority vote by some subset of the vertices:

Problem 3.1.1. Given a k-tangle τ in a graph G, is there always a set X
of vertices such that a separation (A,B) of order < k lies in τ if and only if
|A ∩X| < |B ∩X|?

A partial answer to this was given in my Master’s thesis [35], where I showed
that such a set X always exists if G is (k− 1)-connected and has at least 4(k− 1)
vertices. However, this approach relies heavily on the (k − 1)-connectedness of
the graph and offers no line of attack for the general problem. Finding an answer
for arbitrary graphs appears to be hard.

If a tangle in G is decided by some vertex set X by majority vote, this
set X can be used as an oracle for that tangle, allowing one to store complete
information about the complex structure of a tangle using a set of size at most
|V |. On the other hand, if there were tangles without such a decider set, this
would mean that tangles are a fundamentally more general concept than concrete
highly cohesive subsets, not just an indirect way of capturing them.

In this section of this thesis, we consider a fractional version of Diestel’s
question and answer it affirmatively, making precise the notion that B is the
‘big’ side of a separation (A,B) ∈ τ : given a k-tangle τ in G, rather than finding
a vertex set X which decides τ by majority vote, we find a weight function
w : V (G)→ N on the vertices so that for all separations (A,B) of order < k we
have (A,B) ∈ τ if and only if the vertices in B have higher total weight than
those in A.

Thus, we show that every graph tangle is decided by some weighted set of
vertices. This weight function, or weighted set of vertices, can then serve as an
oracle for that tangle in the same way that a vertex set deciding the tangle by
majority vote would. For any tangle, the existence of such a weight function
with values in {0, 1} is equivalent to the existence of a vertex set X deciding
that tangle by majority vote.

In Section 3.1.2 we will formulate and prove our main theorem asserting that
tangles of graphs (and of hypergraphs) always admit such a weight function.
Following that we show in Section 3.1.3 that the same arguments are also
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applicable to edge-tangles of graphs, a relative of the tangles usually considered,
and prove our main result also for this type of tangle.

For settings beyond graphs it is known that the analogue of Diestel’s question
may be false. For instance, Geelen [47] pointed out that there are matroid
tangles which cannot be decided by majority vote, not even when considering a
fractional version of the problem. For edge-tangles as analysed in Section 3.1.3 the
fractional version of Problem 3.1.1 is true for graphs but may fail for hypergraphs.
We demonstrate the latter with a counterexample which, though discovered
independently, is conceptually similar to Geelen’s example in the matroid setting.

3.1.2 Weighted deciders
Our main result is the following:

Theorem 1. Let G = (V,E) be a finite graph and τ a k-tangle in G. Then there
exists a function w : V → N such that a separation (A,B) of G of order < k lies
in τ if and only if w(A) < w(B), where w(U) :=

∑
u∈U w(u) for U ⊆ V .

We shall prove Theorem 1 in the remainder of this section. Our general
strategy will be as follows: since the separations of a graph form a separation
system, there is a partial order on them. Hence, we can consider the set of those
separations of the k-tangle τ that are maximal in this partial order. For these
separations we will be able to show that, on average, their separators divide each
other so that they lie more on the ‘big’ side of each other, where ‘big’ is the big
side according to τ . This will enable us to use a result from linear programming
to find a weight function assigning weights to the vertices of these separators so
that this weight function decides all these maximal separations of τ correctly.
The nature of the partial order will then ensure that this weight function in fact
decides all separations in τ correctly.

Recall that for a graph G the natural partial order on the separations of G
is given by letting (A,B) 6 (C,D) if and only if A ⊆ C and B ⊇ D and that a
k-tangle of a graph is an orientation τ of all separations of order< k with the prop-
erty that τ does not contain any three separations (A1, B1), (A2, B2), (A3, B3)
so that G[A1] ∪G[A2] ∪G[A3] = G. One of the main ingredients for the proof
of Theorem 1 is the following observation about those separations in a tangle τ
that are maximal in τ with respect to the partial order. It says, roughly, that
they divide each other’s separators so that, on average, those separators lie more
on the big side of the separation than on the small side, according to the tangle.

Lemma 3.1.2. For every k-tangle τ in a graph G and distinct maximal elements
(A,B), (C,D) of τ we have

|B ∩ (C ∩D)|+ |D ∩ (A ∩B)| > |A ∩ (C ∩D)|+ |C ∩ (A ∩B)|.

Proof. Let τ be a k-tangle in G = (V,E) and (A,B) and (C,D) distinct maximal
elements of τ . Observe that (A ∪ C , B ∩D) is a separation of G as well. In
fact this separation is the supremum of (A,B) and (C,D) in the partial order.
Therefore, τ cannot contain (A∪C , B∩D) by the assumed maximality of (A,B)
and (C,D) in τ . On the other hand, τ cannot contain (B ∩D , A ∪ C) either
since A, C, and B ∩D together cover G. Consequently, since τ is a k-tangle, we
must have |(A ∪ C) ∩ (B ∩D)| > k.
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Recall that |A ∩ B| < k and |C ∩ D| < k since τ is a k-tangle. Observe
additionally that the order of separations is modular, that is,

|A ∩B|+ |C ∩D| = |(A ∪ C) ∩ (B ∩D)|+ |(A ∩ C) ∩ (B ∪D)| .

With the above inequalities this implies that |(A∩C)∩ (B ∪D)| < k, and hence
in particular that

|(A ∩ C) ∩ (B ∪D)| < |(A ∪ C) ∩ (B ∩D)|.

Adding |A ∩B ∩ C ∩D| to both sides proves the claim.

Additionally, we shall use a result from linear programming: Tucker’s The-
orem, a close relative of the Farkas Lemma. For a vector x ∈ Rn we use the
usual shorthand notation x > 0 to indicate that all entries of x are non-negative,
and similarly write x > 0 if all entries of x are strictly greater than zero.

Lemma 3.1.3 (Tucker’s Theorem [73]). Let K ∈ Rn×n be a skew-symmetric
matrix, i.e. KT = −K. Then there exists a vector x ∈ Rn such that

Kx > 0 and x > 0 and x+Kx > 0.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let a finite graph G = (V,E) and a k-tangle τ in G be
given. Since G is finite, it suffices to find a weight function w : V → R>0 so
that a separation (A,B) of order < k lies in τ precisely if w(A) < w(B); by the
density of the rationals in the reals, this w can then be turned into such a weight
function with values in N.

For this it is enough to find a function w : V → R>0 such that w(A) < w(B)
for all maximal elements (A,B) of τ : for if w(A) < w(B) and (C,D) 6 (A,B)
then

w(C) 6 w(A) < w(B) 6 w(D).
So let us show that such a weight function w exists.

To this end let (A1, B1), . . . , (An, Bn) be the maximal elements of τ and set

mij := |Bi ∩ (Aj ∩Bj)| − |Ai ∩ (Aj ∩Bj)|

for i, j 6 n. Let M be the matrix {mij}i,j6n. Observe that, by Lemma 3.1.2,
we have mij +mji > 0 for all i 6= j and hence the matrix M +MT has positive
entries everywhere but on its diagonal (where it has zeros). We further define

K ′ := M +MT

2 and K := M −K ′.

Then K is skew-symmetric, that is, KT = −K. Let x = (x1, . . . , xn)T be the
vector obtained by applying Lemma 3.1.3 to K. We define a weight function
w : V → R by

w(v) :=
∑

i : v∈Ai∩Bi

xi .

Note that w has its image in R>0 and observe further that, for Y ⊆ V , we have

w(Y ) =
∑
y∈Y

w(y) =
n∑
i=1

xi · |Y ∩ (Ai ∩Bi)|.
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With this, for i 6 n, we have

w(Bi)− w(Ai) =
n∑
j=1

xj · (|Bi ∩ (Aj ∩Bj)| − |Ai ∩ (Aj ∩Bj)|)

=
n∑
j=1

xj ·mij

= (Mx)i ,

where (Mx)i denotes the i-th coordinate of Mx. Thus, w is the desired weight
function if we can show that Mx > 0, that is, if all entries of Mx are positive.

From x+Kx > 0 we know that at least one entry of x is positive. Let us
first consider the case that x has two or more positive entries. Then K ′x > 0
since K ′ has positive values everywhere but on the diagonal, and hence

Mx = (K +K ′)x > 0

since Kx > 0. Therefore, in this case, w is the desired weight function.
Consider now the case that exactly one entry of x, say xi, is positive, and that

x is zero in all other coordinates. Then, for j 6= i, we have (Mx)j > (K ′x)j > 0
and thus w(Bj)− w(Aj) = (Mx)j > 0. However, (Mx)i = 0 and thus w(Ai) =
w(Bi), so w is not yet as claimed. To finish the proof it remains to modify w
so that w(Ai) < w(Bi) while ensuring that we still have w(Aj) < w(Bj) for
j 6= i. This can be achieved by picking a sufficiently small ε > 0 such that
w(Aj) + ε < w(Bj) for all j 6= i, picking any v ∈ Bi rAi, and increasing the
value of w(v) by ε.

We conclude this section with the remark that Theorem 1 and its proof
extend to tangles in hypergraphs without any changes. Even more generally, the
following version of Theorem 1, which is formulated in terms of profiles of set
separations, can be established with exactly the same proof as well:

Theorem 3.1.4. Let U be a universe of set separations of a finite ground-set
V with the order function |(A,B)| := |A ∩B|. Then, for any regular k-profile P
in U , there exists a function w : V → N such that a separation (A,B) of order
< k lies in P if and only if w(A) < w(B).

Recall that a set separation of some ground-set V is a pair (A,B) of subsets
of V with A ∪ B = V and that a set U of such separations is a universe if U
contains (B,A) and (A∪C , B ∩D) for all (A,B) and (C,D) in U . Like for the
separations of a graph, a partial order on the set separations of V is given by
letting (A,B) 6 (C,D) if A ⊂ C and B ⊇ D.

Recall furthermore that, for an integer k, a regular k-profile in U is a set
P consisting of exactly one of (A,B) and (B,A) for every (A,B) in U of order
|A ∩B| < k, with the additional property that there are no (A,B) and (C,D)
in P for which (B,A) 6 (C,D) or such that P contains (B ∩D , A ∪ C).

Observe that if G = (V,E) is a (hyper-)graph then the set U of all separations
of G is such a universe. Moreover, every k-tangle τ of G is also a regular k-
profile of U . Therefore, Theorem 3.1.4 indeed applies to tangles in graphs and
hypergraphs as well.

Theorem 3.1.4 holds with the same proof as Theorem 1, since Lemma 3.1.2
holds in this setting too: the only difference being that to see that (B∩D , A∪C)
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cannot lie in the profile at hand one now has to use the definition of a regular
k-profile rather than the fact that A, C, and B ∩D cover G.

3.1.3 Edge-tangles
A related object of study (cf. [29, 63]) to the (vertex-)tangles discussed above
are the edge-tangles of a graph. In this context one considers the (edge) cuts
of a (multi-)graph G = (V,E), i.e. bipartitions (A,B) of V . The order of a cut
(A,B) is the number of edges in G that are incident with vertices of both A
and B. For an integer k, a k-edge-tangle of G is a set τ consisting of exactly one
(A,B) or (B,A) for every cut (A,B) of order < k, with the additional properties
that τ has no subset {(A1, B1), (A2, B2), (A3, B3)} such that B1 ∩B2 ∩B3 = ∅,
and that τ contains no cut (A,B) for which B is incident with fewer than k
edges of G.

In very much the same way as above we can prove the following theorem:
Theorem 2. Let G = (V,E) be a finite (multi-)graph and τ a k-edge-tangle in
G. Then there exists a function w : V → N such that a cut (A,B) of G of order
< k lies in τ if and only if w(A) < w(B).

We shall prove a more general version of this theorem where we allow G
to be a graph with R>0-weighted edges. We consider edges of weight 0 as
indistinguishable from non-edges. Consequently, rather than a graph with
weighted edges, we will just consider a pair (V, e) of a finite set V together with
a symmetric function e : V 2 → R>0, which we shall call a pairwise weighting to
distinguish it from the weight function of a decider. The order of a bipartition
(A,B) is defined as |(A,B)| :=

∑
(u,v)∈A×B e(u, v). Note that this function is

submodular in the sense that for all bipartitions (A,B) and (C,D) we have
|(A,B)|+ |(C,D)| > |(A ∪ C , B ∩D)|+ |(A ∩ C , B ∪D)| .

For any positive r an r-profile in (V, e) is a set τ consisting of exactly one of
(A,B) or (B,A) for every bipartition (A,B) of V of order < r, such that τ does
not contain (V, ∅) and has no subset of the form {(A,B), (C,D), (B∩D,A∪C)}.

Observe that every k-edge-tangle of a (multi-)graph G = (V,E) is also a
k-profile in (V, e), where e is the multiplicity of the edges of G. Therefore, the
following theorem directly implies Theorem 2:
Theorem 3.1.5. Let (V, e) be a pairwise weighting and τ an r-profile in (V, e).
Then there exists a function w : V → N such that a bipartition (A,B) of V of
order < r lies in τ if and only if w(A) < w(B).

The main idea for proving this theorem is to first find an appropriate weighting
on the edges by the same principles as in Theorem 1 and to then transform it into
the weighted vertex decider w. So let us first show an analogue of Lemma 3.1.2
for pairwise weightings. For this, we define a partial order on the bipartitions of
V as in the previous section: by letting (A,B) 6 (C,D) if and only if A ⊆ C
(and thus B ⊇ D). Using this partial order we can prove the following analogue
of Lemma 3.1.2:
Lemma 3.1.6. For every r-profile τ in a pairwise weighting (V, e) and distinct
maximal elements (A,B), (C,D) of τ we have∑

(u,v)∈B2 ∩ (C×D)

e(u, v) +
∑

(u,v)∈D2 ∩ (A×B)

e(u, v) >
∑

(u,v)∈A2 ∩ (C×D)

e(u, v) +
∑

(u,v)∈C2 ∩ (A×B)

e(u, v) .
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Proof. The bipartition (A∪C, B ∩D) of V is strictly larger in the partial order
than the maximal elements (A,B) and (C,D) and hence cannot lie in τ . However,
by the definition of an r-profile, τ cannot contain (B ∩D, A ∪ C) either. Thus,
we must have |(A∪C, B ∩D)| > r, from which it follows by submodularity that
|(A ∩ C, B ∪D)| < r. Combining these two inequalities, using the definition of
order and adding

∑
u∈A∩C

∑
v∈B∩D e(u, v) to both sides proves the claim.

We are now ready to prove Theorem 3.1.5:

Proof of Theorem 3.1.5. Like in the proof of Theorem 1, it suffices to find a
suitable real-valued weight function w : V → R>0 since V is finite. We will
begin by finding a weight function w : V 2 → R>0 on the pairs in V so that
we have w(A) 6 w(B) for all (A,B) ∈ τ , where w(A) =

∑
(u,v)∈A2 w(u, v),

and with this inequality being strict for all but at most one of the maximal
elements of τ . We will subsequently use this w to construct the desired weight
function w : V → R>0.

Enumerate the maximal elements of τ as (A1, B1), . . . , (An, Bn). Just as
in Theorem 1 it suffices to find a weight function which decides these maximal
elements. For every two maximal elements (Ai, Bi) and (Aj , Bj) let

mij :=
∑

(u,v)∈B2
i ∩ (Aj×Bj)

e(u, v)−
∑

(u,v)∈A2
i ∩ (Aj×Bj)

e(u, v) .

Let M be the matrix {mij}i,j6n. Observe that, by Lemma 3.1.6, M +MT has
positive entries everywhere but on the diagonal, where it is zero. We are now
in the same situation as in the proof of Theorem 1 and can find some vector
x ∈ Rn>0 so that either (Mx)i > 0 on all i, or x has exactly one non-zero entry,
say xi, and (Mx)j > 0 for all j 6= i.

In either case, given a pair of vertices (u, v) let

w(u, v) := e(u, v)

 ∑
j : (u,v)∈Aj×Bj

xj +
∑

j : (u,v)∈Bj×Aj

xj


=
∑
j:

(u,v)∈(Aj×Bj)∪(Bj×Aj)

xj · e(u, v) .

Note that w is symmetric. For the same reason as in Theorem 1, by choice of x,
this function w decides all but at most one of the (Ai, Bi) correctly in the sense
that w(Ai) 6 w(Bi) for all i = 1, . . . , n with at most one inequality not being
strict.

It remains to turn w into a weight function on V rather than on V 2, and to
verify that it has the desired properties. Define w : V → R>0 as

w(v) :=
∑
u∈V

w(u, v) .

34



Then, for each i = 1, . . . , n, we find that

w(Bi)− w(Ai) =
∑
u∈Bi

∑
v∈V

w(u, v)−
∑
u∈Ai

∑
v∈V

w(u, v)

=
∑

(u,v)∈B2
i

w(u, v)−
∑

(u,v)∈A2
i

w(u, v)

=
∑

(u,v)∈B2
i

∑
j:

(u,v)∈(Aj×Bj)∪(Bj×Aj)

xj · e(u, v) −
∑

(u,v)∈A2
i

∑
j:

(u,v)∈(Aj×Bj)∪(Bj×Aj)

xj · e(u, v)

= 2
n∑
j=1

 ∑
(u,v)∈B2

i∩(Aj×Bj)

xj · e(u, v) −
∑

(u,v)∈A2
i∩(Aj×Bj)

xj · e(u, v)


= 2(Mx)i.

Thus, either w(Bi) > w(Ai) for all maximal elements of τ , from which the claim
follows directly, or there is a single maximal element (Ai, Bi) of τ such that
w(Bi) = w(Ai) and w(Bj) > w(Aj) for all others. However, as in the proof
of Theorem 1, in the latter case we can pick an arbitrary vertex v ∈ Bi and
increase w(v) by some small ε > 0 to achieve w(Bi) > w(Ai) while keeping
w(Bj) > w(Aj) for all other maximal elements of τ .

Remarkably, and in contrast to Theorem 1, Theorem 2 does not in fact
extend to hypergraphs. To see this, let us recall the relevant definitions, which
extend naturally to hypergraphs.

A hypergraph H = (V,E) consists of a vertex set V together with a set
E ⊆ 2V of hyperedges. An (edge) cut of H is a bipartition (A,B) of V and
the order of such an edge cut (A,B) is the number of hyperedges of H that are
incident with vertices from both A and B.

For an integer m, a m-edge-tangle of H is a set τ consisting of exactly one
(A,B) or (B,A) for every cut (A,B) of order < m, with the additional properties
that τ has no subset {(A1, B1), (A2, B2), (A3, B3)} such that B1 ∩B2 ∩B3 = ∅,
and that τ contains no cut (A,B) for which B is incident with fewer than m
hyperedges of H.

A weighted decider for some m-edge-tangle τ of a hypergraph H = (V,E)
then is a function w : V → N such that a cut (A,B) of H of order < m lies in τ
if and only if w(A) < w(B).

Theorem 2 thus asserts that ifH is just a (multi-)graph, i.e. if every hyperedge
in E has size 2, then every m-edge-tangle of H has such a weighted decider.
We are now going to construct an example demonstrating that this may fail for
hypergraphs H with hyperedges of size > 3.

Example 3.1.7. For some natural number m > 6 let k be an integer with
3 6 k 6 m

2 . Let V be the set of all k-element subsets of [m] = {1, . . . ,m}. Let
the set E of hyperedges consist of, for each i ∈ [m], the set of all v ∈ V that
contain i. Note that each of these m many hyperedges of H has size

(
m−1
k−1

)
,

making H a uniform k-regular hypergraph.

Theorem 3.1.8. Let H be as in Example 3.1.7. Then H has a m-edge-tangle
with no weighted decider.
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Proof. Let Sm denote the set of all cuts of H of order < m. For a set A ⊆ V we
write ∪A for the set

⋃
v∈A v, which is a subset of [m]. Observe that for every

cut (A,B) of H at most one of ∪A and ∪B can be a proper subset of [m]. Note
further that a cut (A,B) of H lies in Sm if and only if at least one of the m
hyperedges of H does not meet both A and B, which is the case precisely if one
of ∪A and ∪B is a proper subset of [m].

We can therefore define

τ := {(A,B) ∈ Sm : ∪A ( [m]} .

Let us show that τ is a m-edge-tangle of H with no weighted decider.
To see that τ is a m-edge-tangle we note that by the above observation τ

contains exactly one of (A,B) or (B,A) for every cut (A,B) ∈ Sm. Furthermore,
if (A1, B1), (A2, B2), (A3, B3) ∈ τ then any element of V containing at least
one point each from [m] r ∪A1, from [m] r ∪A2, and from [m] r ∪A3 lies in
B1 ∩ B2 ∩ B3, which is hence non-empty since such a v ∈ V exists by k > 3.
Finally for each (A,B) ∈ τ the set B is incident with each hyperedge of H
since ∪B = [m]. Thus, τ is indeed a m-edge-tangle.

Finally, let us show that τ has no weighted decider. Suppose for a contra-
diction that some weighted decider w : V → N for τ exists. For each i ∈ [m]
consider the cut (Ai, Bi), where

Ai := {v ∈ V : i /∈ v} and Bi := {v ∈ V : i ∈ v} ,

and note that (Ai, Bi) ∈ τ . Since w is a weighted decider for τ we have
w(Bi) > w(Ai) for each i ∈ [m]. We therefore have∑

i∈[m]

(w(Bi)− w(Ai)) > 0 ,

since each term in the sum is positive. By counting the instances of w(v)
occurring in the sum for each v ∈ V we find that∑
i∈[m]

(w(Bi)− w(Ai)) =
∑
v∈V

w(v) · (|{i ∈ [m] : i ∈ v}| − |{i ∈ [m] : i /∈ v}|) ,

since v ∈ Bi if and only if i ∈ v, and otherwise v ∈ Ai. The left-hand side of this
equation is positive. However, in contradiction to this, no term of the right-hand
sum is greater than zero since we have by k 6 m

2 that

|{i ∈ [m] : i ∈ v}| − |{i ∈ [m] : i /∈ v}| = k − (m− k) 6 0 .

Therefore, there can be no weighted decider for τ .

A construction analogous to Example 3.1.7 was found independently by
Geelen [47] in the setting of matroids, who used it to show that matroids, too,
can have tangles with no weighted decider.

Finally, let us remark that Example 3.1.7 can also be used to show that
allowing weighted deciders to take values in R rather than N does not suffice
to guarantee their existence for edge-tangles of hypergraphs: for m = 2k the
tangle described in Theorem 3.1.8 has no weighted decider with real-valued and
possibly negative weights either, with the same proof.
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3.2 Deciders for tangles of set partitions
3.2.1 Introduction
While Theorem 3.1.4 and Theorem 2 provide the existence of a weighted decider
for tangles and profiles in a lot of different contexts, there still exist contexts
in which they do not guarantee this. For example, we cannot guarantee the
existence of a weighted decider for edge-tangles in hypergraphs, as Theorem 3.1.8
shows that not each such tangle has a weighted decider. Therefore, it seems
natural to ask for sufficient additional conditions a tangle or profile may satisfy
and which do guarantee the existence of a weighted decider even if we are not in
the context of Theorem 3.1.4 and Theorem 2. We searched for such conditions
for quite a while, until we came up with the following: let S be any abstract
separation system in some universe U of separations. Now given any k ∈ N, we
say that an orientation τ of S is k-resilient if no set of 6 k elements of τ has a
co-small supremum in U .

Both tangles and edge-tangles of graphs as defined in Section 3.1.3 are 3-
resilient. The example of a hypergraph tangle constructed in Theorem 3.1.8 with
parameters k and l is l-resilient, but its ground set contains

(
k
l

)
many elements.

On the other hand, every principal profile in a universe of bipartitions, that is a
profile consisting of all those bipartitions (A,B) whose big side B contains some
fixed element x, is infinitely resilient in that it is k-resilient for every k ∈ N.
Note that {x} is a decider set for this profile.

These examples seem to suggest that profiles of bipartitions, or more generally
profiles of set separations, that are k-resilient for large k are more likely to have
decider sets. We can indeed prove such a fact, with an interesting additional
twist: ‘large’ has to be measured not in terms of |V | or |S|, but relative to the
number of those elements of the profiles which are maximal in the profile with
respect to the partial order of oriented separations. This as such is unsurprising:
in a k-resilient profile with at most k maximal elements, the intersection of all
their big sides is non-empty, and is clearly a decider set for this profile.

The exact statement we can show is the following:

Theorem 3. Let U be the universe of all set separations of some finite set V ,
and let τ be an orientation of some set S ⊆ U of separations. Let m be the
number of maximal elements of τ . If τ is k-resilient for some k > m

2 , then τ
has a decider.

Moreover, we will also see that there are, for every k 6 m
2 , examples of

tangles which are k-resilient but do not have a decider.
The second part of this section of this thesis deals with the existence of decider

sets for profile of set separations, that is in the universe U of set separations of a
finite set V equipped with the submodular order function assigning order |A∩B|
to the separation s = {A,B} ∈ U .

As we have shown in Theorem 3.1.4, each k-profile of this U has a weighted
decider. But what if we are instead interested in a decider set? We will provide
a partial answer to this question in Section 3.2.4 by showing that, if a k-profile
extends to a profile twice its order, then it has a decider set, i.e. we will be able
to show the following:

Theorem 4. Let U be a universe of set separations of some finite set V equipped
with the order function |(A,B)| = |A∩B| and let k ∈ N. If τ ′ is a k-profile in U
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which extends to a regular 2k-profile τ in U , then τ ′ has a decider set X ⊆ V of
size |X| > 2k.

After giving the basis definitions about deciders used in this section of this
thesis in Section 3.2.2, we start in Section 3.2.3 with proving Theorem 3. After
that, in Section 3.2.4 we prove Theorem 4.

3.2.2 Weight Functions and Deciders
Let us define a weight function on a finite set V as any map w from V to R>0.
For any subset U ⊆ V we write w(U) =

∑
v∈U w(v). Note that

w(B)− w(A) = w(B rA)− w(ArB)

for every set separation (A,B) of V and every weight function w on V , a fact we
shall use freely throughout. A weight function w on V with values in {0, 1} can
be equivalently formulated as an indicator function of the set X = Xw = w−1(1)
in that w(A) = |X ∩ A| for every A ⊆ V . For such a weight function we shall
transfer all the wording around weight functions equivalently to the set X.

Let w be a weight function on a set V . We say that w decides a set
separation s = {A,B} of V if there is an orientation s = (A,B) of s such
that w(A) < w(B); we shall also say that w decides s as s. If S is a separation
system which consists of set separations of V , then w decides S if it decides each
of its elements. In particular, the fact that w decides S yields an orientation τ
of S by orienting a separation s ∈ S as s if w decides s as s.

Now given an orientation τ of S we say that a weight function w decides S
as τ if w decides every s ∈ S as s ∈ τ , i.e. if w(A) < w(B) for every (A,B) ∈ τ .
Such a weight function w is called a decider (function) for τ . If the weight
function w has values in {0, 1}, i.e. it comes from the set X = w−1(1), then X
(and also w) is a decider set for τ .

A weight function w witnesses a separation (A,B) if w(A) < w(B). Thus, a
decider w for some previously given orientation τ of S witnesses all separations
in τ . We therefore say that w witnesses τ ; if a decider witnessing τ exists, then
we say that τ has a decider (or a witness).

Let us conclude this section with some basic observations about deciders.
First observe that we can scale a weight function w on V by a positive scalar λ > 0
without changing the sign of w(B)− w(A) for any set separation (A,B) of V .
In particular, if an orientation τ of a separation system S has a decider, then
there exists a decider for τ which decides every separation in τ at least with
difference K for any K > 0: we just scale a decider w for τ appropriately, i.e. by
the factor

λ = K

min(A,B)∈τ (w(B)− w(A)) .

This fact directly implies that, if an orientation τ has a decider, there also
exists a weight function w witnessing τ which takes values in N instead of R:
suppose that w decides every separation of S as in τ with difference at least ε > 0.
Since Q is dense in R, we can replace w(v) ∈ R with a rational number w′(v)
so that |w(v) − w′(v)| < ε

|V | . The resulting weight function w′ clearly still
witnesses τ . Now an appropriate scaling of w′ (e.g. by the least common multiple
of the denominators of all the w′(v) for v ∈ V ) yields the desired decider function
for τ taking values in N.
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Also, as in Section 3.1 it is enough to consider the maximal separation in an
orientation τ if one is concerned with the question of whether a given function
w decides S as τ . More precisely, we have the following easy observation:

Observation 3.2.1. Let w : V → R>0 be a weight function on a set V .
Let (A,B) and (C,D) be two set separations of V with (C,D) 6 (A,B). If w
witnesses (A,B), then it witnesses (C,D) as well.

Proof. Since (C,D) 6 (A,B), we have C ⊆ A and D ⊇ B. So w(C) 6 w(A)
and w(D) > w(B), as w is a weight function. Now w witnesses (A,B) in
that w(A) < w(B). This immediately implies

w(C) 6 w(A) < w(B) 6 w(D),

so w witnesses (C,D) as well.

3.2.3 Deciders and resilience
In this section we use the novel notion of resilience to prove a sufficient criterion
for an orientation of some set of set separations to have a decider. We begin this
section by giving all the definitions around the concept of resilience.

We say that, given an abstract separation system S in some universe U
of separations and k ∈ N, an orientation τ of S is k-resilient if no set of 6 k
elements of τ has a co-small supremum in U . Note that a k-resilient orientation
of S is also k′-resilient for every k′ < k.

For example, if S is a set of set separations of a set V, then τ is k-resilient if and
only if for all sets σ ⊆ τ of at most size k, we have that

⋃
{A : (A,B) ∈ σ } 6= V

because a set separation is co-small if and only if it has the form (V,X) for
some X ⊆ V . If S is even a set of bipartitions of V , then this is equivalent
to
⋂
{B : (A,B) ∈ σ } 6= ∅ for all sets σ ⊆ τ of size at most k because (V, ∅) is

the only co-small bipartition of V .
If for some orientation τ there exists a maximal k ∈ N such that τ is k-resilient,

then we call k the resilience of τ .
Let us illustrate the concept of resilience with an example. Consider the

5-tangle τ of the (n×n)-grid that has the entire vertex set of the grid as a decider
set. Let us show that τ is Ω(n2)-resilient. Notice that every element (A,B) of τ
satisfies |A| 6 10; indeed, most satisfy |A| 6 5. Since all co-small set separations
of V are of the form (V,X) for some X ⊆ V , any set of separation in τ with a
co-small supremum has at least n2

10 elements.
Why can the notion of resilience help us with constructing a decider for a

given orientation of set separations? Consider an orientation τ of a set S of set
separations of some finite ground set V . Write M = M(τ) for the set of maximal
elements of τ . Let us see how high resilience of τ compared with |M | might help
us build a decider for τ .

Assume that τ is k-resilient, for some integer k, and write M for the set
of all k-element subsets of M = M(τ). Then, for every M ′ ∈ M, there exists
an element vM ′ of our ground set V which is strictly on the big side of all
separations in M ′. It seems natural to construct a decider for M (and thus for τ
by Observation 3.2.1) by combining all these local decider sets {vM ′}: we assign
to each v ∈ V as its weight the number of sets M ′ ∈M with vM ′ = v.
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It turns out that, as soon as k is big enough that each fixed separation
(A,B) ∈M is contained in the majority of the sets in M, which will happen
as soon as M has more (k − 1)-subsets to form a k-subset with (A,B) than
it has k-subsets not including (A,B), the orientation (A,B) of {A,B} will be
witnessed by the majority of the local decider sets {vM ′} for M ′ ∈M. We can
then deduct from this that w is a decider for M , and hence for τ .

More precisely, we have the following theorem:

Theorem 3. Let U be the universe of all set separations of some finite set V ,
and let τ be an orientation of some set S ⊆ U of separations. Let m be the
number of maximal elements of τ . If τ is k-resilient for some k > m

2 , then τ
has a decider.

Proof. Let M(τ) be the set of maximal elements of τ . Given some M ′ ⊆M(τ)
of size k, we know that there exists, by the definition of k-resilience, an ele-
ment vM ′ ∈

⋂
(A,B)∈M ′ B. Let vM ′ be chosen as an arbitrary such element of⋂

(A,B)∈M ′ B

We define our weight function w : V → R>0 by defining w(v), for v ∈ V , as
the number of subsets M ′ of M(τ) of size k, for which v = vM ′ and claim that
this function is a weighted decider for O.

Indeed, by Observation 3.2.1 it is enough to show that w is a decider for
all separations in M(τ). However, given some (A,B) ∈M(τ), there are

(
m−1
k−1

)
many distinct subsets M ′ ⊆ M(τ) of size k which contain (A,B) and

(
m−1
k

)
many such subsets M ′ ⊆ M(τ) of size k which do not contain (A,B). Since
k > m

2 we observe that
(
m−1
k−1

)
>
(
m−1
k

)
. Thus,

w(A) =
∑
a∈A

w(a) 6 |{M ′ ⊆M(τ) : |M ′| = k, (A,B) /∈M ′}| 6
(
m− 1
k

)
<

(
m− 1
k − 1

)
= |{M ′ ⊆M(τ) : |M ′| = k, (A,B) ∈M ′}| 6

∑
b∈B

w(b) = w(B)

Thus, w decides every separation (A,B) ∈ M(τ) as (A,B) and thus is, by
Observation 3.2.1, a decider for τ .

As it turns out, this bound of k > m
2 in Theorem 3 is optimal in the following

sense:

Proposition 3.2.2. For every k,m ∈ N with 3 6 k 6 m
2 , there exists an

edge-tangle τm,k of a hypergraph with m maximal elements that is k-resilient,
but which has no decider.

Proof. Consider the uniform k-regular hypergraph H from Example 3.1.7. Let
us denote as τm,k the m-tangle τ constructed in Theorem 3.1.8 for this hyper-
graph H.

Let us denote, for every i ∈ [m], as Vi the set of all those vertices of H
which correspond to a k-element subset of [m] containing i. Then the maximal
separations in τm,k are, by construction, all the bipartitions si = (V r Vi, Vi).

We only need show that τm,k is indeed k-resilient, but this is immediate from
the construction: by Observation 3.2.1, it is enough to consider an arbitrary
collection si1 , . . . , sik of k separations in the setM of maximal separations in τm,k.
But then there is a vertex of H corresponding to the k-element subset {i1, . . . , ik}
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of [m], and this vertex is on the big side Vij of sij for all j ∈ [j] by construction.

Now another approach we might take in order to guarantee the existence of a
decider for our given profile τ of set separations is to make further requirements
that τ should satisfy. Let us for the moment only consider the case of bipartitions.
We might increase our requirements on τ by requiring that, for some fixed integer
` we have that |B1∩B2∩B3| > ` for any three (A1, B1), (A2, B2), (A3, B3) ∈ τ . So
let us say that an orientation τ of bipartitions is an F`-tangle if τ does not contain
any three separations (A1, B1), (A2, B2), (A3, B3) so that |B1 ∩ B2 ∩ B3| < `.
Now for any fixed `, the construction from Example 3.1.7 and Theorem 3.1.8
can easily be modified to find an F`-tangle which still does not admit a weighted
decider, but is k-resilient for our favourite k 6 m

2 : we can simply take ` disjoint
copies of every vertex of H and let any hyperedge of H contain all copies of the
vertices contained in that edge.

However, maybe we can guarantee the existence of a decider by requiring that
` is not only a large constant, but large in terms of |V |, e.g. of size at least ε |V |
for some constant ε > 0. The following proposition shows that there exists a
sharp lower bound for those ε > 0 for which ` > ε |V | guarantees the existence
of decider:

Proposition 3.2.3. Let V be a (finite) set, and let 0 < ε < 1. If ε > 1
8 , then

every Fεn-tangle τ of some set S of bipartitions of V has a weighted decider; if
ε > 1

8 , then τ even has a decider set.
Conversely, for every ε < 1

8 we find some n ∈ N, so that for corresponding
choices of m and k the tangle τm,k from Proposition 3.2.2 forms an example of
an Fεn-tangle which orient bipartitions of a ground set V of size n and does not
have a decider.

Proof. Let τ be an F`-tangle on a set S of bipartitions of some set V with
` > |V |8 . If all of V is a decider set for τ , then we are done; so suppose not.
Then there exists a separation (A1, B1) ∈ τ with |B1| 6 |V |

2 . Again we are
done if B1 is a decider set for τ . If this is not the case, then there exists a
separation (A2, B2) ∈ τ such that |B1 ∩ A2| > |B1 ∩ B2|; in particular, we
have |B1 ∩B2| 6 |V |4 .

It turns out that if ` > |V |
8 , then B1 ∩ B2 needs to be the desired de-

cider set: otherwise, there exists another separation (A3, B3) ∈ τ such that
|(B1 ∩B2) ∩B3| 6 |(B1 ∩B2) ∩A3|. This implies |B1 ∩ B2 ∩ B3| 6 |V |8 which
contradicts the fact that τ is an F`-tangle.

In the case of ` = |V |
8 , the same arguments as above result in a decider set

if at least one of the occurring inequalities is strict. So suppose that all the
inequalities are satisfied with equality. In particular, every separation (A,B)
needs to satisfy |A| 6 |B|. With a similar reasoning as above, we can still obtain
a decider function: note first that it is enough to find a weight function w on V
which decides the set τ ′ ⊆ τ of all those separations (A,B) ∈ τ with |A| = |B|
correctly. Given such a weight function w, we obtain a decider for τ by adding
large enough constant weight to all vertices in V .

Suppose there are two separations (A,B), (C,D) ∈ τ ′ with |B ∩ C| > |B ∩D|.
Then this yields |B ∩D| < |V |

4 which in turn implies the existence of a decider
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set with the same arguments as above. Consequently, for every two separa-
tions (A,B), (C,D) ∈ τ ′, we have |B ∩ C| 6 |B ∩D|.

Hence, the weight function w defined by counting for every v ∈ V the
number of those separations (A,B) ∈ τ ′ with v ∈ B is a decider for τ ′:
given some separation (C,D) ∈ τ ′ we have that w(C) =

∑
(A,B)∈τ ′ |B ∩ C|

and w(D) =
∑

(A,B)∈τ ′ |B ∩D|. As above, we have |B ∩ C| 6 |B ∩D| for every
separation (A,B) ∈ τ ′; as we clearly have |D ∩ C| < |D ∩D|, this implies
w(C) < w(D). Thus, w is a decider for τ .

For the second part of the proposition, let us consider the tangle τm,k from
Proposition 3.2.2 for some m > 2k > 6. Then, for any three maximal separations
in τm,k, their intersection contains exactly

(
m−3
k−3

)
elements of the constructed

ground set V . In particular, τm,k is an F`-tangle for all ` <
(
m−3
k−3

)
. Now recall

that the size of the ground set V is |V | =
(
m
k

)
. Thus, if we set k = m

2 , then

lim
m→∞

(
m−3
k−3

)(
m
k

) = 1
8 .

So, by Proposition 3.2.2, we find for any ε < 1
8 some n ∈ N and integers m, k

so that the tangle τm,k witness that there exists an Fεn-tangle on a ground set
of n elements without a weighted decider.

3.2.4 Deciders for extendable tangles
Let U be a universe of set separations of a ground set V which is equipped with
a submodular order function, and let τ be an orientation of Sk for some k ∈ N.
In Section 3.2.3 we analysed different properties of τ which ensure the existence
of a weighted decider for τ . All the notions we considered there may be viewed
as additional requirements τ need to satisfy in order for us to guarantee the
existence of a decider for τ .

But how can we guarantee the existence of a decider for a profile τ if we
do not want to impose additional requirements on τ in the above sense? We
know that there exist profiles, and even tangles, without deciders (see e.g.,
Proposition 3.2.2). So instead of looking for a decider for τ itself, we may try to
find a decider for some subset τ ′ of the separations of τ . Ideally, we can do so in
such a way that this decider for the subset is still, in some sense, related to the
original profile τ .

In the presence of an order function, one natural such subset of a k-profile τ ,
say, consists of all separations of order less than some k′ < k. In other words, we
would like to obtain, given a k-profile τ , a decider for the k′-profile τ ′ ⊆ τ . One
way in which we could try to achieve this consists in proving the following: if a
profile τ ′ extends to some profile τ of higher order in U , then τ ′ has a decider.
Here, we say that an orientation τ ′ of a separation system S′ ⊆ S extends to an
orientation τ of S if τ ∩ S′ = τ ′. In this case, we may view the decider w for τ ′
as an approximation of a decider for its extension τ – although w will in general
not decide all the separations in τ . The profiles constructed in Proposition 3.2.2,
for example, do not have a decider; but if we consider only those separations of
order at most m

2 in this example, then they even have a decider set: the whole
ground set V decides all separations of order at most m

2 as in τm,k.
This leads us to the question whether profiles which extend to profiles of

twice their order do always have decider sets.
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In this section we show that k-profiles which extend to regular 2k-profiles do
indeed have decider sets – if we work in a universe U of set separations equipped
with the order function |(A,B)| = |A∩B|. Recall that in this setting, we already
know from Theorem 3.1.4 that there exists a weighted decider for any k-profile
in U . The following theorem strengthens this in that it shows the existence of
an actual decider set for certain k-profiles:

Theorem 4. Let U be a universe of set separations of some finite set V equipped
with the order function |(A,B)| = |A∩B| and let k ∈ N. If τ ′ is a k-profile in U
which extends to a regular 2k-profile τ in U , then τ ′ has a decider set X ⊆ V of
size |X| > 2k.

The proof of Theorem 4 will find a star σ ⊆ τ whose interior
⋂

(A,B)∈σ B is
the desired decider set for τ ′. Let us show first that the interior of any star in τ
has size at least 2k.

Lemma 3.2.4. If τ is a regular 2k-profile in U for some k ∈ N and σ ⊆ τ is a
star, then the interior X =

⋂
(A,B)∈σ B of σ satisfies |X| > 2k.

Proof. Suppose that this is not the case, and let σ ⊆ τ be a star such that its
interior X =

⋂
(A,B)∈σ B has size |X| < 2k.

Let us write σ = {(A1, B1), . . . , (Al, Bl)}. We claim that for any i 6 l we
have |(A1, B1) ∨ · · · ∨ (Ai, Bi)| < 2k. By definition, we have

|(A1, B1) ∨ · · · ∨ (Ai, Bi)| = |(A1 ∪ · · · ∪Ai) ∩ (B1 ∩ · · · ∩Bi)|.

Since σ is a star, we have (A1 ∪ · · · ∪Ai) ⊆ Bj for every j > i. So in particular,
we have

(A1 ∪ · · · ∪Ai) ∩ (B1 ∩ · · · ∩Bi) ⊆ (Bi+1 ∩ · · · ∩Bl) ∩ (B1 ∩ · · · ∩Bi) = X.

Therefore, |(A1, B1)∨ · · · ∨ (Ai, Bi)| 6 |X| < 2k. By the profile property of τ , it
follows inductively that ((A1, B1) ∨ · · · ∨ (Ai, Bi)) ∈ τ for every i 6 l. Then the
separation (A1, B1) ∨ · · · ∨ (Al, Bl) = (Y,X) is in τ , where Y =

⋃
(A,B)∈σ A.

Since |X| < 2k, the separation {X,V } has order < 2k and hence an ori-
entation in τ . By the regularity of τ , this orientation must be (X,V ) be-
cause (V,X) is co-small. But this leads to a contradiction since this would
imply (Y,X) ∨ (X,V ) = (V,X) ∈ τ by the profile property of τ .

Proof of Theorem 4. Let σ be a star in τ with an interior X =
⋂

(A,B)∈σ B of
smallest possible size. By Lemma 3.2.4 we have |X| > 2k. We claim that X is
the desired decider set for τ ′.

For this suppose that X does not witness (A,B) ∈ τ ′. Since |X| > 2k, we
then especially have |X ∩A| > k which we are going to lead to a contradiction.

So let (A,B) ∈ τ ′ be of minimal order among all separations with |X ∩A| > k.
Note that this separation (A,B) may be witnessed by X. For every (C,D) ∈ σ,
the corner separation (A ∩D,B ∪ C) has at least the order of (A,B) as other-
wise (A∩D,B∪C) would contradict the choice of (A,B): indeed, by construction,
we have X ⊆ D, and therefore |(A ∩ D) ∩ X| = |A ∩ X| > k. Thus, by the
minimality of |(A,B)|, the corner (A∩D,B∪C) must have order at least |(A,B)|.

By submodularity, the opposite corner (B ∩ C,A ∪ D) has order at most
|(C,D)| and thus we have (B ∩ C,A ∪ D) ∈ τ by consistency. Now consider
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the star σ̂ ⊆ τ consisting of (A,B) together with, for every (C,D) ∈ σ, the
separation (B ∩ C,A ∪D).

We claim that the interior X̂ of σ̂ is smaller than X contradicting the choice
of σ: by definition, we have

X̂ = B ∩
⋂

(C,D)∈σ

(A ∪D) = (A ∩B) ∪ (B ∩X) = ((A ∩B) rX) ∪ (B ∩X).

Since X is the disjoint union of B ∩X and (A ∩X) rB, we are done if

|(A ∩B) rX| < |(A ∩X) rB|.

Let h = |A ∩ B ∩ X|. Since |A ∩X| > k, we have |(A ∩X) r B| > k − h.
However, we have (A,B) ∈ τ , so |A ∩B| < k and hence

|(A ∩B) rX| = |A ∩B| − |A ∩B ∩X| < k − h

completing the proof.

Our proof of Theorem 4 heavily relies on the assumption that the order
function on U is given by |(A,B)| = |A ∩B|. We do not know whether a similar
result holds for other or even all submodular order functions on such U :

Problem 3.2.5. Let U be a universe of set separations of a finite set V , and
suppose that U is equipped with some submodular order function. Is it true that,
if τ ′ is a k-profile in U for some k ∈ N which extends to a regular 2k-profile in U ,
then τ has a decider set? What if we consider other universes of set separations
like e.g. the universe of bipartitions of V ?
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3.3 Dual separation systems
Unlike in the previous sections, in this section we do not try to witness the
existence of a tangle by some vertex set, instead we are dealing with a specific
scenario in which a tangle might be witnessed by a tangle of a different, in some
sense dual, separation system.

As a concrete example let us think about the following setup: suppose we
are given a set of objects, and a list of properties such that each object may,
or may not, have each of the properties. This can be visualized by a bipartite
graph, where the vertices on the sides correspond to the set X of objects and the
set Y of properties, respectively, and we draw an edge between an object and a
property precisely if the object has that property. Now we might be interested
in tangles on the set X of objects, say of the set S (X) of set separations or
the set B(X) of bipartitions of X. Clearly, we want to restrict ourselves to a
subset of these separations, as there are no tangles of either S (X) or B(X), and
one natural to do so is by considering a submodular order function. This order
function now clearly should take into account how the edges between X and Y
are distributed, as we would think of two objects as being rather similar if they
agree for a lot of properties on whether the have, or fail to have, that specific
property.

However, in this specific setup, we might also be interested in tangles of
the set Y of properties, we might want to analyse which properties often occur
together, and so we might look at tangles of a subset of S (Y ) or B(Y ), the
set separations or bipartitions of the set Y of properties, instead. This then
results in a dual approach to the one above, where we want to consider an order
function on separations of Y , which again should take into account how the
edges between X and Y are distributed.

We would suspect that the two types of tangles – those in X and those in
Y – are linked in some way, and it might be the case that a given tangle of
separations of X, say, witness that there is some tangle of separations of Y , and
the other way around.

In this section we are giving a formal setup in which this is indeed possible,
and we will show how to do so.

The setup works with the sets S (X) and S (Y ) of set separations of X and
Y , however we can find a similar setup for bipartitions, and will show how to do
so at the end of Section 3.3.3.

3.3.1 Tangles on the sides of a bipartite graph
Given a bipartite graph G with partition classes X and Y , let us denote by
S(X) the set of all set separations of X, that is the set of all sets {A,B} with
A,B ⊆ X such that A ∪ B = X. Similarly, we denote by S(Y ) the set of all
set separations of Y , and we denote by S (X) and S (Y ) the set of oriented
separations from S(X) or S(Y ), respectively.

Then the structure of the bipartite graph G will allow us to relate the
separations in S (X) to the separations in S (Y ), i.e. we will obtain a dual
separation to a given separation in S (X). One natural way to do so is as follows:
given a separation (A,B) of X there will be some vertices in Y which are joined
in G to more vertices in A than in B, while other vertices in Y are joined to more
vertices in B than in A. This gives us a natural way to partition the vertices in Y .
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So, given (A,B) ∈ S (X) we define the separation (A,B). := (A.B , B.A) ∈ S (Y )
by letting

A.B := {y ∈ Y : |N(y) ∩A| > |N(y) ∩B|}

and
B.A := {y ∈ Y : |N(y) ∩A| 6 |N(y) ∩B|}.

We call (A,B). the shift of (A,B).
Similarly,1 a set separation (C,D) of Y gives rise to its shift

(C,D)/ := (C/D, D/
C), a set separation of X, via

C/D := {x ∈ X : |N(x) ∩ C| > |N(x) ∩D|}

and
D/
C := {x ∈ X : |N(x) ∩ C| 6 |N(x) ∩D|}.

We note that both these shifting operations commute with the natural involu-
tions on S (X) and S (Y ). However, we also note that this operation is not neces-
sarily idempotent: there may exist (A,B) ∈ S (X) such that ((A,B).)/ 6= (A,B).

The map (·). : S (X)→ S (Y ) induces an inverse map /(·) : 2S (Y )→ 2S (X)

which we call a pull-back, sending every τ ⊆ S (Y ) to
/τ := {(C,D) ∈ S (X) : (C,D). ∈ τ} ⊆ S (X).

Similarly, the map (·)/ : S (Y ) → S (X) induces a map .(·) : 2S (X) → 2S (Y )

sending every τ ⊆ S (X) to
.τ := {(C,D) ∈ S (Y ) : (C,D)/ ∈ τ} ⊆ S (Y ).

The question then arises, under which conditions on a tangle τ will the subset
.τ or /τ also be a tangle? In order for there to be any interesting tangle structure
we will have to restrict to some subset of S (X) or S (Y ), and the most natural
way to do so will be to choose some order function and consider sets Sk (X)
and Sk (Y ) of separations of order less than k. However, then in order for the
pull-back to have any hope of being a tangle, it must orient every separation in
Sk′ (X) or Sk′ (Y ) for some k′. Hence, already for this question to make sense,
we will need to choose an appropriate order function which behaves nicely with
respect to the shifting operation.

In fact, we will define order functions on S (X) and S (Y ) so that shifting a
separation never increases its order. This will guarantee that if τ orients all the
separations of order less than k in S (X), then .τ orients all the separations of
order less than k in S (Y ). Indeed, if (C,D) ∈ S (Y ) has order less than k, then
(A,B) := (C,D)/ ∈ S (X) has order less than k and so precisely one of (A,B) or
(B,A) is in τ by assumption. Since (B,A) = (D,C)/, it follows that precisely
one of (C,D) or (D,C) is in .τ .

Furthermore, these order functions are defined in a particularly natural way,
determined only by the structure of G. Broadly, the order functions measure in
some way how evenly a separation of X or Y splits the neighbourhood of each

1Informally, we think of the vertex classes X, Y of G as being its ‘left’ and ‘right’ class,
respectively. Formally, however, {X, Y } is an unordered pair, so the operators . and / are
formally the same: they map their argument, an oriented separation of one of the sets X, Y ,
to an oriented separation of the other set. It is important, that we never treat X and Y
differently: they are disjoint, but indistinguishable.
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vertex from the appropriate class. For example, in the motivational example
from the introduction, the order of a separation (A,B) of X will be determined
by how evenly this separation splits, for every property in Y , the set of objects
sharing that property. The more balanced the split, the larger the contribution
of this property to the order of the separation. Back to the general setup of
a bipartite graph G with partition classes X and Y , the order of a separation
(A,B) will be the lower, the more vertices from the opposite partition class have
a clear ‘preference’ of one side or the other.

Explicitly, let us define the order function |·|X : S (X)→ N where

|(A,B)|X :=
∑
y∈Y

(2 min{|N(y) ∩A|, |N(y) ∩B|} − |N(y) ∩A ∩B|) .

Here, the first term will be larger when N(y) is more evenly split by (A,B).
The reason why we multiplied the term min{|N(y) ∩ A|, |N(y) ∩ B|} with

a factor of two and added the extra term of −|N(y) ∩ A ∩ B| is to adjust for
double-counting: if x is contained in both A and B we would count all the edges
incident with x in

∑
y∈Y min{|N(y) ∩A|, |N(y) ∩B|}, so moving x out of A or

B would not increase the order even if it made the separation more balanced.
Now in order to prevent this and still keep the order of a separation integer
valued, we added the factor 2 before min{|N(y) ∩A|, |N(y) ∩B|} as well as the
extra term −|N(y) ∩ A ∩ B|. This then results in a neighbour x in A ∩ B is
treated as lying half in A and half in B.

Similarly, we define |·|Y : S (Y )→ N where

|(C,D)|Y :=
∑
x∈X

(2 min{|N(x) ∩ C|, |N(x) ∩D|} − |N(x) ∩ C ∩D|) .

Note that these functions are symmetric and non-negative, as required of an
order function for separation systems. Less obviously, they are submodular, so
S (X) and S (Y ) equipped with these functions are submodular universes.

Moreover, the function |·|X attains its maximum value on the degenerate
separation (X,X), and since orientations of all of S (X) are not enlightening,
in particular no such orientation will be a tangle or a profile, we will in the
following implicitly assume that any Sk (X) we consider does not contain the
separation (X,X).

Submodularity is a fundamental property for order functions at the heart
of tangle theory, and so we include the proof even though it is straightforward.
However, the reader is invited to skip the proofs of the next three lemmas at
first reading, to remain with the flow of the narrative.

Lemma 3.3.1. The order function |·|X is submodular.

Proof. We show that |·|X is a sum of submodular functions. For this consider,
for y ∈ Y , the order function on S (X) given by

|(A,B)|y := 2 min{|N(y) ∩A|, |N(y) ∩B|} − |N(y) ∩A ∩B|

and note that |(A,B)|X =
∑
y∈Y |(A,B)|y, thus it is enough to show that |·|y is

submodular for every y ∈ Y .
Fix some y in Y . For Z ⊆ X we denote NZ := |N(y) ∩ Z|.
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Take separations (A1, B1) and (A2, B2) in S (X), and suppose without loss of
generality that NAi 6 NBi . Let A′i := AirBi, B′i := BirAi and Zi := Ai ∩Bi.
Note that |(Ai, Bi)|y = 2NA′

i
+NZi .

We observe that

|(A1 ∩A2, B1 ∪B2)|y = 2NA′1∩A′2 +NZ1∩Z2 +NZ1∩A′2 +NA′1∩Z2 ,

and

|(A1 ∪A2, B1 ∩B2)|y = 2 min{NA′1∪A′2 , NB′1∩B′2}+NZ1∩Z2 +NZ1∩B′2 +NB′1∩Z2 .

Summing these two, we get

|(A1 ∩A2, B1 ∪B2)|y + |(A1 ∪A2, B1 ∩B2)|y
= 2NA′1∩A′2 +NZ1∩Z2 +NZ1∩A′2 +NA′1∩Z2

+ 2 min{NA′1∪A′2 , NB′1∩B′2}+NZ1∩Z2 +NZ1∩B′2 +NB′1∩Z2

6 2NA′1∩A′2 + 2NA′1∪A′2
+NZ1∩Z2 +NZ1∩A′2 +NZ1∩B′2 +NZ1∩Z2 +NA′1∩Z2 +NB′1∩Z2

= 2NA′1 + 2NA′2 +NZ1 +NZ2

= |(A1, B1)|y + |(A2, B2)|y.

Similarly,

|(A1 ∩B2, B1 ∪A2)|y = 2 min{NA′1∩B′2 , NB′1∪A′2}+NZ1∩Z2 +NZ1∩B′2 +NA′1∩Z2 .

and

|(A1 ∪B2, B1 ∩A2)|y = 2 min{NA′1∪B′2 , NB′1∩A′2}+NZ1∩Z2 +NZ1∩A′2 +NB′1∩Z2 .

Summing these two, we get

|(A1 ∩B2, B1 ∪A2)|y + |(A1 ∪B2, B1 ∩A2)|y
= 2 min{NA′1∩B′2 , NB′1∪A′2}+NZ1∩Z2 +NZ1∩B′2 +NA′1∩Z2

+ 2 min{NA′1∪B′2 , NB′1∩A′2}+NZ1∩Z2 +NZ1∩A′2 +NB′1∩Z2

6 2NA′1∩B′2 + 2NA′2∩B′1
+NZ1∩Z2 +NZ1∩A′2 +NZ1∩B′2 +NZ1∩Z2 +NA′1∩Z2 +NB′1∩Z2

6 2NA′1 + 2NA′2 +NZ1 +NZ2

= |(A1, B1)|y + |(A2, B2)|y.

Thus, |·|y is submodular and so is |·|X =
∑
y∈Y |·|y

Next, we show that the shifting operation does not increase the order of a
separation. For this we first show the following lemma, giving an alternative
representation of the order function:

Lemma 3.3.2. For all (A,B) ∈ S (X) we have

|(A,B)|X = 2|E(A.B , B)|+ 2|E(B.A, A)| − |E(A.B ∩B.A, X)| − |E(Y,A ∩B)|,

where E(Z1, Z2) denotes, for Z1, Z2 ⊆ V (G), the set of edges between Z1 and
Z2.
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Proof. This can be calculated by rearranging sums:

|(A,B)|X
=
∑
y∈Y

(2 min{|N(y) ∩A|, |N(y) ∩B|} − |N(y) ∩A ∩B|)

=
∑
y∈Y

|N(y)∩A|>|N(y)∩B|

2|N(y) ∩B|+
∑
y∈Y

|N(y)∩B|>|N(y)∩A|

2|N(y) ∩A|

−
( ∑

y∈Y
|N(y)∩A|=|N(y)∩B|

|N(y)|+
∑
y∈Y
|N(y) ∩A ∩B|

)
= 2|E(A.B , B)|+ 2|E(B.A, A)| − |E(A.B ∩B.A, X)| − |E(A ∩B, Y )|.

With this we can now prove that shifting a separation indeed cannot increase
the order of a separation:

Lemma 3.3.3. Let (A,B) be a separation of X, then |(A,B)|X > |(A.B , B.A)|Y .
Similarly, if (C,D) is a separation of Y , then |(C,D)|Y > |(C/D, D/

C)|X .

Proof. This is true by the following calculation:

|(A.B , B.A)|Y
=
∑
x∈X

(2 min{|N(x) ∩A.B |, |N(x) ∩B.A|} − |N(x) ∩A.B ∩B.A|)

6
∑
a∈A

2|N(a) ∩B.A|+
∑
b∈B

2|N(b) ∩A.B | −
∑

x∈A∩B
|N(x)| −

∑
y∈A.

B
∩B.

A

|N(y)|

=
∑
b∈B.

A

2|N(b) ∩A|+
∑
a∈A.

B

2|N(a) ∩B| −
∑

y∈A.
B
∩B.

A

|N(y)| −
∑

x∈A∩B
|N(x)|

= 2E(A.B , B) + 2E(B.A, A)− E(A.B ∩B.A, X)− E(A ∩B, Y )
= |(A,B)|X .

Finally, in order to define tangles of Sk (X) and Sk (Y ) we need to define the
notion of consistency that we require our orientations to satisfy. There are a few
natural choices that one could make here, however in most contexts it turns out
that these definitions are in some sense weakly equivalent, in that tangles under
any one definition tend to induce tangles of slightly lower order under the other
definitions.

With that in mind, let us define a tangle of Sk (X) (in G) as an orientation
τ of Sk (X) which satisfies the following property:

There are no (A1, B1), (A2, B2), (A3, B3) ∈ τ with A1 ∪A2 ∪A3 = X. (†)

We define tangles of Sk (Y ) in G in a similar manner. This is perhaps the
simplest definition to take, and is a direct analogue of the corresponding notion
of ‘consistency’ used to define tangles in matroids. We will discuss later in more
detail the extent to which our results hold for tangles defined in terms of different
notions of ‘consistency’.

We are now ready to state the main results of this section. We will show
that, with the aid of this order function, we can relate the tangles in S (X) to
those in S (Y ).
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Theorem 5. Let τ be a tangle of S4k (X) and let τ ′ = .τ ∩ Sk (Y ), then τ ′ is a
tangle of Sk (Y ).

By symmetry, we then obtain a similar conclusion as in Theorem 5 when we
shift a tangle of S4k (Y ).

Proof of Theorem 5. We first note that τ ′ is an orientation of Sk (Y ). Indeed,
suppose that both (C,D) and (D,C) are in τ ′. If we let

A = {x ∈ X : |N(x) ∩ C| > |N(x) ∩D|}

and
B = {x ∈ X : |N(x) ∩ C| 6 |N(x) ∩D|}

then (C,D)/ = (A,B) and (D,C)/ = (B,A) and by assumption both of these
separations are in τ contradicting the fact that τ is an orientation.

So, it remains to show that τ ′ satisfies (†). Let us suppose for contra-
diction that there is some set {(C1, D1), (C2, D2), (C3, D3)} ⊆ τ ′ such that
C1 ∪ C2 ∪ C3 = Y .

Let (Ai, Bi) = (Ci, Di)/ for each i = 1, 2, 3. Then, since (Ai, Bi) ∈ τ for each
i, and τ is a tangle, it follows that there is some non-empty set Z such that
Z = X \ (A1 ∪A2 ∪A3).

Since Z ⊆ Bi for each i we have that |N(x)∩Di| > |N(x)∩Ci| for all x ∈ Z
and i = 1, 2, 3. However, since C1 ∪ C2 ∪ C3 = Y ,

3∑
i=1
|(Ci, Di)|Y =

3∑
i=1

∑
x∈X

(2 min{|N(x) ∩ Ci|, |N(x) ∩Di|} − |N(x) ∩ Ci ∩Di|)

>
3∑
i=1

∑
x∈Z

(2 min{|N(x) ∩ Ci|, |N(x) ∩Di|} − |N(x) ∩ Ci ∩Di|)

>
∑
x∈Z

3∑
i=1

(2|N(x) ∩ Ci| − |N(x) ∩ Ci ∩Di|)

>
∑
z∈Z

d(z) = |E(Z, Y )|.

Hence, |E(Z, Y )| < 3k. Then

|(Z,X)|X = E(Z, Y ) < 3k.

Thus, (Z,X) ∈ τ by (†).
Finally, since |(A3, B3)|X 6 |(C3, D3)|Y < k we can conclude by Lemma 3.3.1

that

|(A3 ∪ Z,B3 ∩X)|X 6 |(A3, B3)|X + |(Z,X)|X < k + 3k = 4k.

Hence, since (A3, B3), (Z,X) ∈ τ and |(A3 ∪ Z,B3)|X < 4k, it follows from
(†) that (A3 ∪ Z,B3) ∈ τ . However, then

{(A1, B1), (A2, B2), (A3 ∪ Z,B3)} ⊆ τ

and A1 ∪A2 ∪ (A3 ∪ Z) = X, contradicting (†).
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A natural question then to ask at this point, is, even if the shifting operations
themselves are not idempotent, whether the operation they induce on tangles
is in some way ‘idempotent’: that is, if we shift a tangle twice, do we end up
with the original tangle? It turns out that, again up to a constant factor, this is
indeed the case.

Theorem 6. Let τ be a tangle of S16k (X), let τ ′ = .τ ∩ S4k (Y ), and let
τ ′′ = /τ ′ ∩ Sk (X). Then τ ′′ ⊆ τ .

To prove this theorem, we first need to analyse how a separation of X can
behave under shifting that separation from X to Y and then back to X. It turns
out that the behaviour of this ‘double shift’ depends on the relation between
the order of the separation and its shift. Our first lemma analyses the case that
these two orders are the same:

Lemma 3.3.4. If |(A,B)|X = |(A,B).|Y then A ⊆ (A.B)/B.
A
and B ⊆ (B.A)/A.

B
.

Proof. By the proof of Lemma 3.3.3, we have that

|(A.B , B.A)|Y
=
∑
x∈X

(2 min{|N(x) ∩A.B |, |N(x) ∩B.A|} − |N(x) ∩A.B ∩B.A|)

6
∑
a∈A

2|N(a) ∩B.A|+
∑
b∈B

2|N(b) ∩A.B | −
∑

x∈A∩B
|N(x)| −

∑
y∈A.

B
∩B.

A

|N(y)|

=|(A,B)|X .

Thus, if |(A,B)|X = |(A.B , B.A)|Y , then∑
x∈X

2 min{|N(x) ∩A.B |, |N(x) ∩B.A|}

=
∑
a∈A

2|N(a) ∩B.A|+
∑
b∈B

2|N(b) ∩A.B | −
∑

x∈A∩B
|N(x)|.

In particular, for x ∈ A we have |N(x) ∩ B.A| 6 |N(x) ∩ A.B | and thus
x ∈ (A.B)/B.

A
. Similarly, for x ∈ B we have |N(x) ∩B.A| > |N(x) ∩A.B | and thus

x ∈ (B.A)/A.
B
.

While the previous lemma analysed the case that the order of the shift equals
the order of the separation we started with, the next two lemmas allows us to
obtain additional information when this is not the case.

Lemma 3.3.5. For every x ∈ ArB with |N(x) ∩B.A| > |N(x) ∩A.B | (equival-
ently: for every x ∈ (B.A)/A.

B
r B) we have that |(A+ x,B + x)|X 6 |(A,B)|X

and |({x}, X)|X 6 |(A,B)|X .
Symmetrically, the same is true for every x ∈ B rA with the property that

|N(x) ∩A.B | > |N(x) ∩B.A|, or equivalently, every x ∈ (A.B)/B.
A
rA.
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Proof. We have

|(A,B + x)|X
=
∑
y∈Y

(2 min{|N(y) ∩A|, |N(y) ∩ (B + x)|} − |N(y) ∩A ∩ (B + x)|)

=
∑
y∈Y

(2 min{|N(y) ∩A|, |N(y) ∩B|} − |N(y) ∩A ∩B|)

+ 2E(A.B rB.A, {x})− |N(x)|
<|(A,B)|X .

Moreover, |({x}, X)|X = |N(x)| and for every y ∈ N(x) ∩B.A we have that

min{|N(y) ∩A|, |N(y) ∩B|} = |N(y) ∩A|
>1 + |N(y) ∩ (A− x)| > 1 + |N(y) ∩A ∩B|,

thus 2 min{|N(y) ∩A|, |N(y) ∩B|} − |N(y) ∩A ∩B| > 2, which gives

|A,B|X >
∑

y∈N(x)∩B.
A

(2 min{|N(y) ∩A|, |N(y) ∩B|} − |N(y) ∩A ∩B|)

> 2|N(x) ∩B.A| > |({x}, X)|X .

Lemma 3.3.6. If (A,B) ∈ S (X) such that |(A,B)|X > |(A,B).|Y , then their
either exists an x ∈ (ArB) ∪ (B rA) such that for (A′, B′) = (A+ x,B + x)
we have |(A′, B′)|X < |(A,B)|X and |{x}, X|X 6 |(A,B)|X , or there exists an
x ∈ A ∩B such that for (A′, B′) = (A− x,B) or (A′, B′) = (A,B − x) we have
|(A′, B′)|X < |(A,B)|X and |({x}, X)|X 6 |(A,B)|X .

Proof. By the proof of Lemma 3.3.4, if |(A,B)|X > |(A.B , B.A)|Y , then∑
x∈X

2 min{|N(x) ∩A.B |, |N(x) ∩B.A|}

<
∑
a∈A

2|N(a) ∩B.A|+
∑
b∈B

2|N(b) ∩A.B | −
∑

x∈A∩B
|N(x)|.

Thus, without loss of generality there needs to be an x ∈ A such that

|N(x) ∩B.A| > |N(x) ∩A.B |.

Every such x is suitable for the x in the assumption by Lemma 3.3.5.
Now suppose that x ∈ A ∩B and |N(x) ∩B.A| > |N(x) ∩A.B |. Then

|(A− x,B)|X
=
∑
y∈Y

(2 min{|N(y) ∩ (A− x)|, |N(y) ∩B|} − |N(y) ∩ ((A ∩B)− x)|)

=
∑
y∈Y

(2 min{|N(y) ∩A|, |N(y) ∩B|} − |N(y) ∩A ∩B|)

− E(B.A, {x}) + |N(x)|
< |A,B|X
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For every such x ∈ X we have, since x ∈ A ∩B, that

2 min{|N(y) ∩A|, |N(y) ∩B|} − |N(y) ∩A ∩B|
> 2|N(y) ∩ {x}| − |N(y) ∩ {x}| = |N(y) ∩ {x}|.

Hence,

|({x}, X)|X = |N(x)| =
∑
y∈Y
|N(y) ∩ {x}|

6
∑
y∈Y

(2 min{|N(y) ∩A|, |N(y) ∩B|} − |N(y) ∩A ∩B|) = |(A,B)|X .

We are now ready to prove Theorem 6:

Proof of Theorem 6. Both τ ′′ ∩ Sk (X) and τ ∩ Sk (X) are tangles of Sk (X),
suppose that they are distinct. Let (A,B) ∈ τ be a separation of minimal order
with the property that (B,A) ∈ τ ′′ ∩ Sk (X) and let us assume further that
among all those separations (A,B) is chosen so that A∩B is as large as possible.
Suppose first that |(A,B)|X = |(A.B , B.A)|Y .

Let (A′, B′) = ((A,B).)/, by Lemma 3.3.4, we have that A ⊆ A′ and B ⊆ B′.
Since (A′, B′) 6= (A,B) by definition, we can pick x ∈ (A′ r A) ∪ (B′ r B).
Note that |(A′ + x,B′ + x)|X 6 |(A,B)|X by Lemma 3.3.5. Thus, by the choice
of (A,B), either (A′ + x,B′ + x) ∈ τ ′′ ∩ τ which implies that x ∈ A′ r A
or (B′ + x,A′ + x) ∈ τ ′′ ∩ τ which implies x ∈ B′ r B. In any case, since
|({x}, X)|X 6 |(A,B)|X (again by Lemma 3.3.5) and ({x}, X) ∈ τ ′′ ∩ τ this
contradicts the fact that τ ′′ ∩ Sk (X), respectively τ ∩ Sk (X) are tangles.

If on the other hand |(A,B)|X > |(A.B , B.A)|X then, by Lemma 3.3.6 there
either exists x ∈ (A r B) ∪ (B r A) such that for (A′, B′) = (A + x,B + x)
we have |(A′, B′)|X < |(A,B)|X and |{x}, X|X 6 |(A,B)|X , or there exists
x ∈ A ∩B such that for (A′, B′) = (A− x,B) or (A′, B′) = (A,B − x) we have
|(A′, B′)|X < |(A,B)|X and |({x}, X)|X 6 |(A,B)|X .

However, either of these cases again contradicts the fact that τ ′′ ∩ Sk (X),
respectively τ ∩ Sk (X), is a tangle as ({x}, X) ∈ τ ∩ τ ′′ and, by the choice of
(A,B), either (A′, B′) ∈ τ ∩ τ ′′ or (B′, A′) ∈ τ ∩ τ ′′ and {A,B}, {A′, B′}, {x,X}
together contradict (†).

There is also a more exciting way to prove Theorem 5 and Theorem 6
indirectly, albeit at the cost of a slight increase in the factors on k. This is to
view the tangles of the two partition classes as two different facets of tangles on
the edge set of the bipartite graph. We give these proofs in the next section.

3.3.2 Tangles of the edges
We will show that the tangles on the sides of a bipartite graph are related to a
special kind of tangles defined on the separations of the edges. So let us give the
notation required for these intermediate tangles of the edges.

We will denote the set of all set separations of the edge set E as S (E), and
the set of the corresponding unoriented separations as S(E). The following order
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function on the separations in S (E) is a natural variation on our previous order
function for separations in S (X):

|(C,D)|E :=
∑
v∈V

(2 min{|E(v) ∩ C|, |E(v) ∩D|} − |E(v) ∩ C ∩D|) ,

where E(v) denotes the set of incident edges of v. Again we observe that the
degenerate separation (E,E) has maximal possible order and so we shall again
implicitly assume that this separation is not contained in any Sk (E).

We say that an orientation τ of a subset Sk (E) of S (E) is a tangle of Sk (E)
if τ is an orientation of Sk (E) with the following property:

There are no (C1, D1), (C2, D2), (C3, D3) ∈ τ with C1 ∪ C2 ∪ C3 = E. (†E)

Given a separation in S (X), it is pretty immediate how to obtain a separation
in S (E) which is ‘dual’ to this separation: a separation (A,B) of X naturally
defines a separation (A,B)E := (E(A), E(B)) of E, where E(A) denotes the set
of all edges of G which have an end vertex in A. Note that ((A,B)E)∗ = (B,A)E .

The other way around is less obvious, but it will be necessary to associate to
each separation in S (E) a separation in S (X) and S (Y ). We will do so similarly
to how we associated to each separation in S (Y ) a separation in S (X). There
we obtained, given a separation (A,B) ∈ S (Y ), a separation in S (X) by asking
for every vertex in X whether that vertex has more neighbours in A or in B. In
a similar manner we will now ask, given a separation (C,D) in S (E), for each
vertex in X whether more of the adjacent edges lie in C or in D. Formally, given
a separation (C,D) of E, we obtain a separation (C,D)J := (CJ

D , D
J
C ) of X by

defining
CJ
D = {x ∈ X : |E(x) ∩ C| > |E(x) ∩D|}

and
DJ
C = {x ∈ X : |E(x) ∩ C| 6 |E(x) ∩D|}.

This shifting operation preserves the partial order of separations in the following
sense:

Lemma 3.3.7. If (C,D) 6 (C ′, D′), then (C,D)J 6 (C ′, D′)J

Proof. If (C,D) 6 (C ′, D′), then C ⊆ C ′ and D ⊇ D′. Thus, for x ∈ X, we
have that |E(x) ∩ C| 6 |E(x) ∩ C ′| and |E(x) ∩D| > |E(x) ∩D′|.

Now if x ∈ CJ
D , then |E(x) ∩ C| > |E(x) ∩D| and thus

|E(x) ∩ C ′| > |E(x) ∩ C| > |E(x) ∩D| > |E(x) ∩D′|,

hence x ∈ C ′JD′ . Similarly, if x ∈ D′JC′ , then |E(x) ∩D′| > |E(x) ∩ C ′| and thus

|E(x) ∩D| > |E(x) ∩D′| > |E(x) ∩ C ′| > |E(x) ∩ C|,

hence x ∈ CJ
D . Thus, CJ

D ⊆ C
′J
D′ and D′JC′ ⊆ DJ

C , i.e. (C,D)J 6 (C ′, D′)J.

In a similar manner we can define a separation (C,D)I of Y , however by the
symmetry of the situation we will only ever need to talk about the map (·)J.

Unlike the shifting operations considered in the previous section, there is
less of a symmetry here: the separation (A,B)E fully determines the separation
(A,B), whereas the separation (C,D)J in some way ‘compresses’ the information
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in the separation (C,D) into a rough estimate. Generally there are multiple
different separations (C,D) in S (E) for which the (C,D)J coincide, and so the
operation (·)J is not injective.

As with (·)., this function induces a pull-back map: given a subset τ of S (X),
we define

τE := {(C,D) : (C,D)J ∈ τ}.
Note that, as (E(A), E(B))J = (A,B), the set of all the separations (A,B)E is
a subset of τE .

For shifting in the other direction we take a slightly different notion. Given
a tangle τ of S (E), let us define

τX := {(C,D)J : (C,D) ∈ τ},

and let τY be defined analogously. Note that this is a genuinely different way to
move between tangles in S (E) and S (X); rather than ‘pulling back’ the tangle
from S (X) to S (E) via the shift (·)E , giving rise to a set of separations

Xτ := {(A,B) ∈ S (X) : (A,B)E ∈ τ},

we’re ‘pushing forward’ via the shift (·)J.
We note that in this particular case, since assuming the graph is connected

it is clear that
(
(A,B)E

)J = (A,B), we have that τX ⊇ Xτ and so, since Xτ
is automatically a partial orientation of S (X), if the restriction of τX to some
lower order is a tangle, then the restriction of Xτ to the same order will also
satisfy (†). In particular, working with this definition results in slightly stronger
results than working with Xτ , however the main purpose of this change is that
it will result in slightly simpler proofs, see for example Corollary 3.3.16.

We will show that for a given tangle τ of S4k (X), the set τE ∩Sk (E) actually
is a tangle of Sk (E) and dually that, if τ is a tangle of S2k (E), then τX ∩Sk (X)
is a tangle of Sk (X). We will then be able to use this to obtain proofs of
Theorem 5 and Theorem 6 from the symmetry between X and Y .

As a first step, let us show that the function |·|E is again submodular. This
follows from straightforward calculations, which we nevertheless include here for
the sake of completeness:

Lemma 3.3.8. The order function |·|E is submodular.

Proof. As in the proof of Lemma 3.3.1, it is enough to show that, for every v ∈ V,
the function

|(C,D)|v := 2 min{|E(v) ∩ C|, |E(v) ∩D|} − |E(v) ∩ C ∩D|

is submodular, as clearly |(C,D)|E =
∑
v∈V |(C,D)|v. Now fix some v in V. For

F ⊆ E we denote NF := |E(v) ∩ F |.
Take separations (C1, D1) and (C2, D2) in S (E) and suppose without loss of

generality that NCi 6 NDi . Let C ′i := CirDi, D′i := DirCi and Fi := Ci ∩Di.
Then

|(C1 ∩ C2, D1 ∪D2)|v = 2NC′1∩C′2 +NF1∩F2 +NF1∩C′2 +NC′1∩F2 ,

and

|(C1 ∪C2, D1 ∩D2)|v = 2 min{NC′1∪C′2 , ND′1∩D′2}+NF1∩F2 +NF1∩D′2 +ND′1∩F2 .
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Summing these two, we get

|(C1 ∩ C2, D1 ∪D2)|v + |(C1 ∪ C2, D1 ∩D2)|v
=2NC′1∩C′2 +NF1∩F2 +NF1∩C′2 +NC′1∩F2

+ 2 min{NC′1∪C′2 , ND′1∩D′2}+NF1∩F2 +NF1∩D′2 +ND′1∩F2

6 2NC′1∩C′2 + 2NC′1∪C′2
+NF1∩F2 +NF1∩C′2 +NF1∩D′2 +NF1∩F2 +NC′1∩F2 +ND′1∩F2

= 2NC′1 + 2NC′2 +NF1 +NF2 = |(C1, D1)|v + |(C2, D2)|v.

Similarly,

|(C1 ∩D2, D1 ∪C2)|v = 2 min{NC′1∩D′2 , ND′1∪C′2}+NF1∩F2 +NF1∩D′2 +NC′1∩F2 .

and

|(C1 ∪D2, D1 ∩C2)|v = 2 min{NC′1∪D′2 , ND′1∩C′2}+NF1∩F2 +NF1∩C′2 +ND′1∩F2 .

Summing these two, we get

|(C1 ∩D2, D1 ∪ C2)|v + |(C1 ∪D2, D1 ∩ C2)|v
=2 min{NC′1∩D′2 , ND′1∪C′2}+NF1∩F2 +NF1∩D′2 +NC′1∩F2

+ 2 min{NC′1∪D′2 , ND′1∩C′2}+NF1∩F2 +NF1∩C′2 +ND′1∩F2

6 2NC′1∩D′2 + 2NC′2∩D′1
+NF1∩F2 +NF1∩C′2 +NF1∩D′2 +NF1∩F2 +NC′1∩F2 +ND′1∩F2

6 2NC′1 + 2NC′2 +NF1 +NF2)|(C1, D1)|v + |(C2, D2)|v

Thus, |·|v is a submodular order function and so is |·|E .

However, unlike for the correspondence between |·|X and |·|Y , we will no
longer be able to show that the order of the shift of a separation is non-increasing,
instead we will only be able to show that, when shifting from a separation of the
vertices to the corresponding separation of the edges, we can bound how much
the order increases. More precisely, simple calculations show that:

Proposition 3.3.9. Given a separation (A,B) of X, we have that
|(A,B)|X 6 |(A,B)E |E and |(A,B)E |E 6 2|(A,B)|X .

Proof. For the first statement we note that:

|(A,B)|X =
∑
y∈Y

(2 min{|N(y) ∩A|, |N(y) ∩B|} − |N(y) ∩A ∩B|)

=
∑
y∈Y

(2 min{|E(y) ∩ E(A)|, |E(y) ∩ E(B)|} − |E(y) ∩ E(A) ∩ E(B)|)

6
∑
v∈V

(2 min{|E(v) ∩ E(A)|, |E(v) ∩ E(B)|} − |E(v) ∩ E(A) ∩ E(B)|)

= |(E(A), E(B))|E

For the second statement we observe that, for x ∈ X we have that

min{|E(x) ∩ E(A)|, |E(x) ∩ E(B)|} = |E(x) ∩ E(A) ∩ E(B)|
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and thus∑
x∈X

(2 min{|E(x) ∩ E(A)|, |E(x) ∩ E(B)|} − |E(x) ∩ E(A) ∩ E(B)|)

=|E(A) ∩ E(B)|.

Since clearly |(A,B)|X > |E(A) ∩ E(B)|, it follows that

|(E(A), E(B))|E
=
∑
v∈V

(2 min{|E(v) ∩ E(A)|, |E(v) ∩ E(B)|} − |E(v) ∩ E(A) ∩ E(B)|)

=
∑
x∈X

(2 min{|E(x) ∩ E(A)|, |E(x) ∩ E(B)|} − |E(x) ∩ E(A) ∩ E(B)|)

+
∑
y∈Y

(2 min{|E(y) ∩ E(A)|, |E(y) ∩ E(B)|} − |E(y) ∩ E(A) ∩ E(B)|)

= |E(A) ∩ E(B)|+
∑
y∈Y

(2 min{|N(y) ∩A|, |N(y) ∩B|} − |N(y) ∩A ∩B|)

6 2|(A,B)|X
For (·)J on the other hand, we will be able to show that this is a non-increasing

operation:
Lemma 3.3.10. Let (C,D) be a separation of E, then |(C,D)|E > |(CJ

D , D
J
C )|X .

For the proof of Lemma 3.3.10 we will need to carefully analyse how we
can ‘locally’ change a separation in S (E) without changing the shift. Recall
that, given a separation (A,B) in S (X), there are other separations apart from
(A,B)E in S (E) which still shift to (A,B). So, in order to prove Lemma 3.3.10
we will analyse what these different separations of E inducing the same separation
(A,B) of X look like. For this, we will show which ’local’, i.e. single-edge, changes
we can make to a given separation (C,D) to bring it closer to one of the type
(A,B)E , without increasing its order.

So, let us start analysing these ‘local’ changes. Firstly, in the next lemma we
show that we can move a single edge from C to D without increasing the order
of (C,D) or changing its shift (C,D)J if at the end vertex in X of that edge
there are fewer incident edges in C than in D.
Lemma 3.3.11. Let (C,D) be a separation of E and let e ∈ E be incident with
CJ
D rDJ

C . Then |(C + e,D − e)|E 6 |(C,D)|E and (C + e,D − e)J = (C,D)J.
Proof. Let e = vw. We observe that, since v ∈ CJ

D rDJ
C , we have

2 min{|E(v) ∩ C|, |E(v) ∩D|} − |E(v) ∩ C ∩D|
=2|E(v) ∩D| − |E(v) ∩ C ∩D|
>2|E(v) ∩ (D − e)| − |E(v) ∩ (C + e) ∩ (D − e)|+ 2,

and

2 min{|E(w) ∩ C|, |E(w) ∩D|} − |E(w) ∩ C ∩D|
>2 min{|E(w) ∩ (D − e)|, |E(w) ∩ (C + e)|} − |E(w) ∩ (C + e) ∩ (D − e)| − 2.

Thus, |(C − e,D + e)|E 6 |C,D|E . Moreover, v ∈ CJ
D rDJ

C and therefore also
v ∈ (C + e)JD−e r (D − e)JC+e and thus (C,D)J = (C + e,D − e)J.
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Using this, we can show that from within the set of those separations of E
with the same shift (A,B), we can always find some (C,D) of minimal order
which is ‘close’ to (A,B)E , in the sense that every edge incident with ArB is
contained in C rD and every edge incident with B rA is contained in D r C:

Lemma 3.3.12. Let (C,D) ∈ S (E). Then there exists a separation (C ′, D′) of
E with |(C ′, D′)|E 6 |(C,D)|E and (C ′, D′)J = (C,D)J such that every edge e
incident with CJ

D rDJ
C lies in C ′ rD′ and every edge incident with DJ

C r CJ
D

lies in D′ r C ′.

Proof. Suppose (C ′, D′) ∈ S (E) is chosen so that (C ′, D′)J = (C,D)J and
|(C ′, D′)|E 6 |(C,D)|E , and so that there are as few edges as possible incident
with CJ

D rDJ
C which do not lie in C ′ rD′ and as few edges as possible incident

with DJ
C r CJ

D which do not lie in D′ r C ′.
Suppose that there exists some such edge e incident with CJ

D rDJ
C which

does not lie in C ′ rD′ or some such edge e incident with DJ
C r CJ

D which does
not lie in D′ r C ′. Let us assume we are in the former case, as the argument in
the latter case is identical.

Since (C ′, D′)J = (C,D)J, by Lemma 3.3.11 we could then consider the
separation (C ′+ e,D′− e) which must then satisfy (C ′+ e,D′− e)J = (C ′, D′)J
and |(C ′ + e,D′ − e)|E 6 |(C ′, D′)|E 6 |(C,D)|E , contradicting the choice of
(C ′, D′).

This observation enables us to perform the necessary calculations to prove
Lemma 3.3.10.

Proof of Lemma 3.3.10. By Lemma 3.3.12 we may suppose that every edge
incident with CJ

D rDJ
C lies in C rD and every edge incident with DJ

C r CJ
D

lies in D r C.
In this case, we can calculate |(C,D)|E as follows.

|(C,D)|E
=
∑
v∈V

(2 min{|E(v) ∩ C|, |E(v) ∩D|} − |E(v) ∩ C ∩D|)

=
∑
v∈Y

(2 min{|E(v) ∩ C|, |E(v) ∩D|} − |E(v) ∩ C ∩D|) +
∑

v∈CJ
D
∩DJ

C

|E(v)|

>
∑
v∈Y

(
2 min{|N(v) ∩ CJ

D |, |N(v) ∩DJ
C |} − |N(v) ∩ CJ

D ∩D
J
C |
)

− |E(CJ
D) ∩ E(DJ

C )|+
∑

v∈CJ
D
∩DJ

C

|N(v)|

>
∑
v∈Y

(
2 min{|N(v) ∩ CJ

D |, |N(v) ∩DJ
C |} − |N(v) ∩ CJ

D ∩D
J
C |
)

=|(CJ
D , D

J
C )|X .

Analysing local changes will also play a crucial role in showing that, given
a tangle τ in S (E), the restriction of τX to a lower order is actually an orient-
ation. For this we will need to make sure that separations obtained from one
another by local changes cannot be oriented differently in τE . However, whereas
Lemma 3.3.11 allows us to move certain edges from C rD to D r C without
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changing the shift or increasing the order for showing that the restriction of τX
to a lower order actually is an orientation, we will need to analyse a different
type of local change.

More precisely, the next lemma will allow us to move certain edges from
D rC (or, symmetrically, C rD), to C ∩D without increasing the order. Such
an operation might change the shift of a separation, but, by Lemma 3.3.7, it
does so only in a controlled way: moving an edge from DrC to D ∩C will only
result in a shift that is larger, in the sense of the partial order on the separation
system, than the shift of the original (C,D). Moreover, such a local change does
not change the way a separation is oriented by a tangle.

Lemma 3.3.13. Let (C,D) be a separation of E and let e ∈ E be incident with
CJ
D . Then |(C + e,D)|E 6 |(C,D)|E and (C + e,D)J > (C,D)J.

Proof. Let e = vw. We observe that, since v ∈ CJ
D , we have

2 min{|E(v) ∩ C|, |E(v) ∩D|} − |E(v) ∩ C ∩D|
=2|E(v) ∩D| − |E(v) ∩ C ∩D|
=2|E(v) ∩ (D − e)| − |E(v) ∩ C ∩ (D + e)|+ 1

and

2 min{|E(w) ∩ C|, |E(w) ∩D|} − |E(w) ∩ C ∩D|
>2 min{|E(w) ∩ (C + e)|, |E(w) ∩D|} − |E(w) ∩ (C + e) ∩D| − 1.

Thus, |(C+e,D)|E 6 |(C,D)|E . We have (C,D)J 6 (C+e,D)J by Lemma 3.3.7.

We now have all the ingredients at hand needed to show that the shift of
a tangle, restricted to an appropriate order, is still a tangle. Let us start by
considering the shift τX of a tangle τ in S (E).

Theorem 3.3.14. If τ is a tangle of S2k (E), then τX ∩ Sk (X) is a tangle
of Sk (X).

Proof. We first note that the set τX ∩ Sk (X) contains at least one of (A,B)
and (B,A) for every separation (A,B) ∈ Sk (X). Indeed, by Proposition 3.3.9
|(A,B)E |E 6 2|(A,B)|X , and so since τ is a tangle of S2k (E) either (A,B)E ∈ τ
or (B,A)E ∈ τ .

Let us now show that for no separation {A,B} we have that both (A,B)
and (B,A) are contained in τX ∩ Sk (X). Suppose otherwise, then τ con-
tains separations (C1, D1) and (C2, D2) such that (C1, D1)J = (A,B) and
(C2, D2)J = (B,A).

Note that, by Proposition 3.3.9, we have that

|(E(A), E(B))|E 6 2|(A,B)|X < 2k,

hence (A,B)E ∈ τ or (B,A)E ∈ τ . Since (E(A), E(B))J = (A,B), we
may suppose without loss of generality that either (C1, D1) = (A,B)E or
(C2, D2) = (B,A)E . We suppose the former one, the latter case is similar.

Now pick a separation (C,D) ∈ τ so that (C,D)J > (C2, D2)J = (B,A) and
the set (D1 ∩D) r (C1 ∪ C) is as small as possible. Then, since τ satisfies (†E),
we have C1 ∪ C 6= E. Hence, there exists some edge e ∈ (D1 ∩D) r (C1 ∪ C).
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Let x be the end vertex of e in X. Note that e ∈ E(B) r E(A) since
E(A) = C1 and e /∈ C1. Thus, x ∈ B r A. Moreover, as B = C2

J
D2
⊆ CJ

D , we
have that x ∈ CJ

D . Thus, e is incident with CJ
D .

Consequently, applying Lemma 3.3.13 yields |(C + e,D)|E 6 |(C,D)|E . Thus,
τ orients (C + e,D) and therefore (C + e,D) ∈ τ , as (D,C + e) ∈ τ would
contradict (†E) because of (C,D) ∈ τ and D ∪ C = E.

But this implies that (C + e,D) ∈ τ is a better choice for (C,D), as
(C + e,D)J > (C,D)J by Lemma 3.3.7 and

(D1 ∩D) r (C1 ∪ C) ) (D1 ∩D) r (C1 ∪ (C + e)),

as e ∈ (D1 ∩D) r (C1 ∪ C).
Thus, τX ∩ Sk (X) is indeed an orientation. That τX ∩ Sk (X) satisfies the

tangle property (†) now follows like this: if (A1, B1), (A2, B2), (A3, B3) would
be a triple in τX ∩ Sk (X) contradicting the tangle property (†), then τ would
need to orient (A1, B1)E ,(A2, B2)E and (A3, B3)E by Proposition 3.3.9. By the
above observation τ orients them as (A1, B1)E ,(A2, B2)E and (A3, B3)E , since
τX ∩ Sk (X) does not contain any (((Ai, Bi)E)∗)J = (Bi, Ai). However, the
three separations (A1, B1)E , (A2, B2)E and (A3, B3)E in τ then contradict the
tangle property (†E), as every edge in E is incident with at least one of the sets
A1, A2, A3.

A similar conclusion holds for the shift τE of a tangle τ of Sk (X).

Theorem 3.3.15. Given a tangle τ of S4k (X), then τE ∩ Sk (E) is a tangle
of Sk (E).

Proof. By Lemma 3.3.10, given some separation (C,D) ∈ Sk (E) we have
that |(C,D)J|X 6 |(C,D)|E , thus τ contains exactly one of (C,D)J and
((C,D)J)∗ = (D,C)J, and consequently τE ∩ Sk (E) contains exactly one of
(C,D) and (D,C), i.e. τE ∩ Sk (E) is an orientation of Sk (E).

So, it remains to show that τE ∩ Sk (E) satisfies the tangle property (†E).
Let us suppose for a contradiction that there is some set

{(C1, D1), (C2, D2), (C3, D3)} ⊆ τE ∩ Sk (E)

such that C1 ∪ C2 ∪ C3 = E.
Let (Ai, Bi) = (Ci, Di)J for each i = 1, 2, 3. Then, since (Ai, Bi) ∈ τ for each

i, and τ is a tangle, it follows that the set Z = X \ (A1 ∪A2 ∪A3) is non-empty.
Since Z ⊆ Bi = Di

J
Ci

for each i, we have that |E(z) ∩Di| > |E(z) ∩ Ci| for
all z ∈ Z and i = 1, 2, 3. However, since C1 ∪ C2 ∪ C3 = E,

3∑
i=1
|(Ci, Di)|E =

3∑
i=1

∑
v∈V

(2 min{|E(v) ∩ Ci|, |E(v) ∩Di|} − |E(v) ∩ Ci ∩Di|)

>
3∑
i=1

∑
z∈Z

(2 min{|E(z) ∩ Ci|, |E(z) ∩Di|} − |E(z) ∩ Ci ∩Di|)

=
∑
z∈Z

3∑
i=1

(2|E(z) ∩ Ci| − |E(z) ∩ Ci ∩Di|)

>
∑
z∈Z

d(z) = |E(Z, Y )|.
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Since |(Ci, Di)|E < k for every i = 1, 2, 3, this gives us |E(Z,X)| < 3k and thus

|(Z,X)|X = |E(Z, Y )| < 3k.

Hence, τ needs to orient (Z,X). Since (X,Z) ∈ τ would contradict (†), it follows
that (Z,X) ∈ τ .

Finally, since |(A3, B3)|X 6 |(C3, D3)|E < k by Lemma 3.3.10, we can
conclude by submodularity that

|(A3 ∪ Z,B3 ∩X)|X 6 |(A3, B3)|X + |(Z,X)|X < 4k.

Hence, it follows that τ needs to orient (A3 ∪ Z,B3) and as (A3, B3) ∈ τ it
follows from (†) that (A3 ∪ Z,B3) ∈ τ , as A3 ∪B3 = X. However, then

{(A1, B1), (A2, B2), (A3 ∪ Z,B3)} ⊆ τ

and A1 ∪A2 ∪ (A3 ∪ Z) = X, contradicting (†).

Putting these two theorems together we immediately obtain that ‘double-
shifting’ a tangle gives, restricted to an appropriate order, a restriction of the
original tangle.

Corollary 3.3.16. Let τ be a tangle of S8k (E), then

τ ′′ := (τX ∩ S4k (X))E ∩ Sk (E)

is a subset of τ .
Similarly, let τ ′ be a tangle of S8k (X), then

τ ′′′ := (τ ′E ∩ S2k (E))X ∩ Sk (X)

is a subset of τ ′.

Proof. By Theorem 3.3.14, τ ′′ is a tangle of Sk (E). Now given any separation
(C,D) ∈ Sk (E) ∩ τ , we have that (C,D)J ∈ τX ∩ S4k (X) and thus (C,D) is in
(τX ∩ S4k (X))E ∩ Sk (E) = τ ′′. Since τ ′′ is an orientation of Sk (E), we then
have that τ ′′ ⊆ τ .

For the second part note that, by Theorem 3.3.15, τ ′′′ is a tangle of Sk (X).
Given (A,B) ∈ Sk (X) ∩ τ ′ we have, since ((A,B)E)J = (A,B), that (A,B)E is
in τ ′E ∩ S2k (E) and thus (A,B) ∈ (τ ′E ∩ S2k (E))X ∩ Sk (X) = τ ′′′. Since τ ′′′ is
an orientation of Sk (X), we then have that τ ′′′ ⊆ τ ′.

Putting these together, we obtain versions of Theorem 5 and Theorem 6 with
worse factors:

Corollary 3.3.17 (compare Theorem 5). Let τ be a tangle of S8k (X). Then
τ ′ := .τ ∩ Sk (Y ) is a tangle of Sk (Y ).

Proof. It is easy to see that τ ′ = (τE ∩ S2k (E))Y ∩ Sk (Y ) which is a tangle by
Theorem 3.3.15 and Theorem 3.3.14.

Corollary 3.3.18 (compare Theorem 6). Let τ be a tangle of S64k (X), let
τ ′ = .τ ∩ S8k (Y ), and let τ ′′ = /τ ′ ∩ Sk (X). Then τ ′′ ⊆ τ .
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Proof. Consider τE ∩ S16k (E). By Corollary 3.3.17, we have that

τ ′ = (τE ∩ S16k (E))Y ∩ S8k (Y ).

Moreover, again by Corollary 3.3.17 we have that

τ ′′ = (τ ′E ∩ S2k (E))X ∩ Sk (X).

But now, by Corollary 3.3.16, we note that

((τE ∩ S16k (E))Y ∩ S8k (Y ))E ∩ S2k (E) ⊆ τE ∩ S16k (E)

and thus,

(((τE∩S16k (E))Y ∩S8k (Y ))E∩S2k (E))X ∩Sk (X) ⊆ (τE∩S16k (E))X ∩Sk (X),

i.e. τ ′′ ⊆ (τE ∩ S16k (E))X ∩ Sk (X). Again by Corollary 3.3.16 we have that

(τE ∩ S16k (E))X ∩ Sk (X) ⊆ τ,

which shows the claim.

3.3.3 Variations and Generalizations
A natural question to consider at this point is how much these results depend
on the very specific set up we have here.

Regular profiles

For example, whilst we considered a very specific type of tangle, there are other
types of ‘tangle-like’ clusters which one might wish to consider. Perhaps the
most general condition one could consider here would be that of a regular profile.
Recall that a profile of a system of set separations is a consistent orientation
which does not contain any triple of separations of the form

{(A1, B1), (A2, B2), (B1 ∩B2, A1 ∪A2)}

and that it is regular if it does not contain any co-small separations. It is easy
to see that the tangles as defined above are regular profiles, but regular profiles
model a broader class of clusters.

Similar statements as in Theorems 5 and 6 can be shown to hold via similar
arguments for regular profiles. More precisely, we can show the following
with essentially the same proof, which we nevertheless include for the sake of
completeness:

Theorem 3.3.19. Let P be a regular profile of S3k (X), then P ′ := .P ∩ Sk (Y )
is a regular profile of Sk (Y ).

Proof. We first note that P ′ is an orientation of Sk (Y ). Indeed, suppose that
both (C,D) and (D,C) are in P ′. If we let

A = {x ∈ X : |N(x) ∩ C| > |N(x) ∩D|}

and
B = {x ∈ X : |N(x) ∩ C| 6 |N(x) ∩D|}
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then (C,D)/ = (A,B) and (D,C)/ = (B,A) and by assumption both of these
separations are in P contradicting the fact that P is an orientation.

To show that P ′ is consistent suppose for the contrary that there are
some separations (C1, D1), (C2, D2) ∈ P ′ such that (D1, C1) 6 (C2, D2) and
let (Ci, Di)/ = (Ai, Bi). Then, since D1 ⊆ C2 and D2 ⊆ C1, we have that
(B1, A1) 6 (A2, B2) and thus (A1, B1), (A2, B2) ∈ P contradicts the consistency
of P .

So, it remains to show that P ′ is a regular profile. Let us suppose for
contradiction that there is some set {(C1, D1), (C2, D2), (C3, D3)} ⊆ P ′ such
that (C1, D1) ∨ (C2, D2) = (D3, C3).

Let (Ai, Bi) = (Ci, Di)/ for each i = 1, 2, 3. Let Z = B1 ∩B2 ∩B3.
Since Z ⊆ Bi for each i, we have that |N(x)∩Di| > |N(x)∩Ci| for all x ∈ Z

and i = 1, 2, 3. However, since C1 ∪ C2 ∪ C3 = Y ,

3∑
i=1
|(Ci, Di)|Y =

3∑
i=1

∑
x∈X

(2 min{|N(x) ∩ Ci|, |N(x) ∩Di|} − |N(x) ∩ Ci ∩Di|)

>
3∑
i=1

∑
x∈Z

(2 min{|N(x) ∩ Ci|, |N(x) ∩Di|} − |N(x) ∩ Ci ∩Di|)

>
∑
x∈Z

3∑
i=1

(2|N(x) ∩ Ci| − |N(x) ∩ Ci ∩Di|)

>
∑
z∈Z

d(z) = |E(Z, Y )|.

Since |(Ci, Di)|Y < k for every i = 1, 2, 3, we have |E(Z, Y )| < 3k and thus

|(Z,X)|X = E(Z, Y ) 6 3k.

Hence, (Z,X) ∈ P since P is a regular profile of S3k (X).
Moreover, P contains (A1, B1) ∨ (A2, B2) as by submodularity

|(A1, B1) ∨ (A2, B2)|X 6 |(A1, B1)|X + |(A2, B2)|X < 2k.

Then also (A1, B1) ∨ (A2, B2) ∨ (A3, B3) ∈ P as

|(A1, B1) ∨ (A2, B2) ∨ (A3, B3)|X 6 |(A1, B1) ∨ (A2, B2)|X + |(A3, B3)|X < 3k.

But (A1, B1)∨ (A2, B2)∨ (A3, B3) = (A1∪A2∪A3, Z) and, as Z = B1∩B2∩B3
we have that A1∪A2∪A3∪Z = X and thus (A1∪A2∪A3, Z)∨ (Z,X) = (X,Z)
which contradicts the fact that P is a profile.

The profile P ′ is regular, since if (Y,C) ∈ P ′, then (Y,C). = (X,C.Y ) is a
co-small separation in P , which contradicts the regularity of P .

We also obtain a version of Theorem 6 for regular profiles:

Theorem 3.3.20. Let P be a regular profile of S16k (X), P ′ = .P ∩ Sk (Y ) and
P ′′ = /P ′ ∩ Sk (X), then P ′′ ⊆ P .

Proof. Both P ′′ and P ∩ Sk (X) are regular profiles of Sk (X), suppose that
they are distinct. Let (A,B) ∈ P be a separation of minimal order with the
property that (B,A) ∈ P ′′ ∩ Sk (X) and let us assume further that among all
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those separations (A,B) is chosen so that A∩B is as large as possible. Suppose
first that |(A,B)|X = |(A.B , B.A)|Y .

Let (A′, B′) = ((A,B).)/, by Lemma 3.3.4, we have that A ⊆ A′ and B ⊆ B′.
Since (A′, B′) 6= (A,B) by definition, we can pick x ∈ (A′ r A) ∪ (B′ r B).
Note that |(A′ + x,B′ + x)|X 6 |(A,B)|X by Lemma 3.3.5. Thus, by the choice
of (A,B), either (A′ + x,B′ + x) ∈ P ′′ ∩ P which implies that x ∈ A′ r A
or (B′ + x,A′ + x) ∈ P ′′ ∩ P which implies x ∈ B′ r B. In any case, since
|({x}, X)|X 6 |(A,B)|X (again by Lemma 3.3.5) and ({x}, X) ∈ P ′′ ∩ P this
contradicts the fact that P ′′ ∩ Sk (X), respectively P ∩ Sk (X) are profiles.

If on the other hand |(A,B)|X > |(A.B , B.A)|Y then, by Lemma 3.3.6 there
either exists x ∈ (A r B) ∪ (B r A) such that for (A′, B′) = (A + x,B + x)
we have |(A′, B′)|X < |(A,B)|X and |{x}, X|X 6 |(A,B)|X , or there exists
x ∈ A ∩B such that for (A′, B′) = (A− x,B) or (A′, B′) = (A,B − x) we have
|(A′, B′)|X < |(A,B)|X and |({x}, X)|X 6 |(A,B)|X .

However, either of these cases again contradicts the fact that P ′′ ∩Sk (X), re-
spectively P∩Sk (X), is a profile as ({x}, X) ∈ τ∩P ′′ and, by the choice of (A,B),
either (A′, B′) ∈ τ ∩ P ′′ or (B′, A′) ∈ P ∩ P ′′ and {A,B}, {A′, B′}, {{x}, X}
together contradict the profile property.

Moreover, we can even show that also the statements about tangles on the
edges translate to statements on the profiles of the edges without a lot of changes
to the proof:

Proposition 3.3.21. If P is a regular profile of S2k (E), then for
PX := {(C,D)J : (C,D) ∈ P}, we have that PX ∩Sk (X) is a regular profile of
Sk (X).

Proof. If k 6 1 we observe that PX only orients separations (A,B) of order less
than 1, thus PX only orients those separations where every vertex in Y has all
its neighbours in either ArB or B rA. It is then easy to see that PX indeed
needs to be a profile.

So suppose that k > 1.
We first note that the set PX ∩Sk (X) contains at least one of (A,B) and (B,A)
for every separation (A,B) ∈ Sk (X). Indeed, by Proposition 3.3.9 we have
that |(A,B)E |E 6 2|(A,B)|X , and so since P is an orientation of S2k (E) either
(A,B)E ∈ P or (B,A)E ∈ P .

Let us now show that for no separation {A,B} we have that both (A,B)
and (B,A) are contained in PX ∩ Sk (X). Suppose otherwise, then P con-
tains separations (C1, D1) and (C2, D2) such that (C1, D1)J = (A,B) and
(C2, D2)J = (B,A).

Note that, by Proposition 3.3.9, we have that

|(E(A), E(B))|E 6 2|(A,B)|X < 2k,

hence (A,B)E ∈ P or (B,A)E ∈ P . Since (E(A), E(B))J = (A,B), we
may suppose without loss of generality that either (C1, D1) = (A,B)E or
(C2, D2) = (B,A)E . We suppose the former one, the latter case is similar.

Now pick a separation (C,D) ∈ P so that (C,D)J > (C2, D2)J = (B,A) and
the set (D1 ∩D) r (C1 ∪ C) is as small as possible. We claim that C1 ∪ C 6= E.
So suppose for a contradiction that C1 ∪ C = E. Then

(C1, D1) ∨ (C,D) = (C1 ∪ C,D1 ∩D) = (E,D1 ∩D).
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Since D1 ⊆ E(B) and D ⊆ E(A), we have that D1 ∩D ⊆ E(A ∩B). It is thus
easy to see that

|(E,D1 ∩D)|E 6 2|D1 ∩D| 6 2|E(A ∩B)| 6 2|(A,B)|X < 2k,

which gives a contradiction, as (E,D1 ∩D) ∈ P contradicts the fact that P is
regular. Thus, C1 ∪C 6= E and there exists some edge e ∈ (D1 ∩D) r (C1 ∪C).

Let x be the end vertex of e in X. Note that e ∈ E(B) r E(A) since
E(A) = C1 and e /∈ C1. Thus, x ∈ B r A. Moreover, as B = C2

J
D2
⊆ CJ

D , we
have that x ∈ CJ

D . Thus, e is incident with CJ
D .

Consequently, applying Lemma 3.3.13 yields |(C + e,D)|E 6 |(C,D)|E .
Thus, P orients (C + e,D) and therefore (C + e,D) ∈ P as (D,C + e) ∈ P
would contradict the profile property, since (C,D) ∨ ({e}, E) = (C + e,D) and
|({e}, E)|E 6 2 and consequently ({e}, E) ∈ P , since P is regular and k > 1.

But this implies that (C + e,D) ∈ P is a better choice for (C,D), as
(C + e,D)J > (C,D)J by Lemma 3.3.7 and

(D1 ∩D) r (C1 ∪ C) ) (D1 ∩D) r (C1 ∪ (C + e)),

since e ∈ (D1 ∩D) r (C1 ∪ C).
Thus, PX ∩ Sk (X) is indeed an orientation. That PX ∩ Sk (X) is a profile

now follows like this: if (A1, B1), (A2, B2), (B1 ∩B2, A1 ∪A2) would be a triple
in PX ∩ Sk (X) contradicting the profile property, then P would need to orient
(A1, B1)E , (A2, B2)E and (B1∩B2, A1∪A2)E by Proposition 3.3.9. By the above
observation, P orients them as (A1, B1)E ,(A2, B2)E and (B1∩B2, A1∪A2)E , since
PX∩Sk (X) does not contain any (((Ai, Bi)E)∗)J = (Bi, Ai). However, the three
separations (A1, B1)E ,(A2, B2)E and (B1∩B2, A1∪A2)E = (B1, A1)E∧(B2, A2)E
in P then contradict the profile property.

The profile PX ∩ Sk (X) is regular, since if (X,A) ∈ PX ∩ Sk (X), then
(E(X), E(A)) = (E,E(A)) is a co-small separation in P , which contradicts the
regularity of P .

Proposition 3.3.22. Given a regular profile P of S3k (X), let

PE := {(C,D) ∈ S3k (E) : (C,D)J ∈ P}.

Then PE ∩ Sk (E) is a regular profile of Sk (E).

Proof. By Lemma 3.3.10, given some separation (C,D) ∈ Sk (E) we have
that |(C,D)J|X 6 |(C,D)|E , thus P contains exactly one of (C,D)J and
((C,D)J)∗ = (D,C)J, and consequently PE ∩ Sk (E) contains exactly one
of (C,D) and (D,C), i.e. PE ∩ Sk (E) is an orientation of Sk (E). That the
orientation PE ∩ Sk (E) is consistent is then immediate from Lemma 3.3.7.

So, it remains to show that PE ∩ Sk (E) satisfies the profile property. Let us
suppose for a contradiction that there is some set

{(C1, D1), (C2, D2), (C3, D3)} ⊆ PE ∩ Sk (E)

such that (C1, D1) ∨ (C2, D2) = (D3, C3).
Let (Ai, Bi) = (Ci, Di)J for each i = 1, 2, 3 and let Z = B1 ∩B2 ∩B3.
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Since Z ⊆ Bi = Di
J
Ci

for each i, we have that |E(z) ∩Di| > |E(z) ∩ Ci| for
all z ∈ Z and i = 1, 2, 3. However, since C1 ∪ C2 ∪ C3 = E,

3∑
i=1
|(Ci, Di)|E =

3∑
i=1

∑
v∈V

(2 min{|E(v) ∩ Ci|, |E(v) ∩Di|} − |E(v) ∩ Ci ∩Di|)

>
3∑
i=1

∑
z∈Z

(2 min{|E(z) ∩ Ci|, |E(z) ∩Di|} − |E(z) ∩ Ci ∩Di|)

=
∑
z∈Z

3∑
i=1

(2|E(z) ∩ Ci| − |E(z) ∩ Ci ∩Di|)

>
∑
z∈Z

d(z) = |E(Z, Y )|.

Since |(Ci, Di)|E < k for every i = 1, 2, 3, this gives us |E(Z,X)| < 3k and thus

|(Z,X)|X = |E(Z, Y )| < 3k.

Hence, P needs to contain (Z,X), as P is a regular 3k-profile.
Moreover, P contains (A1, B1) ∨ (A2, B2) as by submodularity

|(A1, B1) ∨ (A2, B2)|X 6 |(A1, B1)|X + |(A2, B2)|X < 2k.

Then also (A1, B1) ∨ (A2, B2) ∨ (A3, B3) ∈ P as

|(A1, B1) ∨ (A2, B2) ∨ (A3, B3)|X 6 |(A1, B1) ∨ (A2, B2)|X + |(A3, B3)|X < 3k.

But (A1, B1)∨ (A2, B2)∨ (A3, B3) = (A1∪A2∪A3, Z) and, as Z = B1∩B2∩B3
we have that A1∪A2∪A3∪Z = X and thus (A1∪A2∪A3, Z)∨ (Z,X) = (X,Z)
which contradicts the fact that P is a profile.

The profile PE ∩ Sk (E) is regular, since if (E,C) ∈ PE ∩ Sk (E), then
(E,C)I = (X,CI

E ) is a co-small separation in P , which contradicts the regularity
of P .

It would be nice if one could find a unified result implying both our results
about tangles and the results about profiles. Unfortunately, it seems that the
nature of the result means that strengthening or weakening the notion of a
tangle we consider does not make the statement stronger or weaker, but rather
incomparable. Indeed, since we wish to show that tangles in S (X) shift to tangles
in S (Y ), if we consider a stronger notion of tangle, then fewer orientations are
tangles, and so it is required to show that a stronger property holds for the
shifts, but under a stronger assumption on the original orientations. Similarly, if
we consider a weaker notion of tangles, then more orientations will be tangles,
and so it is required to show that a weaker property holds for the shifts, but we
only have weaker assumptions on the original orientations.

Forward shifts

Another possible variation of the problem is to consider other ways to relate
tangles of the different systems to each other. Given our shifting operation
between the two separation systems S (X) and S (Y ) we defined a ‘pull-back’
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type operation that maps subsets of S (X) to subsets of S (Y ) and investigated
its action on tangles. However, as in the definition of τX , there is another way
to extend our shifting operations from acting on single separations to acting on
subsets via a ‘push-forward’ type action. It is perhaps equally natural to ask
how the tangles of Sk (X) and Sk (Y ) behave under these operations.

Given a tangle τ of Sk (X) one may define the set

τ. := {(A,B). : (A,B) ∈ τ} ⊆ Sk (Y ),

and similarly, if τ is a tangle of Sk (Y ), we may define

τ/ := {(A,B)/ : (A,B) ∈ τ} ⊆ Sk (X).

Note that τ. and τ/, generally, are no more than subsets of Sk (Y ) or Sk (X),
respectively, they need not be an orientation, not even a partial orientation.

However, we can show that this push-forward τ. is, when restricted appropri-
ately, contained in a corresponding pull-back .τ and thus needs to be a partial
orientation satisfy (†).

Proposition 3.3.23. Let τ be a tangle of S16k (X), then

(τ ∩ Sk (X)). ⊆ .τ.

Proof. The only way in which this may fail is that for some (C,D) ∈ .τ
we have (D,C) ∈ (τ ∩ Sk (X)).. Let us say this happens because of some
(A,B) ∈ τ ∩ Sk (X) with (A,B). = (D,C).

Then also (A,B) ∈ /(.τ ∩ S4k (Y )) ∩ Sk (X) by Theorem 6, and hence
(A,B)/ = (D,C) ∈ .τ ∩ S4k (Y ), contradicting the fact that .τ ∩ S4k (Y ) is
a tangle.

Bipartitions

A third variation of this idea comes from applications. There we often wish
to work with systems of bipartitions, rather than more general set separations.
Again, here much of the work in previous sections remains true in this setting,
with slight tweaks to the definitions and results.

More explicitly, given as before a bipartite graph G with bipartition classes
X and Y , let B(X) and B(Y ) be the universe of all bipartition of X and Y ,
respectively.

Given a bipartition (A,B) of X, we can define, as before, the shift of (A,B)
to be the bipartition (C,D) of Y , where C is the set of all elements of Y with
more neighbours in A than in B and D is the set of all elements of Y with
more neighbours in B than in A. However, a small issue arises here as to what
to do with those vertices which have an equal number of neighbours in A and
B. Since we need the shift of a bipartition to be a bipartition, we need to
break the symmetry in some way here, and we define our shifting operation
not for unoriented, but for oriented bipartitions, namely we define a bipartition
(A,B). := (C,D) of Y by letting

C := {y ∈ Y : |N(y) ∩A| > |N(y) ∩B|}

and
D := {y ∈ Y : |N(y) ∩A| < |N(y) ∩B|}.
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In particular, in general (A,B). 6= ((B,A).)∗.
There is again a natural order function for these bipartitions given by

|(A,B)|X :=
∑
y∈Y

min{|N(y) ∩A|, |N(y) ∩B|},

for bipartitions (A,B) of X and

|(C,D)|Y :=
∑
x∈X

min{|N(x) ∩ C|, |N(x) ∩D|},

for bipartitions (C,D) of Y . These functions are again submodular:

Lemma 3.3.24. The order functions |·|X and |·|Y are submodular.

Proof. By symmetry, we only need to show the submodularity of |·|X . Note that
it suffices to show that the function

|(A,B)|y := min{|N(y) ∩A|, |N(y) ∩ (B)|}

is submodular for each y ∈ Y , since sums of submodular functions are again
submodular.

To that end, let (A,B) and (A′, B′) be two bipartitions of X and let

|N(y) ∩A ∩A′| = paa′ , |N(y) ∩A ∩B′| = pab′

|N(y) ∩B ∩A′| = pba′ , |N(y) ∩B ∩B′| = pbb′ .

so that

|(A,B)|y+ |(A′, B′)|y = min{paa′+pab′ , pba′+pbb′}+min{paa′+pba′ , pab′+pbb′}

and

|(A ∩A′, B ∪B′)|y + |(A ∪A′, B ∩B′)|y
= min{paa′ , pab′ + pba′ + pbb′}+ min{paa′ + pba′ + pab′ , pbb′}.

There are four possible cases for |(A,B)|y + |(A′, B′)|y:

paa′ + pab′ + paa′ + pba′ = paa′ + (paa′ + pba′ + pab′);
pba′ + pbb′ + paa′ + pbb′ 6 paa′ + pbb′ ;
paa′ + pab′ + pab′ + pbb′ 6 paa′ + pbb′ ;
pba′ + pbb′ + pab′ + pbb′ = (pab′ + pba′ + pbb′) + pbb′ ,

and in each case it is clear that this is at least as big as

min{paa′ , pab′ + pba′ + pbb′}+ min{paa′ + pba′ + pab′ , pbb′}
=|(A ∩A′, B ∪B′)|y + |(A ∪A′, B ∩B′)|y.

Given some k ∈ N we use Bk (X) to denote the set of all bipartitions in B(X)
with order lower than k. A tangle of Bk (X) then is a consistent orientation τ of
Bk (X) which

(BT1) does not contain any separation of the form (A,B) with |B| 6 1 or
|N(B)| 6 1, and
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(BT2) where for any three separations (A1, B1), (A2, B2), (A3, B3) ∈ τ we have
that A1 ∪A2 ∪A3 6= X.

Similarly, we define Bk (Y ) and tangles of Bk (Y ).
We observe that a bipartition (A,B) in B(X) naturally defines a bipartition

(A,B). := (C,D) in B(Y ) by letting

C := {y ∈ Y : |N(y) ∩A| > |N(y) ∩B|}

and
D := {y ∈ Y : |N(y) ∩A| < |N(y) ∩B|}.

Similarly, a bipartition (C,D) in B(Y ) gives rise to a bipartition
(C,D)/ := (A,B) in B(X) via

A := {x ∈ X : |N(x) ∩ C| > |N(x) ∩D|}

and
B := {x ∈ X : |N(x) ∩ C| < |N(x) ∩D|}.

Like for set separations, it turns out that, with respect to the order functions
defined above, the order of (A,B). is at most that of (A,B). In order to show
this we will first need the following simple bound on the order of a bipartition.

Lemma 3.3.25. Let (A,B) be a bipartition of X, then |(A,B)|X 6 |E(A, Y )|.

Proof.

|(A,B)|X =
∑
y∈Y

min{|N(y)∩A|, |N(y)∩B|} 6
∑
y∈Y
|N(y)∩A| = |E(A, Y )|.

This implies that tangles cannot point towards sets of vertices with small
neighbourhoods:

Lemma 3.3.26. If τ is a tangle of Bk (X) and Z ⊆ X with E(Z, Y ) < k, then
(Z,X r Z) ∈ τ .

Proof. By Lemma 3.3.25 we have |(Z ′, X r Z ′)|X 6 |E(Z ′, Y )| 6 |E(Z, Y )| < k
for all Z ′ ⊆ Z, so τ contains an orientation of (Z ′, X r Z ′) for all Z ′ ⊆ Z. We
show by induction on |Z ′| that the orientation in τ is always (Z ′, X r Z ′). The
induction start for Z ′ = ∅ is immediate by (BT1). For the induction step let
Z ′ ⊆ Z with |Z ′| > 0, pick an arbitrary element z ∈ Z ′, and let Z ′′ := Z ′ − z.
By the induction hypothesis, (Z ′′, X rZ ′′) is in τ and, by (BT1), ({z}, X − z) is
in τ . Since Z ′′ ∪ {z} ∪ (X r Z ′) = X, the tangle τ cannot contain (X r Z ′, Z ′)
by (BT2) and hence contains (Z ′, X r Z ′).

We can show that the order of the shift of a bipartition is at most the order
of the bipartition we started with:

Lemma 3.3.27. Let (A,B) ∈ B(X), then |(A,B)|X > |(A,B).|Y . Similarly, if
(C,D) ∈ B(Y ) then |(C,D)|Y > |(C,D)/|X .

69



Proof. Clearly it suffices to prove the first statement by symmetry. Let
(A,B). = (C,D). Then, by definition, we have |N(y) ∩ A| > |N(y) ∩ B| for
y ∈ C and vice versa for y ∈ D. Thus,

|(A,B)|X =
∑
y∈Y

min{|N(y) ∩A|, |N(y) ∩B|}

=
∑
y∈C
|N(y) ∩B|+

∑
y∈D
|N(y) ∩A|

= |E(C,B)|+ |E(D,A)|.

Conversely, we have

|(C,D)|Y =
∑
x∈X

min{|N(x) ∩ C|, |N(x) ∩D|}

=
∑
x∈A

min{|N(x) ∩ C|, |N(x) ∩D|}+
∑
x∈B

min{|N(x) ∩ C|, |N(x) ∩D|}

6
∑
x∈A
|N(x) ∩D|+

∑
x∈B
|N(x) ∩ C|

=
∑
x∈A
|E(x,D)|+

∑
x∈B
|E(x,C)|

= |E(A,D)|+ |E(B,C)|
= |(A,B)|X .

We can now define, given a tangle τ of Bk (X), the shift

.τ := {(C,D) ∈ B(Y ) : (C,D)/ ∈ τ} ⊆ B(Y ),

and, given a tangle τ of Bk (Y ), the shift

/τ := {(A,B) ∈ B(X) : (A,B). ∈ τ} ⊆ B(X).

Like for set separations, the shift of a tangle, restricted to a lower order, gives a
tangle:

Theorem 3.3.28. Let τ be a tangle of B(X)4k, τ ′ = .τ ∩ B(Y )k, then τ ′ is a
tangle of B(Y )k.

Proof. We first show that τ ′ is an orientation of Bk (Y ). For this, let (C,D) be
a bipartition in Bk (Y ) and

A = {x ∈ X : |N(x) ∩ C| > |N(x) ∩D|},
B = {x ∈ X : |N(x) ∩ C| < |N(x) ∩D|}, and
Z = {x ∈ X : |N(x) ∩ C| = |N(x) ∩D|}

then (C,D)/ = (A ∪ Z,B) and (D,C)/ = (B ∪ Z,A).
If both (C,D) and (D,C) are contained in τ ′, then (A∪Z,B) and (B∪Z,A)

both are contained in τ , however A ∩B = ∅, contradicting the fact that τ is a
tangle.
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If on the other hand neither (C,D) not (D,C) is contained in τ ′, then neither
(A∪Z,B) nor (B∪Z,A) is contained in τ and therefore (B,A∪Z), (A,B∪Z) ∈ τ .
Moreover, we observe that

|(C,D)|Y =
∑
x∈X

min{|N(x) ∩ C|, |N(x) ∩D|}

>
∑
x∈Z

min{|N(x) ∩ C|, |N(x) ∩D|}

=
∑
x∈Z

|N(x) ∩ C|
2 = |E(Z, Y )|

2 .

Consequently, |E(Z, Y )| < 2k. Thus, by Lemma 3.3.26, we have that the
separation (Z,X r Z) is contained in τ . However, this contradicts the definition
of a tangle, as A ∪B ∪ Z = X. Thus, τ ′ is indeed an orientation of Bk (Y ).

Secondly, we claim that ({y}, Y − y) ∈ τ ′ for every y ∈ Y with the prop-
erty that |({y}, Y − y)|Y < k. Indeed, let us suppose for a contradiction that
(Y − y, {y}) ∈ τ ′. Then, for

A := {x ∈ X : N(x) = {y}}, B := X \A,

we have that (Y − y, {y})/ = (B,A). Thus, (B,A) ∈ τ , however this contradicts
the assumption that τ is a tangle, as |N(A)| = |{y}| = 1.

Additionally, we claim that (C,D) ∈ τ ′ whenever |N(C)| = 1 and
|(C,D)|Y < k. Again, suppose for a contradiction that (D,C) ∈ τ ′. This implies
that the separation (A,B) := (D,C). is contained in τ . However, B ⊆ N(C)
and thus |B| 6 |N(C)| = 1 contradicting the fact that τ is a tangle. With that,
we have proven that τ ′ satisfies (BT1).

So, it remains to show that τ ′ satisfies (BT2). Let us suppose for con-
tradiction that there is some set {(C1, D1), (C2, D2), (C3, D3)} ⊆ τ ′ such that
C1 ∪ C2 ∪ C3 = Y .

Let (Ai, Bi) = (Ci, Di)/ for each i = 1, 2, 3. Then, since (Ai, Bi) ∈ τ for each
i and τ is a tangle, it follows that the set Z = X \ (A1 ∪A2 ∪A3) is non-empty.

Since Z ⊆ Bi for each i, we have that |N(z)∩Di| > |N(z)∩Ci| for all z ∈ Z
and i = 1, 2, 3. However, since C1 ∪ C2 ∪ C3 = Y ,

3∑
i=1
|(Ci, Di)|Y =

3∑
i=1

∑
x∈X

min{|N(x) ∩ Ci|, |N(x) ∩Di|}

>
3∑
i=1

∑
x∈Z

min{|N(x) ∩ Ci|, |N(x) ∩Di|}

>
∑
x∈Z

3∑
i=1
|N(x) ∩ Ci|

>
∑
x∈Z

d(z) = |E(Z, Y )|.

Hence, |E(Z, Y )| < 3k. Thus, by Lemma 3.3.26, we have that (Z,X r Z) ∈ τ .
But, since |(A3, B3)|X 6 |(C3, D3)|Y < k and |E(Z, Y )| 6 3k we can conclude
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that

|(A3 ∪ Z,B3 \ Z)|X =
∑
y∈Y

min{|N(y) ∩ (A3 ∪ Z)|, |N(y) ∩ (B3 \ Z)|}

6
∑
y∈Y

(min{|N(y) ∩A3|, |N(y) ∩B3|}+ |E(y, Z)|)

< 4k.

It follows from (BT1) that (A3 ∪ Z,B3 \ Z) ∈ τ . However, then

{(A1, B1), (A2, B2), (A3 ∪ Z,B3 \ Z)} ⊆ τ

and B1 ∩B2 ∩ (B3 \ Z) = ∅, contradicting (BT2).

Like for the tangles of set separations, if we take a tangle on X, shift it to Y
and then shift it back to X we obtain a truncation to low order separations of
the tangle that we started out with.

Theorem 3.3.29. Let τ be a tangle of B(X)16k, let τ ′ = .τ ∩ B(Y )4k, and let
τ ′′ = /τ ′ ∩ B(X)k. Then τ ′′ ⊆ τ .

To prove this theorem, we need some lemmas:

Lemma 3.3.30. If (A,B) ∈ B(X) and |(A,B)|X = |(A,B).|Y then
((A,B).)/ > (A,B).

Proof. Let (C,D) = (A,B). and (A′, B′) = (C,D)/.
By definition, we have that C = {y ∈ Y : |N(y)∩A| > |N(y)|

2 } and similarly
that D = {y ∈ Y : |N(y) ∩A| < |N(y)|

2 }. The order of (A,B) is thus

|E(A,D)|+ |E(B,C)|.

On the other hand, the order of (A,B). is bounded from above by∑
x∈A
|E(x,D)|+

∑
x∈B
|E(x,C)| = |E(A,D)|+ |E(B,C)|.

Thus, in order for these two orders to be equal we need that every x ∈ A has at
most as many neighbours inD as in C. Since A′ = {x ∈ X : |N(x)∩C| > |N(x)|

2 },
this implies that x ∈ A′ for x ∈ A. Thus, (A,B) 6 (A′, B′) = ((A,B).)/.

Lemma 3.3.31. Let (A,B) ∈ B(X) and let (A′, B′) := ((A,B).)/, then for
every x ∈ A′ \ A we have that |(A + x,B − x)|X 6 |(A,B)|X and moreover
|({x}, X − x)|X 6 2|(A,B)|X .

Proof. Let x ∈ A′ \ A and consider some y ∈ Y . If y is not adjacent to x, it
has as many neighbours in A as in A + x and as many neighbours in B as in
B − x. If y is adjacent to x it has one neighbour more in A+ x than in A and
one neighbour less in B − x than in B. Thus, by the definition of the order
function, we can bound the order of (A+ x,B − x) by the order of (A,B) plus
the number of vertices in N(x) which have more neighbours in B than in A
minus the number of vertices in N(x) which have at least as many neighbours in
A as in B, i.e. we have |(A+ x,B− x)|X 6 |(A,B)|X + |N(x)∩D| − |N(x)∩C|
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for (C,D) := (A,B).. However, as x ∈ A′, we have |N(x) ∩ C| > |N(x) ∩D|
and thus |(A+ x,B − x)|X 6 |(A,B)|X .

The order of ({x}, X − x) is bounded by |N(x)|. Observe that the order of
(A,B) is at least as big as |N(x) ∩C|, as every vertex in C has at least as many
neighbours in A as in B. Observe further that |N(x)∩C| > |N(x)|

2 by the choice
of x. Thus, |(A,B)|X > |N(x)|

2 .

Proof of Theorem 3.3.29. Both τ ′′ and τ ∩Bk (X) are tangles of Bk (X), suppose
that they are distinct. Let (A,B) ∈ τ be a separation of minimal order with
the property that (B,A) ∈ τ ′′ and let us assume further that among all those
separations (A,B) is chosen 6-maximal. Let (A′, B′) = ((A,B).)/.

If A′ is not a subset of A, let x ∈ A′ \A as in Lemma 3.3.31. Then, by the
choice of (A,B) and the fact that (B − x,A+ x) 6 (B,A) ∈ τ ′′, we have that
(B − x,A + x) ∈ τ . However, as |({x}, X − x)|X 6 2|(A,B)|X < 2k < 16k we
have ({x}, X − x) ∈ τ and (A,B), (B − x,A+ x), ({x}, X − x) together form a
forbidden triple in τ .

Thus, we may suppose that A′ ⊆ A and thus (A′, B′) 6 (A,B). Hence,
(A′, B′) ∈ τ and therefore (A,B). ∈ τ ′ by the definition of τ ′, as
(A′, B′) = ((A,B).)/ ∈ τ . However, this implies that (A,B) ∈ τ ′′, contradicting
the fact that (B,A) ∈ τ ′′ and τ ′′ is a tangle.

Again we note that the proofs of Theorems 3.3.28 and 3.3.29 closely follow
those of Theorems 5 and 6, and thus we would suspect that there exists some
unified theorem from which both, the theorems about set separations, and those
about bipartitions, can be deduced.

However, as with the difference between tangles and profiles, there arises
some problems if one tries to do so: in principle, every tangle of set separations
induces a tangle of bipartitions. And conversely, every tangle of bipartitions
induces a tangle of set separations of lower order, except that the ‘regularity’
conditions of these two types of tangles are not compatible: for set separations
we just require that we do not contain any co-small separations, whereas for
bipartitions we want more, namely that the big side of our bipartition of the
edges meet both sides of the graph in at least two vertices. Thus, the statements
for these two types of tangles are, formally, independent of each other, although
most of the proof strategy is very similar.
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3.4 Agile sets
In this section we turn our attention to a different type of dense structures, not
directly related to separations or tangles.

Seymour in [70] and, independently, Thomassen in [72] considered, given
an ordered set Z = (x1, x2, . . . , xk, y1, y2, . . . , yk) of vertices in a graph G, the
question whether there exists a Z-linkage in G. Here, a Z-linkage consists
of vertex-disjoint paths P1, P2, . . . Pk between xi and yi. Both, Seymour and
Thomassen, independently characterized when a graph contains, for a given
ordered set Z of size 4, a Z-linkage.

Now, instead of considering this question for larger k let us generalize the
special case of k = 2 in a different direction. Let us say that a pair (X1, X2) of
disjoint vertex sets in G is independent if we find two disjoint trees T1, T2 in G so
that T1 contains all of X1 and T2 contains all of X2. To the author’s knowledge,
this notation was first suggested in a mathoverflow post by the anonymous user
‘monkeymaths’ [66].

Weißauer [76] now used this notion to give a possible definition of when a
vertex set is, in some sense, dense in the graph: let us say that a vertex set X is
agile if for every partition X = X1∪̇X2 the pair (X1, X2) is independent.

A typical example of a large agile set can be found in the complete bipartite
graph K2,k: the set X of all the degree-2 vertices in this graph is agile, since
for any partition X1∪̇X2 of this set we can obtain disjoint trees T1 and T2 by
adding one of the degree-k vertices to X1 and the other to X2.

Moreover, this notion of agile sets is well-behaved under the minor relation,
since if H is a minor of G containing an agile set X, then picking an arbitrary
vertex from every branch set corresponding to a vertex in X results in an agile
set contained in G.

In light of these observations, Weißauer asked [76] whether, at least qualitat-
ively, a graph contains a large agile set if and only if the graph contains a large
K2,k as a minor. More precisely, Weißauer asked the following:

Question 3.4.1. Is it true that for every k there exists an m such that every
graph with an agile set of size at least m contains K2,k as a minor?

For k = 2 this is the case, since all graphs without a K2,2-minor are outer-
planar and thus cannot contain an agile set of size 4. This was already observed
by Weißauer:

Observation 3.4.2 ([76]). If G does not contain a K2,2-minor, then G cannot
contain an agile set of size > 4, as in that case G is outerplanar.

In the following we will analyse graphs with larger agile sets and answer
Question 3.4.1. We will find out that, while the answer to Question 3.4.1 is ‘yes’
for k 6 4, for larger k the question must be answered negatively. However, this
is only the case due to one special additional type of graph, and consequently
we will be able to show that there is a function f : N→ N such that every graph
containing an agile set of size f(k) will need to contain a K2,k, or this other
special type of graph, which is called a regular strip of length k, as a minor.

To achieve this, let us start with a general lemma about graphs containing
agile sets, which will allow us to assume that the graph considered is 2-connected:
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Lemma 3.4.3. If G is a graph containing an agile set X of size l > 4, then
either G is 2-connected or G contains a proper subgraph still containing an agile
set of size l.

Proof. Suppose G is not 2-connected and let x be a vertex such that the set
{C1, . . . , Ck} of components of G− x has size at least 2.

Then there is one component, say C1, such that all but at most one vertex
from X lies in C1: otherwise pick four vertices v1, v2, w1, w2 so that neither v1
and v2 nor w1 and w2 lie in the same component of G− x. Then there are no
two disjoint trees T1, T2 in G such that T1 contains v1 and v2 and T2 contains
w1 and w2, as both of these trees would need to contain x, since every path from
v1 to v2 uses x and also every path from w1 to w2 uses x.

Moreover, if v is the only vertex in X \ C1, the set X − v + x is again an
agile set. It is easy to see that this set is also an agile set of the proper subgraph
C1 ∪ {x} of G, thus this subgraph contains an agile set of size l.

While this lemma allows us to essentially assume that every graph containing
an agile set is 2-connected, we can, perhaps surprisingly, show something similar
for larger connectivity. Of course, not every graph containing a large agile set is
3-connected, as for example K2,k is not, but an agile set still behaves nicely with
respect to separations of order 2 or larger. Namely, we can show the following:

Observation 3.4.4. Let G be a graph, (C,D) a separation of G and X an agile
set contained in G. Then X ∩C and X ∩D are agile in the corresponding torsos,
i.e. in the graphs obtained from G[C] and G[D] by making C ∩D complete.

Proof. Let us show that X ∩ C is agile in the torso H corresponding to C.
Given any partition X1∪̇X2 of X ∩ C, we know that, since X is agile, the pair
(X1 ∪ (X r C), X2) is independent. Thus, we find disjoint trees T1, T2 in G so
that T1 contains X1 ∪ (X r C) and T2 contains A2. Now clearly T1 ∩ C and
T2 ∩ C induce disjoint connected subgraphs of H which contain X1 and X2
respectively. Thus, we find the desired trees inside these subgraphs.

Being able to assume that the graph considered is 2-connected is in fact all
we need to answer Question 3.4.1 positively for k = 3:

Proposition 3.4.5. If G does not contain a K2,3-minor, then G cannot contain
an agile set of size 5.

Proof. We may assume by Lemma 3.4.3 that G is 2-connected.
Since a graph is outerplanar if and only if the graph contains neither K2,3

nor K4 as a minor, we may suppose that G is either outerplanar or contains K4

as a minor. Thus, as by Observation 3.4.2 no outerplanar graph contains an
agile set of size 5, we may suppose that G contains K4 as a minor. Thus, (since
∆(K4) = 3,) G contains K4 as a topological minor. Since every TK4 not equal
to K4 contains K2,3 as a minor, we therefore may suppose that K4 ⊆ G.

If there is any other vertex v ∈ G, there are two disjoint paths from v to this
K4, since G is 2-connected. However, the K4 together with v and these 2 paths
again include K2,3 as a minor, thus there cannot be such a vertex.

Thus, G would need to be equal to K4, however K4 does not contain an agile
set of size 5. Thus, every graph containing an agile set of size 5 must contain
K2,3 as a minor.
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Moreover, it is possible to show that Question 3.4.1 is true for k = 4:

Proposition 3.4.6. There exists an m such that, if G does not contain a
K2,4-minor, then G cannot contain an agile set of size m.

While Proposition 3.4.6 can be proven directly using either the character-
ization of graphs without K2,4-minor obtained by Ellingham, Marshall, Ozeki,
and Tsuchiya in [44], or a result by Dieng ([18]) which states that every graph
without a K2,4-minor is obtained from an outerplanar graph by the addition of
at most 2 vertices, both of these proofs would consist of a rather extensive case
distinction. Thus, we will not prove Proposition 3.4.6 directly, instead it will
turn up as corollary of a later result.

For k = 5 however, Question 3.4.1 needs to be answered negatively, as shown
by the following counterexample:

Counterexample 3.4.7. The set of red vertices in the following graph G is
agile, however G does not contain a K2,5-minor.

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

w1 w2 w3 w4 w5 w6 w7 w8 w9

Formally this graph G is constructed as follows: given some n ∈ N, the vertex set
of G consists of the red vertices r0, r1, . . . rn and the white vertices w1, . . . wn−1.
The edge set of G consist of an edge between ri and ri+1 for all 0 6 i < n, an
edge between wi and wi+1 for all 1 6 i < n− 1 as well as an edge between any
wi and ri+1 and any wi and ri−1 for all 1 6 i < n− 1.

Proof. It is easy to see that the set X = {r0, . . . , rn} of the red vertices in G is
agile.

To see that G does not contain a K2,5-minor, suppose for the contrary that
G contains a K2,5-minor. Then we can find such a minor so that the branch set
of every vertex of degree 2 in K2,5 consists of only a single vertex of G. Let us
denote the branch sets of the vertices of degree 5 of such a K2,5-minor in G by
H1 and H2.

Now consider the set I of those i ∈ {0, . . . , n} for which ri or wi corresponds
to one of the vertices of degree 2 in K2,5. By pigeonhole principle, one of H1 and
H2 contains, for at least three distinct i ∈ I, neither ri nor wi. Let us suppose
without loss of generality that H1 does so and let us denote three such i ∈ I
where H1 contains neither ri nor wi as i1 < i2 < i3. Now the set {ri2 , wi2}
disconnects every rj , wj with j < i2 from every rk, wk with k > i2. Therefore, as
both, one of ri1 , wi1 and one of ri3 , wi3 correspond to one of the vertices of degree
2 in the K2,5, both {ri1 , wi1} and {ri3 , wi3} are adjacent to H1. But, since H1
is disjoint from {ri2 , wi2}, this contradicts the fact that H1 is connected, as H1
would need to meet two components of G− ri2 − wi2 .

We will now prove that this counterexample is essentially the only one:

Theorem 7. There exists a function f : N → N, such that every graph with
an agile set of size f(k) either contains K2,k or a regular strip of length k as a
minor.
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To prove this, we will heavily rely on a result by Ding which characterizes the
graphs not containing K2,k as a minor [32]. Consequently, we need the following
definitions by Ding [32]:

We say that a graph G is internally 3-connected if we can obtain G from a
3-connected graph by subdividing each edge at most once.

A fan is a graph G which consists of a cycle C, three consecutive vertices
a, b, c ∈ C and additional edges between b and some other vertices on C. These
additional edges are called the chords of the fan. The vertex b is called the center
of the fan, and the vertices a, b, c are the corners of the fan. The length of the
fan is the number of chords.

Consider graphs G obtained from a cycle C containing two disjoint edges ab
and cd by adding some edges between the two distinct paths in C r {ab, cd}.
The added edges are called chords. We say that chords f1f2 and f3f4 cross if
the four vertices f1, f2, f3, f4 are pairwise distinct, and they appear in the order
f1, f3, f2, f4, f1 along C. If given such a graph G where every chord is crossed by
at most one other chord, and where if two chords f1f2 and f3f4 cross, then either
f1f3 and f2f4, or f1f4 and f2f3 are edges in C, we call G a strip. Moreover, we
will also call any H ∈ {G− ab,G− cd,G− ab− cd} a strip if H has minimum
degree at least 2. The corners of such a strip are the vertices a, b, c, d and the
length of the strip is the maximal size of a set of pairwise non-crossing chords
with pairwise disjoint endpoints.

Given a graph G, adding a fan or strip to G shall mean that we obtain a new
graph out of the disjoint union of G and a fan or strip by identifying the corners
of the fan or strip with disjoint vertices from G.

Finally, we say that a graph H is an augmentation of a graph G if H is
obtained from G by adding disjoint fans and strips in such a way that two corners
of distinct fans and strips are only allowed to be identified with the same vertex
of G if one of them is the center of a fan, and the other one is either a corner of
a strip, or also a center of a fan.

We denote, for m ∈ N, as Am the class of all graphs that are augmentations
of a graph with at most m vertices, i.e. the class of all those graphs H for which
there is a graph G with at most m vertices such that H is an augmentation of G.

A regular strip of length k is the graph obtained from two disjoint paths
P1 := v1 . . . vk, P2 := w1 . . . wk by adding an edge between vi and wi+1 and wi
and vi+1 for every 1 6 i < m. This graph is depicted in the following image:

w1 w2 w3 w4 w5 w6 w7 w8 w9

v1 v2 v3 v4 v5 v6 v7 v8 v9

Note that such a regular strip is a strip with corners v1, w1, vk, wk.
Ding ([32]) now showed the following:

Theorem 3.4.8 ([32, Theorem 5.1], rephrased). For every k ∈ N there is some
m ∈ N such that every internally 3-connected graph without a K2,k-minor is
contained in Am.

This theorem will allow us to prove Theorem 7. Our proof strategy will be
as follows: suppose we are given a graph G which contains a large agile set. We
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will be able to show that, if G does not contain a K2,k-minor, then we find a
minor of G which is internally 3-connected and still contains a relatively large
agile set, hence we can essentially assume without loss of generality that G is
internally 3-connected. We then can assume, using Theorem 3.4.8, that G lies
in Am, thus G is an augmentation of a graph with at most m vertices. Since
every such augmentation is obtained by adding a bounded number of fans and
strips, this will then imply that one of the fans or strips used for G still contains
a relatively large agile set, and we will be able to show that this is only possible
for a strip, and that this strip will then contain a regular strip as a minor.

So let us first show that the graphs in Am are indeed constructed by adding
only a bounded number of fans and strips:

Observation 3.4.9. Every graph in Am is obtained from a graph G with at
most m vertices by adding at most m

2 fans and strips.

Proof. Every vertex of G is a non-center corner of a strip or fan for at most one
such fan or strip. Since every strip and fan has at least 2 non-center corners,
this gives the desired bound.

Our next goal is to show that, if an augmentation contains a large agile set,
this large agile set cannot be contained in any of the fans used in the construction
of this augmentation. Since the corners of such a fan separate the fan from the
rest of the graph, this follows from Observation 3.4.4 – as soon as we establish
the following:

Observation 3.4.10. Let G be a graph obtained from a fan by making the set
of corners complete. Then G cannot contain an agile set of size 7.

Proof. Suppose X is an agile set in G of size at least 7 and let us denote the
center of that fan as b. Then there are 4 vertices in X which do not belong to
the corners of the fan. Let us denote them as v1, v2, v3, v4 and assume that they
lie in this order on the cycle C used in the construction of G.

Since X is agile, there are disjoint paths P1 from v1 to v3 and P2 from v2 to
v4. However, as {b, v2, v4} together separate v1 from v3 in G and P1 can neither
contain v2 nor v4, it needs to be the case that b is contained in P1. But similarly,
{b, v1, v3} separates v2 from v4 in G and thus b is contained in P2, contradicting
the fact that P1 and P2 are disjoint.

Corollary 3.4.11. Let G be a graph containing a fan H as a subgraph such
that the corners of H separate the rest of H from the rest of G. If G contains
an agile set X, then X cannot contain more than 6 vertices from H.

Proof. Immediate from Observation 3.4.4 and Observation 3.4.10.

Next we would like to show, given an augmentation G and a strip used in
its augmentation process, that, if the vertices of that strip in G contain a large
agile set, then this strip needs to contain a large regular strip as a minor.

For this we first observe that a strip contains a regular strip as a minor, as
soon as the strip has enough pairs of crossing chords:

Lemma 3.4.12. Let G be a strip containing k distinct pairs of crossing chords.
Then G contains a regular strip of length k as a minor.
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Proof. Let C be the cycle used in the construction of G, and let ab and cd be the
two edges of C for which we added chords between C r {ab, cd}. Let us denote
as P1 and P2 the two paths together forming C r {ab, cd}, where P1 starts in a
and P2 starts in b.

Let us denote the pairs of crossing chords as {vi1wi1, vi2wi2}, where vij is
contained in P1 and we enumerate these pairs so that vi1 appears before both, vi2
and vi−1

1 on P1, for every 1 6 i < k. Then, since every chord in a strip crosses at
most one other chord, we have that vi2 appears before vi+1

1 on P1 (or is identical
to vi+1

1 ) and that the relation between the wij on P2 is such that wi2 appears
before wi1 which appears before wi+1

2 on P2 (again, or that wi1 = wi+1
2 ), for every

1 6 i < k.
Thus, suppressing every vertex on P1 or P2 which is not one of the vij or wij

and then contracting every existing edge between vi2 and vi+1
1 as well as every

edge between wi1 and wi+1
2 for every 1 6 i < k gives the desired regular strip of

length k.

With this lemma at hand we can now show the following:

Lemma 3.4.13. There is a function j : N→ N, namely j(k) := 22(k−1)+4k+1,
such that whenever the graph G obtained from a strip H by making the set of
corners of H complete contains an agile set of size j(k), then H contains a
regular strip of length k as a minor.

Proof. By Lemma 3.4.12, if H contains at least k pairs of crossing chords, then
H contains a regular strip of length k as a minor. So suppose that H contains
at most k− 1 pairs of crossing chords. Let X be the set of vertices incident with
the edges of these chords together with the four corners of the strip. It is easy
to see that G−X contains at most 2(k− 1) components, and that each of these
components is either a path or a strip without crossing chords. Moreover, each
of these components is adjacent to at most 4 vertices in X. By the pigeonhole
principle, one of these components needs to contain, since j(k) > 22(k− 1) + 4k,
at least 11 vertices of our agile set. Let Y be the vertex set of one such component,
let K ′ be the subgraph of G induced on Y ∪N(Y ) and denote as K the graph
obtained from K ′ by adding all edges between the vertices in N(Y ). Since N(Y )
separates Y from the rest of G, it is, by Observation 3.4.4, enough to show that
K does not contain an agile set of size at least 11.

The ladder of length n is the graph on the set [n]× {0, 1} where we add an
edge between (x, y) and (x′, y′) precisely if |x−x′|+ |y−y′| = 1. The endvertices
of a ladder of length n are the four vertices (0, 0), (0, 1), (n− 1, 0) and (n− 1, 1).

We claim that K is a minor of a graph obtained from a ladder of large enough
length by making the 4 endvertices of this ladder complete, i.e. we claim that
K is a minor of the type of graph depicted in Fig. 3.1. Indeed, if G[Y ] is a
strip without crossing chords, then the graph obtained from K ′ by removing
the edges between the vertices from N(Y ) is also such a strip. Moreover, the
corners of this strip are the vertices from N(Y ). Now we find this strip as a
minor in a large enough ladder, with the additional property that the branch
sets of the vertices from N(Y ) each contain one of the endvertices of the ladder.
Consequently, K is a minor of the graph obtained from that ladder by adding
all edges between the endvertices of that ladder.

If on the other hand G(Y ) is a path, then again we find the graph obtained
from K ′ by removing the edges between the vertices from N(Y ) as a minor in a
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Figure 3.1: The type of graph of which K is a minor.

large enough ladder, with the additional property that the branch sets of N(Y )
each contain an endvertex from that ladder.

But, for any n ∈ N, the graph obtained from a ladder of length n by making
its endvertices complete cannot contain an agile set of size 11: by pigeonhole
principle, one of the rails (that is one of the sets {(i, 0) : i ∈ [n]}, {(i, 1) : i ∈ [n]})
needs to contain 6 vertices from our agile set. But if we partition these vertices
alternatingly, we see that is not possible to connect the two partition classes
disjointly.

Since containing an agile set is a minor-closed property, K can thus also not
contain an agile set of size 11 contradicting, by Observation 3.4.4, the assumption
that Y contains 11 vertices from our agile set.

Corollary 3.4.14. Let G be a graph containing a strip H as a subgraph, such
that the corners of H separate the rest of H from the rest of G. If G contains an
agile set X containing more than j(k) many vertices from H, then G contains a
regular strip of length k as a minor.

Proof. Immediate from Observation 3.4.4 and Lemma 3.4.13.

We are now ready to use Theorem 3.4.8 to show that every internally 3-
connected graph containing a large agile set will indeed need to contain a large
K2,k or a large regular strip as a minor:

Lemma 3.4.15. There exists a function g : N→ N such that every internally
3-connected graph which contains an agile set of size g(k) contains K2,k or a
regular strip of length k as a minor.

80



Proof. By Theorem 3.4.8, we find some m ∈ N such that every graph without a
K2,k-minor is contained in Am. Let g(k) := m+ m

2 max{j(k), 6}. Now let G be
a graph containing an agile set of size g(k). By Theorem 3.4.8 we know that G
either contains a K2,k as a minor or is contained in Am. By Observation 3.4.9, in
the second case G is obtained from a graph of at most m vertices by augmenting
at most m

2 fans and strips. By the pigeonhole principle, one of the augmented
fans or strips needs to contain an agile set of size at least max{j(k), 6}. By
Corollary 3.4.11, this cannot be a fan, so it needs to be a strip. However, by
Corollary 3.4.14, this implies that G contains a regular strip of length k as a
minor.

In order to extend this result to graphs that are not locally 3-connected, it
will be essential to analyse how separations of order 2 in a graph containing a
large agile set can behave. As it turns out, we are able to assume that they are
all pairwise nested:

Lemma 3.4.16. Let n ∈ N and let G be a graph which is minor-minimal with
the property of containing an agile set X of size n, then the separations of order
2 in G form a nested set.

Proof. Suppose that two separations (A,B) and (C,D) of order 2 in G cross. If
X meets all quadrants V r (B ∪D), V r (A∪D), V r (B ∪C) and V r (A∪C),
then this would contradict the agility of X by partitioning vertices in opposite
quadrants into the same partition class.

Thus, at least one quadrant, say without loss of generality V r (B ∪ D),
contains no vertex from X. Then, by minor-minimality of G, the quadrant
contains no vertex, since contracting any edge adjacent to such a vertex results in
a minor of G in whichX is still agile. Thus, we may assume that G[A∩C] consists
of just an edge between the sole vertices v ∈ (A ∩B) rD and w ∈ (C ∩D) rB.

We denote the second vertex in A ∩B as v′ and the second vertex in C ∩D
as w′.

We claim that we can contract the edge vw, contradicting the minimality
of G.

Suppose first, that at most one of v, w is contained in X, say v /∈ X. Suppose
that X is not agile in G′ = G/vw and let us denote the partition of X which
witnesses this as X = X1∪̇X2. Since X is agile in G, there are connected disjoint
subgraphs G1, G2 of G such that X1 ⊆ G1 and X2 ⊆ G2. Moreover, we may
assume without loss of generality that V (G1) ∪ V (G2) = V and that v ∈ G1
and w ∈ G2, as otherwise G′[V (G1)] and G′[V (G2)] are also connected disjoint
subgraphs of G′.

Now if w′ ∈ G1, then B ∩ C ⊇ G2. Then, for V ′1 = V (G1) − v and
V ′2 = V (G2) + v, we have that G′[V ′1 ] and G′[V ′2 ] are connected and contain X1
and X2, respectively. Thus, X1∪̇X2 does not witness that X is not agile in G′.

So suppose w′ ∈ G2. Then v′ ∈ G2, since G2 is connected and {v, v′}
separates w from w′. By a symmetric argument to the above we may assume
that w ∈ X, as otherwise G′[V (G1) + w] and G′[V (G2)− w] are connected and
contain X1 and X2, respectively. Thus, we have that X1 ⊆ V r (D ∪A).

If X ∩B ∩ C ⊆ X1, the partition X = X1∪̇X2 would again not witness that
X is not agile in G′, as both G′[B ∩ C] and G′[V r (B ∩ C)] are connected. So
we may suppose that X2 ∩ (B ∩ C) is non-empty.

81



Moreover, there do not exist connected subgraphs G′′1 and G′′2 of G[B ∩ C]
such that v /∈ G′′1 and such that X1 ⊆ G′′1 and X2 ∩ (B ∩ C) ⊆ G′′2 , as we could
otherwise replace G1 ∩B ∩ C and G2 ∩B ∩ C with these subgraphs which then
shows that X1∪̇X2 is not a partition witnessing that X is not agile in G′.

Additionally, X is not completely contained in C, as G was chosen ⊆-minimal
and X ∩ C is agile in the torso obtained from G[C] by Observation 3.4.4, and
this torso is a proper minor of G since there exists the vertex v′ ∈ (A ∩B) r C.

Thus, let x ∈ X rC and let X ′1 = X1 +x and X ′2 = X2−x. Since X is agile
in G, there are disjoint connected subgraphs T ′1 and T ′2 of G with X ′1 ⊆ T ′1 and
X ′2 ⊆ T ′2. Now w′ ∈ T ′1, since {w,w′} separates X ′1 in G and w ∈ X2. On the
other hand v ∈ T ′1 since X ′1, X ′2 look the same on G[B ∩C] as X1, X2. But then
T2 cannot connect w to X2 ∩ (B ∩ C), which is a contradiction.

It thus remains the case that v, w ∈ X. Then v′, w′ /∈ X, as {v, v′} separates
w from V rA and {w,w′} separates v from V rC and both, V rA and V rC
need to contain vertices from X by the minor minimality of G.

We may assume that X meets both V r (A∪D) and V r (C ∪B) in vertices
x and y, say, as otherwise the corresponding quadrant would contain only an
edge between v and w′, respectively w and v′, which could be contracted by the
previous argument.

Now consider a partition X ′1∪̇X ′2 of X where w, x ∈ X ′1 and v, y ∈ X ′2. This
partition witnesses that X is not agile, which is a contradiction.

Thus, the set of all separations of order 2 of such a minor-minimal G which
are neither small nor co-small form a tree-set, which in turn gives us a tree-
decomposition (T,V) of G along all these separations. In particular all torsos
of this tree-decomposition are 3-connected. If a large subset of our agile set is
contained in one of the torsos of this decomposition, we know by Observation 3.4.4,
that it is still agile in the torso, and since the torso is 3-connected, we can then
apply Lemma 3.4.15 to deduce that the torso, and thus also the original graph,
contains a large K2,k or a large regular strip as a minor.

However, this does not need to be the case. But we can use the structure
given by T to analyse the case where it fails. Namely, if no torso contains a large
agile set, then our agile set needs to be spread across a lot of different bags of
the decomposition. This can either be the case in a ‘path-like’ or in a ‘star-like’
way. Let us first deal with the ‘path-like’ case:

Lemma 3.4.17. There exists a function h : N → N such that the following
holds: if G is a graph containing an agile set X and a sequence

(A1, B1) 6 . . . 6 (Ah(k), Bh(k))

of separations of order 2, so that (Bi \Bi+1) ∩X 6= ∅ for all 1 6 i < h(k), then
G contains a K2,k or a regular strip of length k as a minor.

Proof. Let xi ∈ Bi rBi+1 ∩X and note that the xi are pairwise distinct. Let
Ai ∩Bi = {s1

i , s
2
i }.

If we consider the partition of X given by the two classes X1 = {x1, x3, . . . }
and X2 = {x2, x4, . . . }, and corresponding disjoint trees T1 and T2 containing X1
and X2, respectively, we observe that there need to be, for every 2 < i < n− 3,
two disjoint paths from Ai ∩Bi to Ai+1 ∩Bi+1 in Bi ∩Ai+1, one contained in
T1 and the other contained in T2.
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We say that the pair {i, (i+ 1)} is free if there are two pairs of such paths
T1, T2, where one consists of a path between s1

i and s1
i+1 and a path between

s2
i and s2

i+1, and the other consists of a path between s1
i and s2

i+1 and a path
between s2

i and s1
i+1. Otherwise, the pair i(i+ 1) is said to be restrictive.

We note that, if there are, for 2 < i < n− 2, two consecutive pairs {(i− 1), i}
and {i, (i+1)} which both are restrictive, then for one of the pairs, say {i, (i+1)},
there need to be two pairs T1,i, T2,i and T ′1,i, T ′2,i of disjoint trees in Bi ∩Ai+1,
such that T1,i contains s1

i , xi, s
1
i+1 and T2,i contains s2

i , s
2
i+1 and T ′1,i contains

s1
i , s

1
i+1 and T ′2,i contains s2

i , xi, s
2
i+1. This is due to the fact that X is agile,

and we can thus consider the partition of X obtained from the one above by
changing only the class to which xi belongs. Moreover, we may suppose without
loss of generality that T2,i and T ′1,i are paths.

If there are, for the pair {i, (i + 1)}, these four trees T1,i, T2,i, T
′
1,i, T

′
2,i as

above with the additional property that the two paths T2,i and T ′1,i meet, then
we say that the restrictive pair {i, (i+ 1)} is weakly free.

We may suppose that h(k) is chosen such that there either is a large interval
l < i < m with the property that every pair {i, (i + 1)} from that interval is
restrictive and not weakly free, or that there is a large collection of pairs which
are all free or weakly free.

In the former case, by the definition of weakly free and the above observation
about two adjacent restrictive pairs, we may suppose that m (and thus h(k)) is
chosen such that there are at least k pairs {i, (i+1)} from the interval l < i < m,
for which we find trees T1,i, T2,i, T

′
1,i, T

′
2,i as above with the additional property

that T2,i and T ′1,i are disjoint. In that case we find a K2,k-minor in G as follows:
the branch sets for the two vertices of degree k each consist of a path between
Al ∩Bl and Am ∩Bm formed by concatenating the T2,i’s and T ′1,i’s, respectively.
Now we find a path between xi and T2,i and a path between xi and T ′1,i both
contained in T1,i∪T ′2,i and thus both contained in Bi∩Ai+1. The union of these
two paths form, for each of the k restrictive pairs considered, the branch set of a
vertex of degree 2 in our K2,k-minor.

So we may suppose that there is a collection of at least k pairs {i, (i+ 1)}
which are all free or weakly free.

In this case we claim that whenever a pair {i, (i+ 1)} is free or weakly free,
there exists a cross in Bi ∩Ai+1. Here, a cross shall be a graph consisting of two
disjoint paths P1 and P2 between s1

i and s1
i+1 and s2

i and s2
i+1 together with two

disjoint paths Q1 from P1 to P2 and Q2 from P2 to P1, such that Q1 starts in a
vertex before the endvertex of Q2 and Q2 starts in a vertex before the endvertex
of Q1.

To see that such a cross exists if the pair {i, (i + 1)} is free we observe
the following: since {i, (i + 1)} is free, there are two disjoint paths P1,i, P2,i,
where P1,i is a path between s1

i and s1
i+1 and P2,i is a path between s2

i and s2
i+1.

Additionally, there are two disjoint paths P ′1,i, P ′2,i where P ′1,i is a path between
s1
i and s2

i+1 and P ′2,i is a path between s2
i and s1

i+1. Let us suppose that these
four paths are chosen so that their union contains as few edges as possible. We
set P1 = P1,i and P2 = P2,i. Now both P ′1,i and P ′2,i contain subpaths between
P1 and P2 which are, except of their endvertices, disjoint from P1 and P2 and it
follows from the choice of P1,i, P2,i, P

′
1,i, P

′
2,i that some two of these subpaths

need to form our desired paths Q1 and Q2.
If on the other hand the pair {i, (i+ 1)} is weakly free, there are two pairs
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T1,i, T2,i and T ′1,i, T
′
2,i of disjoint trees in Bi ∩ Ai+1, such that T1,i contains

s1
i , xi, s

1
i+1 and T2,i contains s2

i , s
2
i+1 and T ′1,i contains s1

i , s
1
i+1 and T ′2,i contains

s2
i , xi, s

2
i+1. Moreover, T2,i and T ′1,i are paths which meet in a common vertex y.

Again, by choosing these trees so that there union is as small as possible, we
observe that we indeed need to find the desired cross.

Thus, each such pair give rise to a cross, and it is easy to see that if we
combine all these crosses we obtain a regular strip of length k as a minor in G.

We are now ready to prove Theorem 7:

Theorem 7. There exists a function f : N → N, such that every graph with
an agile set of size f(k) either contains K2,k or a regular strip of length k as a
minor.

Proof of Theorem 7. By Lemma 3.4.3 we may suppose that G is 2-connected.
Moreover, we may suppose that G is minor-minimal with the property that G
contains an agile set X of size f(k).

By Lemma 3.4.16, the regular separations of order 2 in G form a nested
set, thus by Lemma 2.6.2, there is an S-tree T corresponding to this set. This
S-tree corresponds to a tree-decomposition, and we consider the parts of this
decomposition containing vertices of our agile set. If there is one node of T
whose corresponding part contains at least g(k) many vertices of our agile set,
then, since the torso of this part is 3 connected, this torso and thus G contains
a K2,k or a regular strip of length k as a minor by Lemma 3.4.15.

So each part of this decomposition contains less than g(k) many vertices
of our agile set. Thus, by the pigeonhole principle, we can choose f(K) such
that we either find a sequence of separations of G as in Lemma 3.4.17, or that
there is a node t if T such that there are n >> k many different components of
T − t which each contain a vertex t′ such that the part of the tree-decomposition
corresponding to t′ contains a vertex of our agile set which is not contained in
the part corresponding to t.

In the first case, we are immediately done by Lemma 3.4.17, so suppose that
there indeed is a node t of T such that there are n >> k different components of
T − t which each contain a vertex t′ such that the part of the tree-decomposition
corresponding to t′ contains a vertex of our agile set which is not contained in
the part corresponding to t.

Let us denote the separations corresponding to the incoming edges from these
components to t as (A1, B1), . . . , (An, Bn) and note that they form a star.

We now ask whether Ai rBi contains at least two vertices of X, or if this
set contains only one such vertex. If at least k of the sets Ai r Bi contain at
least two vertices from our agile set, we consider a partition X1∪̇X2 of X where,
for each of these Ai r Bi, we add one vertex from X ∩ Ai r Bi to X1 and all
others to X2. This results in two trees T1 and T2, where each of the separators
Ai ∩Bi needs to contain one vertex from T1 and one vertex from T2. Moreover,
T1 and T2 still need to be connected after deleting all the sets Ai r Bi which
contain two vertices from X. These two connected sets form the two vertices
of high degree of a K2,k. The vertices of degree 2 can then by obtained from
the components of the sets Ai rBi, since each such component needs, as G is
2-connected, to send an edge to both vertices in Ai ∩Bi and thus sends an edge
to both T1 and T2.
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So suppose that at least g(k) of the sets AirBi only contain one vertex from
X. Then we know, since G was chosen minor-minimal, that Ai r Bi consists
for each such i of just this one vertex from X and that this vertex is, as G is
2-connected, adjacent to both vertices in Ai ∩Bi. Note that no two separations
corresponding to incoming edges of t can have the same separator, since then the
supremum of these two separations would also lie in our nested set, and would
imply that t has only degree 3 in T .

Let us show that, if we contract, for every incoming edge to t which corres-
ponds to a separation (A,B), one component of the set ArB down to a single
vertex, and delete all other components of ArB, we are left with an internally
3-connected graph. For this we only need to show that G does not contain any
edge e in C ∩ D, as the torso corresponding to t is 3-connected. So suppose
G does contain an edge e ∈ C ∩D. Then, since G was chosen minor-minimal,
deleting this edge results in X no longer being agile, say because of the partition
X1∪̇X2, which was independent in G as witnessed by T1 and T2, and suppose
that T1 contains e. Then T2 would need to be contained entirely in ArB, as
otherwise T2 is disjoint from ArB, and thus replacing e with a path between
the two vertices in A ∩B contained in A results in (X1, X2) being independent
in G− e. Thus, since T2 is contained in ArB, we may assume that T2 consists
of just one vertex x from X, and A r B = {x}. But now, since (X1, X2) is
not independent in G− e, this implies that x is a separator in G− e. But the
only neighbours of x are the vertices in A ∩B, and thus, since G contains more
than 3 vertices, one of the two vertices in A ∩ B would be a separator of G,
contradicting Lemma 3.4.3.

Thus, if we contract for every incoming edge to t with separation (A,B)
one component of the set Ar B down to a single vertex, and delete all other
components of Ar B, we are left with an internally 3-connected graph. This
graph still needs to contain an agile set of size g(k), since the set of all the
vertices from X which are the unique vertex from X in one of the sets Ai rBi
is agile in this restricted graph. Thus, by Lemma 3.4.15, we again find a K2,k or
a regular strip of length k as a minor.

Now Theorem 7 also gives a proof of Proposition 3.4.6:

Proof of Proposition 3.4.6. If G contains a large enough agile set, then G con-
tains, by Theorem 7, either a K2,4 or a regular strip of length 4 as a minor. Such
a strip however also contains K2,4 as a minor, which proves Proposition 3.4.6.

3.4.1 Generalizations
Let us now look at possible variations of the notion of an agile set. One such
natural variation is the following: instead of just partitioning our set X into
two subsets, we might allow partitions into more partition classes and try to
connect the vertices in each of these classes disjointly. More precisely, let us say
that, given a graph G = (V,E) and an integer m, a set X ⊆ V is m-agile in G if
for every partition X = X1∪̇ . . . ∪̇Xm (where we allow empty partition classes)
there are vertex-disjoint connected subgraphs T1, . . . , Tm ⊆ G such that Xi ⊆ Ti.
So, X is 2-agile if and only if X is agile. If a set X is m-agile for every m, we
say that X is dexterous. Note that this is equivalent to being

⌈
|A|
2

⌉
-agile.
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Again, containing an m-agile or a dexterous set is closed under the minor
relation in that, if H is a minor of G and H contains an m-agile or dexterous
set of size k, say, then G also contains an m-agile or dexterous set of size k.

We again try to characterize, qualitatively, the existence of a large m-agile
or dexterous set via a minor. A natural graph containing an m-agile set of size
k is the complete bipartite graph Km,k. On the other hand the complete graph
Km contains a dexterous set of size m.

Another example of such graphs can be found in grids and, since neither K5

not K3,3 is a minor of the grid, these grids are another class of graphs containing
a large dexterous or m-agile set. For dexterous sets we need to take a quadratic
grid:

Example 3.4.18. In the N2×N2–grid taking every N th vertex of the diagonal
gives a dexterous set of site N .

Of course, since every dexterous set is m-agile for every m, the quadratic
N2 ×N2-grid also contains an m-agile set of size N . But such a set can actually
already be found in a rectangular grid where the small side just needs to have
size 2m− 1:

Proposition 3.4.19. The (2m− 1)× ((N − 1)m+ 1) grid contains an m-agile
set of size N .

Proof. Let us denote the vertices of the grid by

{vi,j : 1 6 i 6 2m− 1, 1 6 j 6 N(m− 1)}.

We claim that the set {vm−1,jk+1 : 0 6 j 6 N − 1} is m-agile. How to construct
the required trees is illustrated in the following picture:

In particular, as every m-agile set of size 2m is also dexterous, also the
(N − 1)× ( (N−1)N

2 + 1)-grid contains a dexterous set of size N .
If we only seek for a quantitative result, not only in terms of the size of our

agile set but also in terms of the m for which our set is m-agile, we can actually
show that conversely a large enough l-agile set, for large enough l, forces the
existence of either a Km,N or a rectangular grid as a minor. Similarly, we can
show that a large enough dexterous set forces the existence of a large complete
graph or a large quadratic grid as a minor.

For dexterous sets this can be obtained immediately, as the existence of
a large dexterous set implies that our graph has high tree-width. This can
either be shown directly or by using a result by Diestel, Jensen, Gorbunov and
Thomassen ([28]) about m-connected sets. Following their definition, a vertex
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set X is m-connected if |X| > m and for any two subsets X1, X2 ⊆ X with
|X1| = |X2| 6 m one can find |X1| many disjoint paths between X1 and X2.

This notion of m-connected vertex sets is related to our m-agile sets in that
an m-agile set needs to be m-connected:

Proposition 3.4.20. If a graph contains an m-agile set Z of size at least m,
then Z is m-connected.

Proof. Let X,Y ⊆ Z such that |X| = |Y | 6 m. Then we can find pairs
{x1, y1}, . . . {x|X|, y|X|} so that xi ∈ X and yi ∈ Y and so that xi = yj only if
i = j. We now construct a partition of Z into classes X1, . . . , X|X| by defining
Xi = {xi, yi} whenever i > 2 and X1 = X r {x2, y2, . . . , x|X|, y|X|}.

Since Z is m-agile, we thus find disjoint trees T1, . . . , T|X| so that Xi ⊆ Ti.
In particular, Ti contains a path between xi and yi which shows that Z is
m-connected.

As Diestel, Jensen, Gorbunov and Thomassen showed, the existence of a large
m-connected vertex set is an obstruction to the graph having low tree-width,
thus the same holds for dexterous sets as well. Concretely, Diestel, Jensen,
Gorbunov and Thomassen showed the following:

Proposition 3.4.21 ([28, Proposition 3(i)]). Let G be a graph and k > 0 an
integer. If G has tree-width < k then G contains no (k + 1)-connected set of
size > 3k.

Together with the grid theorem by Robertson and Seymour [67] (see also
[28, Theorem 2]), which states that a graph of large enough tree-width needs to
contain an N ×N -grid as a minor, this directly implies a quantitative relation
between the existence of a dexterous set and a grid minor:

Theorem 3.4.22. There is a function f : N → N such that every graph con-
taining a dexterous set of size at least f(N) also contains the N ×N -grid as a
minor

Proof. If a graph contains a dexterous set of size at least k, it has, by Proposi-
tion 3.4.21 and Proposition 3.4.20, tree-width at least k

3 − 1. However, by the
grid minor theorem [67] (see also [28, Theorem 2]) there is a function f such
that every graph of tree-width > f(N) contains an N ×N -grid as a minor.

For large m-agile sets we will be able to show that their existence is, again
quantitatively, characterized by Km,k and rectangular grid minors. Again we can
build on existing literature about variations of the grid theorem. This time we
will incorporate a generalized version of the grid theorem obtained from Geelen
and Joeris ([50, Theorem 9.3]). To state this theorem, we need the following
additional definition from that paper. Given parameters t, l, n a (t, l, n)-wheel is
a graph obtained from a tree T with t vertices, a set Z of size l, a permutation
π : V (T )→ V (T ) and a function ψ : Z → V (T ) via the following construction:
we start with n disjoint copies of T , called T1, . . . , Tn. Let us denote the copy
of v ∈ V in Ti as vi. We then add an edge between vi and vi+1 for any vertex
v ∈ V and any index i between 1 and n− 1. Then we add an edge between vn
and w1 where w = π(v). As a last step, for every z ∈ Z and z = ψ(z), we add
an edge between z and every vi.

87



A (θ, n)-wheel is any graph which is a (t, l, b)-wheel for some t, l ∈ N satisfying
2t+ l = θ.

[50, Theorem 9.3] by Geelen and Joeris now implies the following:

Theorem 3.4.23 (see also [50, Theorem 9.3]). There exists a function
f : N2 → N such that, given θ, n ∈ N with θ > 2 and n > 3, every graph G
containing a θ-connected set U of size at least f(θ, n) contains a Kθ,n or a
(θ, n)-wheel as a minor.

Using this result we can now, again quantitatively, show that the existence
of an m-agile set indeed is characterized by the existence of a large rectangular
grid or a large complete bipartite graph as a minor. Concretely, we can show
the following:

Theorem 8. There is a function f : N2 → N such that every graph containing
an ((m − 1)2m + 1)-agile set of size at least f(m, k) contains Km,k or the
(2m− 1)× k-grid as a minor.

Proof. Every such ((m − 1)2m + 1)-agile set is, by Proposition 3.4.20, also
((m− 1)2m+ 1)-connected, thus by Theorem 3.4.23 there is a function f such
that every graph containing an ((m− 1)2m+ 1)-agile set of size at least f(m, k)
either contains K(m−1)2m+1,k or an ((m− 1)2m+ 1, k)-wheel as a minor. We are
now going to show that such a wheel induces a Km,k or a (2m− 1)× k-grid as a
minor. For this recall that such a wheel was constructed using a tree T of size t,
say, and a set Z of central vertices of size z, say, so that 2t+ z = (m− 1)2m+ 1.

Consider the tree T ′ obtained from T by adding every vertex in Z as a leaf
to T in such a way that z ∈ Z is adjacent to its neighbour ψ(z) in T . Then
T ′ has at least (m − 1)m + 1 many vertices. Thus, T ′ has at least m leafs or
contains a path of length at least 2m+ 1.

If T ′ contains a set L of m leafs, we can construct a Km,k-minor in G as
follows: for every leaf v ∈ L of T ′, if v is a vertex of T we let Xv be the set of
all vi ∈ T ′. If v ∈ Z then Xv = {z}. Clearly every Xv is connected and the sets
Xv will be the branch sets of the vertices of degree k in our Km,k-minor. For
the vertices of degree m we now take, for every 1 6 i 6 k, the rest of Ti, i.e. the
set Xi = Ti r

⋃
v∈LXv. Since every v ∈ L is a leaf of T , the set Xi is connected

in the wheel. Moreover, each Xi has a neighbour in Xv for every v ∈ L and the
Xi and Xv are all pairwise disjoint, which completes the construction of our
Km,k-minor.

If on the other hand T ′ contains a path of length at least 2m + 1, then T
needs to contain a path P of length 2m − 1, as the vertices in Z were only
added as leafs to T . This P directly corresponds to the (2m− 1)-columns of a
(2m− 1)× k-grid minor in G, i.e. the restriction of the wheel to the set of all
those vi for which v ∈ P , equals an (2m− 1)× k-grid, except for some additional
edges.

We remark that it can actually be shown that a (t, l, k( t+l2 − 1))-wheel itself
induces a

(
t
2 + l

)
-agile set of size k, for example by performing a pebble pushing

argument (akin to the one used in [2]) on the tree T . Thus, we could as well have
formulated Theorem 8 in terms of a corresponding wheel instead of a regular
grid.

Let us end this section with one final observation regarding Question 3.4.1.
While we have seen that the existence of a large 2-agile set alone is not enough
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to guarantee the existence of a K2,k-minor, due to the regular strips, it turns out
that, by requiring the existence of a large 3-agile set, we can actually guarantee
the existence of a K2,k-minor.

Theorem 3.4.24. There exists a function f : N → N such that every graph
containing a 3-agile set of size at least f(k) also contains a K2,k-minor.

Proof. Let G be a graph containing a 3-agile set X of size f(k) := N > 4. Like
in Lemma 3.4.3 we may assume that G is 2-connected: if (A,B) is a separation
of G such that A ∩B contains at most one vertex, then either A or B contains
only one vertex of X, otherwise X would not be 3-agile. So suppose that A
contains at most one vertex from X, we claim that G′ := G − (A \ B) is a
subgraph of G which also contains a 3-agile set of size N . Indeed, it is easy to
check X ∩B ∪ (A ∩B) is such a 3-agile set in G′.

Thus, by taking a subset-minimal subgraph of G containing a 3-agile set of
size N , we may suppose that G is 2-connected.

Let T be a normal spanning-tree of G. Since |G| > N , by taking N large
enough we can ensure that T either contains a vertex of degree at least k + 1
or a path of length L, say. If T contains a vertex of degree at least k + 1, it is
easy to find the desired K2,k-minor, as follows: if t ∈ T has degree at least k+ 1,
there are k distinct components of G− t which do not contain the root. Now
since T is normal and G is 2-connected, each of these components needs to send
an additional edge to the path P in T between r and t. Thus, taking all the
components as the branch sets of the degree-2 vertices, the vertex v itself as the
branch set of one of the degree-k vertices and the vertices of P − t as the branch
set of the other degree-k vertex gives the desired K2,k-minor.

So we may suppose that T does not contain a vertex of degree k + 1, and
thus contains a path P of length at least L. Let us suppose further that there
are at least n vertices v1, . . . , vn (enumerated starting from the root of T ) on P
such that there is a component Ci of T − P with neighbour vi in T (possibly
the empty component) with the property that Ci ∪ {vi} contains a vertex xi in
X. Note that we can indeed achieve the existence of such a path by taking a
large enough N .

Consider some partition A∪̇B∪̇C of X into three disjoint sets with the
property that xi ∈ A whenever i is divisible by 3, xi ∈ B whenever i equals 1
modulo 3 and xi ∈ C whenever i equals 2 modulo 3. Since X is 3-agile, there are
disjoint trees T0, T1, T2 ⊆ G such that A ⊆ T0, B ⊆ T1, and C ⊆ T2. We may
assume without loss of generality that every vertex on P belongs to either T0 or
T1 or T2. We say that a subpath P ′ of P is Ti-free if no vertex on P ′ is contained
in Ti. Now if P would contain a long subpath P ′ which contains vj , . . . , vj+3k+2,
say, and which is Ti-free for some i, then we find the desired K2,k-minor: there
are at least k of the vertices vj , . . . , vj+3k+2, for which the corresponding xl lies
in Ti. In particular, the corresponding components Cl are met by Ti. Since T
is a normal spanning tree, there therefore exists, for every such component, a
vertex on rTvj which lies in Ti and is adjacent to that component. But now we
obtain our desired K2,k-minor by taking as one of the vertices of high degree
the subpath P ′, as the other one the path rTvj and as the vertices of degree 2
the components Cl mentioned above.

Hence, there cannot be a long Ti-free subpath, thus every long enough
subpath of P meets all three Ti.
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In particular, if we partition P into subpaths P1, P2,. . .P3k each containing
3k + 2 of the vl, then each of the Pj meets all the Ti. Thus, for each Pj there is
a 0 6 i 6 2 such that Pj contains a subpath on which all vl are contained in Ti,
put the preceding vl and the successive vl on P together meet both the other
trees.

By the pigeonhole principle we find that for at least k of the Pj the chosen
Ti is the same. But now we obtain a K2,k-minor by taking the other two Ti’s as
the vertices of high degree, and use the paths Pj found above as the vertices of
degree 2 in our K2,k-minor.
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Chapter 4

Distinguishing

In this chapter we are concerned with tree-of-tangle theorems in various contexts.
We start in Section 4.1 with a theorem unifying Theorem 1.1.3 as well as a
version of Theorem 1.1.2: our splinter Lemma 10. We also demonstrate that this
lemma allows us to develop tree-of-tangle theorems for a variety of other contexts,
some of which could not be solved by Theorem 1.1.3 or Theorem 1.1.2. That
section is joint work with Jakob Kneip and Maximilian Teegen and published in
[39].

After that, we consider another application of Lemma 10 in Section 4.2:
an application to separations of directed graphs. Such an application is not
possible directly as the separations of a directed graph do not form a universe
of separations. However, using an additional twist we can in fact use a vari-
ation of Lemma 10 to reprove a tree-of-tangles theorem for directed graphs by
Giannopoulou, Kawarabayashi, Kreutzer and Kwon. We do so via defining an
abstract notion, like abstract separation systems, which reflects the structure
of separations of directed graphs and proving a corresponding tree-of-tangles
theorem for a notion of tangles of these separations. The results from that
section are yet unpublished and joint work with Maximilian Teegen, except for
Lemma 12, which is joint work with Maximilian Teegen and Jakob Kneip.

In Section 4.3 we then turn back to abstract separation systems and find
a strengthening of Theorem 1.1.3 in another direction, by proving a canonical
version of Theorem 1.1.3, i.e. showing that the construction of the tree of tangles
in Theorem 1.1.3 can actually be performed invariant under isomorphisms. This
result is published in [36] and joint work with Jakob Kneip.

After having shown these various results about trees of tangles in finite
structures, we turn our attention in Section 4.4 towards infinite separation
systems. There, we develop a version of Lemma 10 for infinite separation
systems and again show that this result can be used to obtain existing tree-of-
tangles theorems for infinite graphs. While the results presented in this section
are joint work with Maximilian Teegen, the paper [42] in which these results are
published is joint work not just with Maximilian Teegen, but also with Jakob
Kneip.

In Section 4.5 we then consider another application of this infinite splinter
theorem: we show that it can be used to distinguish edge-blocks in a graph,
where a k-edge-block is a ⊆-maximal vertex set not separated by any cut of
order less than k. This result can then be used to obtain an alternative proof of
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an important result by Dicks and Dunwoody, stating that there exists, in any
graph, a nested set of cuts which ‘generates’ all cuts of that graph. This joint
work with Jan Kurkofka and Maximilian Teegen is published in [43].

Turning our attention back to finite structures, the last part of this chapter
is devoted not to a new tree-of-tangles theorem, but rather to a new proof
strategy. While traditionally the tree-of-tangles theorem and the tangle-tree
duality theorem form the two main independent pillars of tangle theory, we will
be able to show that the second pillar – the tangle-tree duality theorem – can
actually be used to obtain a proof of a tree-of-tangles theorem. Thus, these two
pillars are not as independent, as one previously thought. Moreover, this proof
allows us to give some bounds on the degrees of the nodes of the tree of tangles,
which are not easily shown otherwise. These results are joint work with Jakob
Kneip and Maximilian Teegen and published in [41].
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4.1 Trees of tangles in abstract separation sys-
tems

4.1.1 Introduction
In this section of this thesis we bridge the gap between Theorem 1.1.2 and
Theorem 1.1.3 by establishing the following tree-of-tangles theorem which com-
bines some of the upsides of both Theorem 1.1.2 and Theorem 1.1.3, i.e. which
is as widely applicable as Theorem 1.1.3 while still resulting in an efficient
distinguisher as Theorem 1.1.2 when applied in a context with an order function:

Theorem 9. If S = (S1, . . . , Sn) is a compatible sequence of structurally submod-
ular separation systems inside a universe U, and P is a robust set of profiles in
S, then there is a nested set N of separations in U which efficiently distinguishes
all the distinguishable profiles in P.

Theorem 9 includes Theorem 1.1.3 by taking a sequence of just one separation
system. Also, if applied in the context of Theorem 1.1.2 we can obtain a nested
set of separations efficiently distinguishing all the profiles, by taking as separation
systems Sk the sets of all separations of order < k of the given graph.

The nested set N found by Theorem 9 has to contain for every pair of profiles
in P a separation from that pair’s ‘candidate set’ of all those separations which
(efficiently) distinguish that pair of profiles. Thus, to prove Theorem 9, it suffices
to show that one can pick an element from each of these ‘candidate sets’ in a
nested way.

As it turns out, there is a very simple and purely structural requirement of
the way these ‘candidate sets’ interact with each other which guarantees that it
is possible to pick such a nested set:

Lemma 10 (Splinter Lemma). Let U be a universe of separations and let
A = (Ai)i6n be a family of subsets of U. If A splinters, then we can pick an
element ai from each Ai so that {a1, . . . , an} is nested.

Lemma 10, in a sense, represents yet another step of abstraction in the theory
of tangles: rather than working with the profiles themselves it works with the
sets of separations distinguishing a given pair of profiles.

Lemma 10 not only implies Theorem 9, but can also be used to prove for
example Theorem 1.1.1 and Theorem 1.1.3 directly. In fact Lemma 10 has a
remarkably short proof (as we shall see in Section 4.1.2), making it the shortest
available proof of Theorem 1.1.1 so far (see Section 4.1.3). Moreover, the
premise in Lemma 10 is straightforward to check, and Lemma 10 itself does
not make reference to tangles or any specific implementations of them. As a
result Lemma 10 can be used in many different settings, implying variations
of Theorem 1.1.1 in a multitude of contexts. For example, after deriving in
Section 4.1.3 Theorem 1.1.1, Theorem 1.1.3, and Theorem 9 from Lemma 10,
we use Lemma 10 to establish a new tree-of-tangles theorem in the setting of
clique separations.

Since Lemma 10 does not yield a canonical set of separations, we cannot
deduce the whole Theorem 1.1.2 from it. We fix this in Section 4.1.4 by estab-
lishing a version of Lemma 10 which does give a canonical nested set, albeit
under slightly stronger assumptions:
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Lemma 11 (Canonical Splinter Lemma). Let U be a universe of separations and
let A = (Ai : i ∈ I) be a collection of subsets of U that splinters hierarchically
with respect to a partial order 4 on I. Then there exists a nested set N = N(A)
meeting every Ai in A.

Moreover, N(A) is canonical: if ϕ is an isomorphism of separation sys-
tems between

⋃
i∈I Ai and a subset of some universe U ′ such that the family

ϕ(A) := (ϕ(Ai) : i ∈ I) splinters hierarchically with respect to 4, then we have
that N(ϕ(A)) = ϕ(N(A)).

We make use of Lemma 11 in Section 4.1.5 to obtain a new shortest proof
of Theorem 1.1.2 and to extend Theorem 1.1.2 to two natural types of separations
whose structural submodularity does not come from a submodular order function:
clique separations, and circle separations.

4.1.2 The Splinter Lemma
In this section we establish Lemma 10, from which we shall derive two previ-
ously known theorems as well as two new flavours of tree-of-tangles theorems
in Section 4.1.3. A cornerstone of the proofs of both Lemma 10 and of the two
known results we shall derive from it is the fish Lemma 2.3.1.

Typically, the proof of a tree-of-tangles theorem proceeds by starting with
some set N of separations which distinguish some (or all) of the given tangles,
and then repeatedly replacing elements r of N which cross some other element
s of N with an appropriate corner separation of r and s. Lemma 2.3.1 is then
used to show that each of these replacements makes N ‘more nested’, and thus
one eventually obtains a nested set N which distinguishes all the given tangles.
(See for instance the proof of Theorem 4 of [26].) Usually, in order to not reduce
the set of tangles distinguished by N , one has to take special care which corner
separation of two crossing r and s in N one uses for replacement; this depends
on the specific properties of the tangles at hand.

Our Lemma 10 seeks to eliminate this careful selection of corner separations
for replacement: we will show that for a family (Ai)i6n of subsets of some
universe U we can find a nested set N meeting all the Ai, provided that these
sets Ai have one straightforward-to-check property. This lemma will imply
many of the existing tree-of-tangles theorems by taking as sets Ai the sets of
separations which distinguish the i-th pair of tangles, and checking that the
one assumption needed for Lemma 10 is met. Notably, Lemma 10 will make no
reference at all to tangles or their specific properties. The proof of Lemma 10
will also utilize Lemma 2.3.1; however, the only assumption we need about the
sets Ai is that for elements ai and aj of Ai and Aj , respectively, one of their
four corner separations lies in either Ai or Aj . This condition will be easy to
verify if one wants to deduce other tree-of-tangles theorems from Lemma 10.
In fact, the verification of this condition, which just asks for the existence of
some corner separation of ai and aj in Ai ∪ Aj , will usually be much more
straightforward than the hands-on arguments used in the original proofs of those
tree-of-tangles theorems, which for their replacement arguments often need to
prove the existence of a specific corner separation of ai and aj . So let us define
this condition formally.

Let U be a universe and A = (Ai)i6n some family of non-empty subsets
of U . We say that A splinters if for every crossing pair of ai ∈ Ai r Aj and
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aj ∈ Aj rAi one of their four corner separations lies in Ai ∪ Aj .
Observe that a family (Ai)i6n of non-empty sets splinters if and only if for

every pair ai ∈ Ai and aj ∈ Aj of separations, either some corner separation of
ai and aj lies in Ai ∪ Aj , or one of ai and aj lies in Ai ∩ Aj . This is, because
if two separations ai and aj are nested, then these separations themselves are
corner separations of the pair ai and aj .

With this definition and Lemma 2.3.1 we are already able to state and prove
our first main result:

Lemma 10 (Splinter Lemma). Let U be a universe of separations and let
A = (Ai)i6n be a family of subsets of U. If A splinters, then we can pick an
element ai from each Ai so that {a1, . . . , an} is nested.

Proof. We proceed by induction on n. The assertion clearly holds for n = 1. So
suppose that n > 1 and that the above assertion holds for all smaller values of n.

Suppose first that we can find some ai ∈ Ai so that ai is nested with at least
one element of Aj for each j 6= i. Then the assertion holds: for j 6= i let A′j
be the set of those elements of Aj that are nested with ai. Then (A′j : j 6= i)
is a family of non-empty sets which splinters by Lemma 2.3.1. Thus, by the
induction hypothesis we can pick a nested set {aj ∈ A′j : j 6= i}, which together
with ai is the desired nested set.

To conclude the proof it thus suffices to find an ai as above. To this end, we
apply the induction hypothesis to A1, . . . ,An−1 to obtain a nested set consisting
of some a1, . . . , an−1. Fix an arbitrary an ∈ An. For all i < n, if ai itself or one
of its corner separations with an lies in An, this ai is the desired separation for
the above argument. Otherwise, for each i < n, either an itself or one of its
corner separations with ai lies in Ai, in which case an is the desired separation
for the above argument.

We shall see in Section 4.1.3 that this innocuous-looking lemma is actu-
ally strong enough to directly imply various existing tree-of-tangles theorems,
including Theorem 1.1.1.

4.1.3 Applications of the Splinter Lemma
A short proof of Theorem 1.1.1

As a first application of Lemma 10 let us give a short proof of Theorem 1.1.1:

Theorem 1.1.1 ([68]). Every graph has a tree-decomposition displaying its
maximal tangles.

If N is a nested set of separations of a finite graph G it is straightforward
to find a tree-decomposition of G whose set of induced separations is precisely
N(see [22, 68], this can also be shown by using the statements from Section 2.6).
Therefore, in order to prove Theorem 1.1.1, it suffices to find a nested set N of
separations of G which efficiently distinguishes all maximal tangles of G.

For every pair P, P ′ of distinct maximal tangles of G let

AP,P ′ := {{A,B} ∈ S(G) : {A,B} efficiently distinguishes P and P ′} .

Since P and P ′ are not subsets of each other, AP,P ′ is a non-empty set.
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Let A be the family of all these sets AP,P ′ . A nested set of separations of
G distinguishes all maximal tangles of G efficiently if and only if it contains
an element of each AP,P ′ . Therefore, the existence of such a set, and hence
Theorem 1.1.1, now follows directly from Lemma 10 once we show that A
splinters:

Lemma 4.1.1. The family A of all AP,P ′ splinters.

Proof. Let P 6= P ′ and Q 6= Q′ be two pairs of distinct maximal tangles of G and
let {A,B} ∈ AP,P ′ and {C,D} ∈ AQ,Q′ be two crossing separations. We need
to show that we have either {A,B} ∈ AQ,Q′ or {C,D} ∈ AP,P ′ , or that some
corner separation of {A,B} and {C,D} lies in AP,P ′ ∪ AQ,Q′ . By switching
their roles if necessary we may assume that |(A,B)| 6 |(C,D)|.

Since Q and Q′ both orient (C,D), and |(A,B)| 6 |(C,D)|, both tangles also
orient {A,B}. If Q and Q′ orient {A,B} differently, then {A,B} distinguishes
them efficiently and hence lies in AQ,Q′ . So suppose that Q and Q′ contain the
same orientation of {A,B}, say, (A,B).
By renaming them if necessary we may assume that (C,D) ∈ Q and (D,C) ∈ Q′.

Consider the corner separation (A ∪ C , B ∩ D) and suppose first that
|(A ∪ C , B ∩D)| 6 |(C,D)|. Then, by (A,B), (C,D) ∈ Q and the tangle prop-
erty (T), Q must contain (A ∪ C , B ∩D). On the other hand Q′ must contain
its inverse (B ∩D , A ∪ C) since (D,C) ∈ Q′. But then this corner separation
efficiently distinguishes Q and Q′ and hence lies in AQ,Q′ .

Thus, we may suppose that |(A∪C , B∩D)| > |(C,D)|. By a similar argument
we may further suppose that |(A ∪D , B ∩ C)| > |(C,D)|. Submodularity then
yields |(A ∩ C , B ∪D)|, |(A ∩D , B ∪ C)| 6 |(A,B)|.

By switching the roles of P and P ′ if necessary we may assume that
(A,B) ∈ P and (B,A) ∈ P ′. Then, by the above inequality, P must contain both
(A∩C , B∪D) and (A∩D , B∪C), since it cannot contain either of their inverses
due to (A,B) ∈ P and the tangle property (T). However, due to (B,A) ∈ P ′
and the tangle property (T), P ′ cannot contain both of (A ∩ C , B ∪ D) and
(A ∩D , B ∪ C). In must therefore contain the inverse of at least one of these
corner separations, which then efficiently distinguishes P and P ′ and hence lies
in AP,P ′ .

Profiles of structurally submodular separation systems

The most general, or most widely applicable, tree-of-tangles theorem published
so far, in the sense of having the weakest premise, is Theorem 1.1.3:

Theorem 1.1.3 ([26, Theorem 6]). Let S be a structurally submodular separ-
ation system and P a set of profiles of S. Then S contains a nested set that
distinguishes P.

The price to pay in Theorem 1.1.3 for having the mildest set of requirements
is that its assertion is also among the weakest of all tree-of-tangles theorems.
For graphs, Theorem 1.1.3 implies only that for any fixed k every graph has a
tree-decomposition displaying its k-tangles. This is a much weaker statement
than Theorem 1.1.1, which finds a tree-decomposition displaying the maximal
k-tangles of that graph for all values of k simultaneously.

Let us show how to derive Theorem 1.1.3 from Lemma 10. For this, let P be
a set of profiles of a submodular separation system S, and for distinct P and P ′
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in P let
AP,P ′ := {s ∈ S : s distinguishes P and P ′}.

For proving Theorem 1.1.3 it suffices to show that the family

AP = (AP,P ′ : P 6= P ′ ∈ P)

splinters:

Lemma 4.1.2. Given a set P of profiles of a submodular separation system S ,
the family AP = (AP,P ′ : P 6= P ′ ∈ P) splinters.

Proof. Let P 6= P ′ and Q 6= Q′ be two pairs of profiles in P and let r ∈ AP,P ′
and s ∈ AQ,Q′ be two distinct separations. We need to show that we have
either r ∈ AQ,Q′ or s ∈ AP,P ′ , or that some corner separation of r and s
lies in AP,P ′ ∪ AQ,Q′ . If r and s are nested, then they themselves are corner
separations of r and s and there is nothing to show, so let us suppose that r and
s cross.

Both r and s are oriented by all four profiles P, P ′, Q, andQ′. If r distinguishes
Q and Q′, or if s distinguishes P and P ′, we are done; so suppose that there are
orientations r and s of r and s with r ∈ Q ∩ Q′ and s ∈ P ∩ P ′. By possibly
switching the roles of P and P ′, or of Q and Q′, we may further assume that
r ∈ P and r ∈ P ′ as well as s ∈ Q and s ∈ Q′.

The submodularity of S implies that at least one of the two corner separations
r ∨ s and r ∨ s lies in S . We will only treat the case that (r ∨ s) ∈ S ; the other
case is symmetrical.

From the assumption that r and s cross it follows that r ∨ s is distinct from
r and s as an unoriented separation. Therefore, by r ∈ P ′ and consistency, P ′
cannot contain r ∨ s and hence has to contain its inverse r ∧ s. On the other
hand, by r, s ∈ P and the profile property (P), P cannot contain the inverse
of r ∨ s and thus must contain r ∨ s. Now r ∨ s distinguishes P and P ′ and is
therefore the desired corner separation in AP,P ′ .

Let us now deduce Theorem 1.1.3 from Lemma 10.

Proof of Theorem 1.1.3. Let P be a set of profiles of S. By Lemma 4.1.2 the
collection (AP,P ′ : P 6= P ′ ∈ P) of subsets of S splinters. Each of the AP,P ′ is
non-empty as P and P ′ are distinct profiles of S. Thus, by Lemma 10, we can
pick one element from each AP,P ′ so that the set N of all these elements is a
nested set of separations. It is then clear that N distinguishes all the profiles
in P.

The above way of using Lemma 10 to prove a tree-of-tangles theorem is
archetypical, and we will use the strategy from this section as a blueprint for
the applications of Lemma 10 in the following sections.

Profiles in submodular universes

Theorem 1.1.3, which we deduced from Lemma 10 in the previous section implies
that every graph has, for any fixed integer k, a tree-decomposition which displays
its k-tangles. However, Robertson’s and Seymour’s Theorem 1.1.1 shows that
every graph has a tree-decomposition which displays all its maximal tangles, i.e.
which distinguishes all its distinguishable tangles for all values of k simultaneously,
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not just for some fixed value of k. Therefore, Theorem 1.1.3 does not imply
Theorem 1.1.1.

Moreover, since Theorem 1.1.3 does not assume that the universe U it is
applied to comes with an order function, Theorem 1.1.3 cannot say anything
about the order of the separations used in the nested set to distinguish all
the profiles. If the universe U , as for instance in a graph, does come with
a submodular order function, one might ask for a nested set which not only
distinguishes all the profiles given, but one which does so efficiently, i.e. which
contains for every pair P, P ′ of profiles a separation of minimal order among all
the separations in U which distinguish P and P ′.

Thus, let us recall Theorem 1.1.2, which satisfies both of the requirements
above, and is the strongest tree-of-tangles theorem, in terms of its consequence,
known so far:
Theorem 1.1.2 (Canonical tree-of-tangles theorem for separation universes
[27, Theorem 3.6]). Let U = (U,6, ∗,∨,∧, |·|) be a submodular universe of
separations. Then, for every robust set P of profiles in U , there is a nested set
T = T (P) ⊆ U of separations such that:
(i) every two profiles in P are efficiently distinguished by some separation

in T ;

(ii) every separation in T efficiently distinguishes a pair of profiles in P;

(iii) for every automorphism α of U we have T (Pα) = T (P)α; (canonicity)

(iv) if all the profiles in P are regular, then T is a regular tree set.
As mentioned in Chapter 2, the definition of robustness of a set of profiles is

rather involved and thus not repeated here. In the following proofs this definition
will be used only in one place; therefore we shall use it there as a black box and
refer the reader to [27] for the full definition. Alternatively, the reader may think
of a ‘robust set of profiles’ as a slightly stronger ‘distinguishable set of robust
profiles’.

Since every k-tangle of a graph is robust ([27]), Theorem 1.1.2 indeed im-
plies Theorem 1.1.1 of Robertson and Seymour that every graph has a tree-
decomposition displaying its maximal tangles (see [27, Section 4.1] for more
on building tree-decompositions from nested sets of separations, and how The-
orem 1.1.2 implies Theorem 1.1.1). Moreover, Theorem 1.1.2 improves upon
Theorem 1.1.1 by finding a canonical such tree-decomposition, i.e. one which is
preserved by automorphisms of the graph. Since Lemma 10 does not guarantee
any kind of canonicity, we are not able to deduce the full Theorem 1.1.2 from
Lemma 10; however, using Lemma 10 we will be able to find a nested set T ⊆ U
with the properties (i), (ii) and (iv). We shall refer to this as the non-canonical
Theorem 1.1.2. (In Section 4.1.4 we shall prove a version of Lemma 10 which
implies Theorem 1.1.2 in full.)

Our strategy will largely be the same as in Section 4.1.3. For a robust set P
of profiles in a submodular universe U we define for every pair P, P ′ of distinct
profiles in P the set

AP,P ′ := {a ∈ U : a distinguishes P and P ′ efficiently} .

Let AP be the family (AP,P ′ : P 6= P ′ ∈ P). The only lemma we need in order
to apply Lemma 10 is the following:
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Lemma 4.1.3. For a robust set P of profiles in U the family AP of the sets
AP,P ′ splinters.

Proof. Let P, P ′ and Q,Q′ be two pairs of distinguishable profiles in P and let
r ∈ AP,P ′ and s ∈ AQ,Q′ be two crossing separations. We need to show that we
have either r ∈ AQ,Q′ or s ∈ AP,P ′ , or that some corner separation of r and s
lies in AP,P ′ ∪ AQ,Q′ . By switching their roles if necessary we may assume that
|r| 6 |s|.

Since Q orients all separations in U of order at most the order of s, Q contains
some orientation r of r. Similarly, Q′ contains some orientation of r: if r ∈ Q′
then r distinguishes Q and Q′, and by |r| 6 |s| it does so efficiently, giving
r ∈ AQ,Q′ . So suppose that r ∈ Q′.

If either one of the two corner separations r ∨ s and r ∨ s has order at most
the order of s, then that corner separation would distinguish Q and Q′ by the
profile property. In particular, that corner separation would do so efficiently and
hence lie in AQ,Q′ . Thus, we may assume that both of these corner separations
have order strictly larger than the order of s.

The submodularity of U now implies that both of the other two corner
separations, that is, r ∧ s and r ∧ s, have order strictly less than the order of r.
Therefore, both P and P ′ orient both of these corner separations. By possibly
switching the roles of P and P ′ we may assume that r ∈ P and r ∈ P ′. Then
P ′ contains both r ∧ s and r ∧ s due to consistency, since both of these corner
separations are distinct from r as unoriented separations by the assumption that
r and s cross.

But now the assumption that r distinguishes P and P ′ efficiently implies
that neither of the two corner separations r ∧ s and r ∧ s can distinguish P
and P ′, since the corner separations have strictly lower order than r. Therefore,
P contains r ∧ s and r ∧ s as well. However, by r ∈ P , this contradicts the
robustness of P , which forbids exactly this configuration.

Let us now deduce the non-canonical Theorem 1.1.2 from Lemma 10:

Proof of the non-canonical Theorem 1.1.2. By Lemma 4.1.3 the collection AP
of the sets AP,P ′ splinters. Thus, by Lemma 10 we can pick an element from
each set AP,P ′ in AP in such a way that the set T of these elements is nested.
Let us show that this set T is as claimed.

For (i), let P and P ′ be two profiles in P . Since T meets the set AP,P ′ , some
element of T distinguishes P and P ′ by definition of AP,P ′ .

For (ii), observe that every element of T lies in some AP,P ′ and hence
distinguishes a pair of profiles in P efficiently.

Finally, (iv) follows from the fact that all sets AP,P ′ in AP are regular if
every profile in P is regular, which implies that T is a regular tree set in that
case.

Sequences of submodular separation systems

Let us, once more, compare Theorem 1.1.3 and Theorem 1.1.2. The first of
these has the advantage that it does not depend on any order function and
thus applies to a wider class of universes of separations; on the other hand, for
those universes that do have an order function, the latter theorem is much more
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flexible and powerful, since it not only distinguishes all distinguishable profiles
across all orders simultaneously, but also does so efficiently.

Our aim in this section is to establish Theorem 9 which combines the advant-
ages of both Theorem 1.1.3 and Theorem 1.1.2 (without canonicity), i.e. which is
not dependent on the existence of some order function, but which is as powerful
and efficient as Theorem 1.1.2 if such an order function does exist.

Concretely, we shall answer the following question, which inspired this re-
search:

If S1 ⊆ S2 ⊆ . . . ⊆ Sn is an ascending sequence of structurally submodular
separations systems exhausting a universe of separations U , does there exist a

nested set of separations which efficiently distinguishes
all the maximal profiles in U?

Let us substantiate this question with rigorous definitions of the terms involved.
We call a sequence S1 ⊆ S2 ⊆ . . . ⊆ Sn ⊆ U of submodular separation

systems in a universe U compatible if for all pairs si ∈ Si and sj ∈ Sj with i 6 j,
either Si contains at least two corner separations of si and sj , or Sj contains at
least three corner separations of si and sj .

Observe that if U comes with a submodular order function |·| and the Si are
defined as in Section 4.1.3, i.e. if Si is the set of all separations in U of order
< i, then the sequence S1 ⊆ S2 ⊆ . . . ⊆ Sn ⊆ U is a compatible sequence of
submodular separation systems.

A profile in S = (S1, . . . , Sn) is a profile of one of the Si.
A separation s ∈ Sn distinguishes two profiles P and Q in S if there are

orientations of s such that s ∈ P and s ∈ Q. The separation s distinguishes
P and Q efficiently if s ∈ Si for every Si which contains a separation that
distinguishes P and Q.

Note once more that, as above, these notions of profiles and efficient dis-
tinguishers coincide with their usual definitions as given in Chapter 2 if U has
a submodular order function and the Si are the subsets of U containing all
separations of order < i.

We also require a structural formulation of the concept of robustness from [27]:
a set P of profiles in S is robust if for all P,Q,Q′ ∈ P the following holds: for
every r ∈ Q∩Q′ with r ∈ P and every s which distinguishes Q and Q′ efficiently,
if s ∈ Sj , then there is an orientation s of s such that either (r ∨ s) ∈ P or
(r ∨ s) ∈ Sj .

s

Q′Q

rP

Figure 4.1: Robustness.
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With the above definitions we are now able to formally state and prove The-
orem 9, which includes both Theorem 1.1.3 and the non-canonical Theorem 1.1.2
(and hence Theorem 1.1.1) as special cases:

Theorem 9. If S = (S1, . . . , Sn) is a compatible sequence of structurally submod-
ular separation systems inside a universe U, and P is a robust set of profiles in
S, then there is a nested set N of separations in U which efficiently distinguishes
all the distinguishable profiles in P.

Since the proof of Theorem 9 runs along very similar lines as the proof of
Theorem 1.1.2 in the previous section, we only sketch it here:

Sketch of proof. For every pair P, P ′ of distinguishable profiles in P let AP,P ′
be the set of all s ∈ Sn that distinguish P and P ′ efficiently. The assertion of
Theorem 9 follows directly from Lemma 10 if we can show that the family A of
these sets AP,P ′ splinters.

So let r ∈ AP,P ′ and s ∈ AQ,Q′ be given. If r and s are nested there is
nothing to show, so suppose they cross. Let i and j be minimal integers such
that r ∈ Si and s ∈ Sj ; we may assume without loss of generality that i 6 j.

If r distinguishes Q and Q′, then r ∈ AQ,Q′ , so suppose not, that is, suppose
that some orientation r of r lies in both Q and Q′.

If one of the two corner separations r ∨ s and r ∨ s lies in Sj , then that
separation distinguishes Q and Q′ by consistency and the profile property and
hence would lie in AQ,Q′ . So we may suppose that neither of these two corner
separations lies in Sj . The compatibility of S then implies that both of the
other two corner separations, r ∨ s and r ∨ s, lie in Si.

By possibly switching the roles of P and P ′ we may assume that r ∈ P ′ and
r ∈ P . Then the robustness of P implies that P contains either r ∨ s or r ∨ s.
This corner separation then lies in AP,P ′ due to the consistency of P ′.

Theorem 9 directly implies both Theorem 1.1.3 and the non-canonical The-
orem 1.1.2: for the first theorem, consider the singleton sequence S1 = S; and
for the latter, take as Si the set of all separations of order < i and let n be large
enough that Sn = U .

Clique-separations in finite graphs

For a finite graph G a separation (A,B) of G is a clique separation if the induced
subgraph G[A ∩B] is a complete graph. Clique separations in graphs have been
studied by various people over the course of the last century [55, 75]. More
recently clique separations have received quite some attention in theoretical
computer science (see for instance [1, 15, 62]) following Tarjan’s work [71] on
their algorithmic aspects.

In [26] it was shown that the theory of submodular separation systems can be
applied to clique separations of finite graphs to deduce the existence of certain
nested distinguishing sets. Using Lemma 10 directly instead of Theorem 1.1.3,
we are able to obtain a stronger result than the one given in [26], much in the
same way that Theorem 9 improves upon Theorem 1.1.3.

For this section let G = (V,E) be a finite graph, U = U(G) the universe
of separations of G, and S = S (G) ⊆ U the separation system of all clique
separations of G. Moreover, let Sk = Sk (G) be the set of all clique-separations
in G of order less than k, i.e. the set of all (A,B) ∈ S such that |A ∩B| < k.

101



It was shown in [26, Lemma 17] that S is a submodular separation system.
Following their proof, we can show that in fact every Sk ⊆ S is a submodular
separation system, and that these extend each other in a way similar to the
ordinary Sk of G:

Lemma 4.1.4. Let r and s be two crossing clique separations with |r| 6 |s|.
Then there are orientations r and s of r and s such that (r∧s), (r∧s), and (r∧s)
are clique separations with |r ∧ s| 6 |r| and |r ∧ s| 6 |r| as well as |r ∧ s| 6 |s|.
Moreover, if |r ∧ s| = |r| = |s|, then (r ∧ s) is also a clique separation with
|r ∧ s| 6 |r|.

Proof. Let s = {A,B} and t = {C,D} be two crossing clique separations of G
with |r| 6 |s|. Since C ∩D is a separator of G, and all vertices in A ∩ B are
pairwise adjacent, A ∩B must be a subset of either C or D. Similarly, C ∩D
must be a subset of either A or B. By renaming the sets if necessary we may
assume that A ∩ B ⊆ C and C ∩D ⊆ A. We orient r as r = (A,B) and s as
s = (C,D); let us show that these orientations are as claimed.

Observe first that the separators of both (r ∧ s) and (r ∧ s) are subsets of
A ∩B, showing that these are clique separations of order at most |r| = |A ∩B|.
Similarly, the separator of the corner separation (r ∧ s) is a subset of C ∩D,
and hence (r ∧ s) is a clique separation of order at most |s| = |C ∩D|.

Finally, suppose that |r ∧ s| = |r| = |s|. Then, since the separator of (r ∧ s)
is a subset of both A ∩ B and of C ∩D, this separator must in fact be equal
to both A ∩ B and C ∩D. Consequently, the separator of (r ∧ s) also equals
A ∩ B = C ∩ D, which shows that (r ∧ s) is a clique separation of order at
most r.

We can now consider profiles in G with respect to these separation systems.
A profile P (of clique-separations) of order k shall be a consistent orientation of
Sk satisfying the profile property

∀ r, s ∈ P : (r ∧ s) /∈ P . (P)

Every hole in G (i.e. an induced cycle of length at least 4) defines such a profile
P of order |V | in G by letting P contain a separation (A,B) ∈ S of order less
than |V | if and only if that hole is contained in G[B]. In an analogous way every
clique of size k defines a profile of order k in G. Let us denote by Pk the set of
all profiles of order k.

As usual, given two distinguishable profiles P and P ′, let

AP,P ′ := {a ∈ S : a distinguishes P, P ′ efficiently}.

We will show that the collection of these AP,P ′ splinters.

Lemma 4.1.5. For any set P of profiles the collection

(AP,P ′ : P, P ′ distinguishable profiles)

splinters.

Proof. Let P, P ′ and Q,Q′ be two pairs of distinguishable profiles in P and let
r ∈ AP,P ′ and s ∈ AQ,Q′ be two distinct separations. We need to show that we
have either r ∈ AQ,Q′ or s ∈ AP,P ′ , or that some corner separation of r and
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s lies in AP,P ′ ∪ AQ,Q′ . If r and s are nested, then the latter is immediate, so
suppose that r and s cross. By switching their roles if necessary we may further
assume that |r| 6 |s|.

Since Q orients s, and |r| 6 |s|, the profile Q contains some orientation r of
r. Similarly, Q′ contains some orientation of r. If r ∈ Q′, then r distinguishes Q
and Q′, and by |r| 6 |s| it does so efficiently, giving r ∈ AQ,Q′ . So suppose that
r ∈ Q′.

By Lemma 4.1.4 at least three of the corner separations of r and s are clique
separations of order at most |s|. Thus, at least one of (r ∧ s) and (r ∧ s) is a
clique separation of order at most |s|. This corner separation then distinguishes
Q and Q′ by the profile property, and in fact it does so efficiently, since its order
is at most |s|, yielding the desired corner separation in AQ,Q′ .

It is now straightforward to use Lemma 10 to obtain the following theorem:

Theorem 4.1.6. There is a nested set of separations which efficiently distin-
guishes all the distinguishable profiles in

⋃n
i=1 Pi.

Proof. By Lemma 4.1.5, we can apply Lemma 10 to

(AP,P ′ : P, P ′ distinguishable profiles),

resulting in the claimed nested subset.

In particular, for any two holes, a hole and a clique, or two cliques if there is
a clique separation which distinguishes them, then our nested set contains one
such separation of minimal order. As usual, such a nested set can be transformed
into a tree-decomposition of G (see [22] for details). Thus, G admits a tree-
decomposition whose adhesion sets (the sets Vt ∩ Vt′ for distinct nodes t, t′) are
cliques and which efficiently distinguishes all the holes and cliques distinguishable
by clique separations in G. Such a decomposition is similar to, but not exactly
the same as, the decomposition constructed by Tarjan in [71].

We will see in Section 4.1.5 that such a decomposition can in fact be chosen
canonically, i.e. to be invariant under automorphisms of G.

4.1.4 Canonical Splinter Lemma
As we saw in the previous section, Lemma 10 is already strong enough to imply
most of Theorem 1.1.2, but crucially does not guarantee the canonicity asserted
in (iii). In this section we wish to prove a version of Lemma 10 using a stronger
set of assumptions from which we can deduce Theorem 1.1.2 in full: we want
to find, for a family A = (Ai : i ∈ I) of subsets of some universe U , a nested
set N = N(A) meeting all the Ai that is canonical, i.e. which only depends on
invariants of A. More formally, we want to find N = N(A) in such a way that if
A′ = (A′i : i ∈ I) is another family of subsets of some other universe U ′ that also
meets the assumptions of our theorem, and ϕ is an isomorphism of separation
systems between

⋃
i∈I Ai and

⋃
i∈I A′i with ϕ(Ai) = A′i for all i ∈ I, we ask that

N(A′) = ϕ(N(A)). In particular, the nested set found by our theorem should
not depend on the universe into which the family A is embedded.

The assumptions of Lemma 10 are not sufficient to guarantee the existence of
such a canonical set. Consider the example where we have just two separations,
s and t, which are crossing and let A = (A1) = ({s, t}). Note that A splinters,

103



but there may be an automorphism that swaps the two separations so the choice
of any single one of them is non-canonical. Since the separations are crossing,
we cannot use both of them for our nested set either.

For obtaining a canonical nested set, one crucial ingredient will be the notion
of extremal elements of a set of separations, which was already used in [27].
Given a set A ⊆ U of (unoriented) separations, an element a ∈ A is extremal in
A, or an extremal element of A, if a has some orientation a that is a maximal
element of A. (Recall that A is the set of orientations of separations in A.) The
set of extremal elements of a set of separations is an invariant of separation
systems in the following sense: if E is the set of extremal elements of some
set A ⊆ S of separations, and ϕ is an isomorphism between S and some other
separation system, then ϕ(E) is precisely the set of extremal separations of ϕ(A).
Moreover, the extremal separations of a set A ⊆ U are nested with each other
under relatively weak assumptions: for instance, it suffices that for any two
separations in A at least two of their corner separations also lie in A.

Let us formally state a set of assumptions under which we can prove a
canonical version of Lemma 10. Given two separations r and s and two of their
corner separations c1 and c2, we say that c1 and c2 are from different sides of r
if, for orientations of c1, r, and s with c1 = (r ∧ s), there is an orientation c2
of c2 such that either c2 = (r ∧ s) or c2 = (r ∧ s). Note that c1 and c2 being
from different sides of r does not imply that c1 and c2 are distinct separations;
consider for instance the edge case that r = s = c1 = c2.

Let A = (Ai : i ∈ I) be a finite collection of non-empty finite subsets of U
and let 4 be any partial order on I. We write i ≺ j if and only if i 4 j and
i 6= j. We say that A splinters hierarchically if for all ai ∈ Ai and aj ∈ Aj the
following two conditions hold:

(SH1) If i ≺ j, either some corner separation of ai and aj lies in Aj , or two corner
separations of ai and aj from different sides of ai lie in Ai.

(SH2) If neither i ≺ j nor j ≺ i, there are k ∈ {i, j} and corner separations
c1 and c2 of ai and aj from different sides of ak such that c1 ∈ Ak and
c2 ∈ Ai ∪ Aj .

ai

aj

ai

aj

ai

aj

ai

aj

Figure 4.2: The possible configurations in (SH2) in the definition of splinter
hierarchically, up to symmetry.

In particular if 4 is the trivial partial order on I in which all i 6= j are
incomparable, then A splinters hierarchically if and only if (SH2) holds for all
ai ∈ Ai and aj ∈ Aj ; this special case which ignores the partial order on I is
perhaps the cleanest form of an assumption that suffices for a canonical nested
set meeting all Ai in A. The reason we need to allow a partial order 4 on I
and the slightly weaker condition in (SH1) for comparable elements of I is that
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otherwise we would not be able to deduce Theorem 1.1.2 in full from our main
theorem of this section due to a quirk in the way that robustness is defined for
profiles in [27] (see Section 4.1.5).

Our first lemma enables us to find a canonical nested set inside
⋃
i∈I Ai for

a collection of sets Ai whose indexing set is an antichain:

Lemma 4.1.7. Let (Ai : i ∈ I) be a collection of subsets of U that splinters
hierarchically. If K ⊆ I is an antichain in 4, then the set of extremal elements
of
⋃
k∈K Ak is nested.

Proof. Suppose that K ⊆ I is an antichain and that for some i, j ∈ K there are
ai ∈ Ai and aj ∈ Aj such that ai and aj are extremal in

⋃
k∈K Ak but cross. Let

ai and aj be the orientations of ai and aj witnessing their extremality. Since ai
and aj cross, there are three ways of orienting ai and aj such that the supremum
of this orientation is strictly larger than ai or aj . Hence, none of these corner
separations can lie in Ai ∪ Aj , since that would contradict the maximality of ai
or aj in

⋃
k∈K Ak . On the other hand, since neither i ≺ j nor j ≺ i, by (SH2)

and the assumption that ai and aj cross there are at least two orientations of ai
and aj whose corresponding supremum lies in Ai ∪ Aj , causing a contradiction
to the extremality of ai and aj .

We are now able to prove a canonical version of the splinter lemma by
repeatedly applying Lemma 4.1.7 to the collection of the Ai of 4-minimal index
that have not yet been met by the nested set constructed so far:

Lemma 11 (Canonical Splinter Lemma). Let U be a universe of separations and
let A = (Ai : i ∈ I) be a collection of subsets of U that splinters hierarchically
with respect to a partial order 4 on I. Then there exists a nested set N = N(A)
meeting every Ai in A.

Moreover, N(A) is canonical: if ϕ is an isomorphism of separation sys-
tems between

⋃
i∈I Ai and a subset of some universe U ′ such that the family

ϕ(A) := (ϕ(Ai) : i ∈ I) splinters hierarchically with respect to 4, then we have
that N(ϕ(A)) = ϕ(N(A)).

Proof. We proceed by induction on |I|. If |I| = 1 we can choose as N the set of
extremal elements of Ai, which is nested by Lemma 4.1.7 and clearly canonical.

So suppose that |I| > 1 and that the claim holds for all smaller index sets.
Let K be the set of minimal elements of I with respect to 4. By Lemma 4.1.7
the set E = E(A) of extremal elements of

⋃
k∈K Ak is nested. Let J ⊆ I be the

set of indices of all those Aj that do not meet E, and for j ∈ J let A′j be the
set of all elements of Aj that are nested with E. We claim that the collection
A′ = (A′j : j ∈ J) splinters hierarchically with respect to 4 on J . This follows
from Lemma 2.3.1 as soon as we show that each A′j is non-empty.

To see that each A′j is non-empty, for j ∈ J let aj be an element of Aj that
crosses as few elements of E as possible. We wish to show that aj is nested
with E and thus aj ∈ A′j . So suppose that aj crosses some separation in E,
that is, some ai ∈ Ai ∩ E with i ∈ I r J . Since i is a minimal element of I, we
have either i 4 j or that i and j are incomparable. We shall treat these cases
separately.

Consider first the case that i ≺ j. By (SH1), either some corner separation of
ai and aj lies in Aj , or two corner separations of ai and aj from different sides
of ai lie in Ai. The first of these possibilities contradicts the choice of aj , since
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that corner separation in Aj would cross fewer elements of E by Lemma 2.3.1.
On the other hand, the latter of these possibilities contradicts the choice of ai
as an extremal element of

⋃
k∈K Ak. Thus, the case i 4 j is impossible.

Let us now consider the case that i and j are incomparable. Again, by
the choice of aj , none of the corner separations of ai and aj can lie in Aj by
Lemma 2.3.1. Therefore, (SH2) yields the existence of a corner separation of ai
and aj in Ai for each side of ai; this, however, contradicts the extremality of ai
in
⋃
k∈K Ak as before.
Therefore, each of the sets A′j with j ∈ J is non-empty, and hence the

collection A′ = (A′j : j ∈ J) splinters hierarchically with respect to 4. Since
|J | < |I|, we may apply the induction hypothesis to this collection to obtain a
canonical nested set N ′ = N(A′) meeting all A′j . Now N = N ′ ∪ E is a nested
subset of U which meets every Ai for i ∈ I. It remains to show that N is
canonical.

To see that N is canonical let ϕ be an isomorphism of separation systems
between

⋃
i∈I Ai and a subset of some universe U ′ such that ϕ(A) splinters

hierarchically with respect to 4 in U ′. Then ϕ(E) = E(ϕ(A)), i.e. the set of
extremal elements of

⋃
i∈I ϕ(Ai) is exactly ϕ(E). Therefore, ϕ(E) meets ϕ(Ai)

if and only if E meets Ai. Consequently, the restriction of ϕ to
⋃
j∈J A′j is

an isomorphism of separation systems between
⋃
j∈J A′j and its image in U ′

with the property that ϕ(A′) splinters hierarchically with respect to 4 on J .
Moreover, for j ∈ J , the image ϕ(A′j) of A′j is exactly the set of those separations
in ϕ(Aj) that are nested with ϕ(E).

Thus, applying the induction hypothesis yields N(ϕ(A′)) = ϕ(N(A′)). To-
gether with the above observation that ϕ(E(A)) = E(ϕ(A)) this gives

ϕ(N(A)) = ϕ(E(A)) ∪ ϕ(N(A′)) = E(ϕ(A)) ∪N(ϕ(A′)) = N(ϕ(A)),

concluding the proof.

4.1.5 Applications of the Canonical Splinter Lemma
In this section we apply Lemma 11 to obtain a short proof of Theorem 1.1.2,
to strengthen Theorem 4.1.6 for clique separations so as to make it canonical,
and finally to establish a canonical tree-of-tangles theorem for another type of
separations, so-called circle separations.

Robust profiles

Having established Lemma 11 in the previous section, we are now ready to
derive the full version of Theorem 1.1.2. For this let U = (U,6, ∗,∨,∧, |·|) be
a submodular universe of separations and P a robust set of profiles in U , and
let I be the set of all pairs of distinguishable profiles in P. As in Section 4.1.3,
for {P, P ′} ∈ I we let

AP,P ′ := {a ∈ U : a distinguishes P and P ′ efficiently} ,

and let AP be the family (AP,P ′ : {P, P ′} ∈ I). We furthermore define a partial
order 4 on I by letting {P, P ′} ≺ {Q,Q′} if and only if the order of some element
of AP,P ′ is strictly lower than the order of some element of AQ,Q′ . Note that
the separations in a fixed AP,P ′ all have the same order.
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We shall be able to deduce Theorem 1.1.2 from Lemma 11 as soon as we
show that AP splinters hierarchically.

Lemma 4.1.8. AP splinters hierarchically with respect to 4.

Proof. Let r ∈ AP,P ′ and s ∈ AQ,Q′ be given. By switching their roles if
necessary we may assume that |r| 6 |s|. Then Q and Q′ both orient r; we may
assume without loss of generality that r ∈ Q. We will make a case distinction
depending on the way Q′ orients r.

Let us first treat the case that Q and Q′ orient r differently, i.e. that r ∈ Q′.
Then r distinguishes Q and Q′ and hence |r| = |s| by the efficiency of s. This
implies that {P, P ′} and {Q,Q′} are either the same pair or else incomparable
in 4. We may assume further without loss of generality that s ∈ Q and s ∈ Q′.
Consider now the two corner separations r ∨ s and r ∧ s: if at least one of these
two has order at most |s|, then this corner separation would distinguish Q and
Q′ by the profile property. The efficiency of s would then imply that this corner
separation has order exactly |s| and hence lies in AQ,Q′ . The submodularity of
the order function implies that this is the case for at least one, and therefore for
both of these corner separations, yielding the existence of two corner separations
of r and s from different sides of s in AQ,Q′ and showing that (SH2) is satisfied.

Let us now consider the case that Q and Q′ orient r in the same way, i.e.
that r ∈ Q′. We make a further split depending on whether |r| = |s| or |r| < |s|.

Suppose first that r and s have the same order, i.e. |r| = |s|; then neither
{P, P ′} ≺ {Q,Q′} nor {Q,Q′} ≺ {P, P ′}. We may assume that P and P ′ orient
s in the same way: for if P and P ′ orient s differently, we may switch the roles of
r and s as well as {P, P ′} and {Q,Q′} and apply the above case. So suppose that
both of P and P ′ contain s, say. Then neither of the corner separations r ∨ s nor
r ∨ s can have order strictly less than |r| = |s|, as these corner separations would
distinguish Q and Q′ or P and P ′, respectively, and would therefore contradict
the efficiency of s or of r, respectively. The submodularity of |·| now implies
that both of these corner separations have order exactly |r| = |s| and hence lie
in AQ,Q′ and AP,P ′ , respectively, showing that (SH2) holds.

Finally, let us suppose that |r| < |s|; then {P, P ′} ≺ {Q,Q′}. Consider the
two corner separations r ∨ s and r ∨ s: if both of r ∨ s and r ∨ s have order
strictly greater than |s|, then by the submodularity of the order function both of
the other two corner separations r ∨ s and r ∨ s have order strictly smaller than
|r|. By the robustness of P one of these two corner separations would distinguish
P and P ′, contradicting the efficiency of r.

Thus, we may assume at least one of r ∨ s and r ∨ s has order at most |s|.
Then that corner separation distinguishes Q and Q′. In fact, it does so efficiently
and hence lies in AQ,Q′ , showing that (SH1) holds and concluding the proof.

We are now ready to deduce the full Theorem 1.1.2 from Lemma 11:

Theorem 1.1.2 (Canonical tree-of-tangles theorem for separation universes
[27, Theorem 3.6]). Let U = (U,6, ∗,∨,∧, |·|) be a submodular universe of
separations. Then, for every robust set P of profiles in U , there is a nested set
T = T (P) ⊆ U of separations such that:

(i) every two profiles in P are efficiently distinguished by some separation
in T ;
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(ii) every separation in T efficiently distinguishes a pair of profiles in P;

(iii) for every automorphism α of U we have T (Pα) = T (P)α; (canonicity)

(iv) if all the profiles in P are regular, then T is a regular tree set.

Proof. By Lemma 4.1.8 the family AP splinters hierarchically. Thus, we can apply
Lemma 11 to AP to obtain a nested set N = N(AP) which meets every AP,P ′ .
Clearly, N satisfies (i), (ii) and (iv) of Theorem 1.1.2.

To see that N satisfies (iii), let α be an automorphism of U . Then the
restriction of α to

⋃
{P,P ′}∈I AP,P ′ is an isomorphism of separation systems onto

its image in U . We therefore have, by Lemma 11, that α(N(AP)) = N(α(AP)).
For every AP,P ′ in AP we have that α(AP,P ′) is precisely the set of those
separations in U which distinguish Pα and P ′α efficiently; in other words, we
have α(AP) = APα , showing that (iii) is satisfied.

Clique separations

Regarding the profiles of clique separations discussed in Section 4.1.3, Lemma 4.1.4
not only suffices to show that the sets AP,P ′ splinters, but can be used to show
that the collection of these AP,P ′ even splinters hierarchically, allowing us to
apply Lemma 11: for this we simply define the same partial order 4 on the set
of pairs {P, P ′} as in the previous section, that is, {P, P ′} ≺ {Q,Q′} if and only
if |r| < |s| for some (equivalently: for all) r ∈ AP,P ′ and s ∈ AQ,Q′ .

To see this, let P, P ′ and Q,Q′ be distinguishable pairs of profiles of clique
separations. Let r ∈ AP,P ′ and s ∈ AQ,Q′ , and suppose without loss of generality
that |r| 6 |s|. If r and s are nested, then r and s themselves are corner separations
of r and s that lie inAP,P ′ andAQ,Q′ , respectively. However, if r and s cross, then
by Lemma 4.1.4 there are orientations of r and s such that |r ∧ s|, |r ∧ s| 6 |r|
and |r ∧ s|, |r ∧ s|, |r ∧ s| 6 |s|. By switching their roles if necessary we may
assume that r ∈ P and r ∈ P ′, and likewise that s ∈ Q and s ∈ Q′.

Since (r ∧ s), (r ∧ s) 6 s and s ∈ Q′, the profile Q′ contains both of these
corner separations by consistency. On the other hand, by the assumption that
|r| 6 |s|, the separation r gets oriented by Q, and consequently by the profile
property Q must contain the inverse of one of those two corner separations. This
corner separation then distinguishes Q and Q′, and in fact it does so efficiently,
since its order is at most |s|, meaning that this corner separation lies in AQ,Q′ .
Therefore, if |r| < |s|, (SH1) of splintering hierarchically is satisfied.

So suppose further that |r| = |s|, and let us check that (SH2) of splintering
hierarchically is satisfied. Observe that, similarly as above, P orients s, and
P ′ contains both (r ∧ s) and (r ∧ s) by consistency with r ∈ P ′, implying as
before that one of (r ∧ s) and (r ∧ s) also efficiently distinguishes P and P ′,
i.e. is an element of AP,P ′ . If this corner separation in AP,P ′ and the corner
separation in AQ,Q′ found above are from different sides of either r or s, then
(SH2) of splintering hierarchically would be satisfied. So suppose not; that is,
suppose that (r ∧ s) distinguishes both P and P ′ as well as Q and Q′ efficiently.
In particular |r ∧ s| = |r| = |s|, and hence by the last part of Lemma 4.1.4, all
four corner separations of r and s have order at most |r|. Consequently, since P ′
orients s, one of (r ∧ s) and (r ∧ s) distinguishes P and P ′ efficiently, which one
depending on whether s ∈ P ′ or s ∈ P ′. In either case we have found a corner
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separation of r and s in AP,P ′ , which together with (r ∧ s) ∈ AQ,Q′ witnesses
that (SH2) is fulfilled.

Therefore, by Lemma 11 we get that we can choose the set in Theorem 4.1.6
canonically:

Theorem 4.1.9. For every set P of profiles of clique separations of a graph
G, there is a nested set N = N(P) of separations which efficiently distin-
guishes all the distinguishable profiles in P and is canonical, that is, such that
N(Pα) = N(P)α for every automorphism α of the underlying graph G.

Proof. Every automorphism of G induces an automorphism of the separation
system. Hence, we can obtain the claimed nested set by applying Lemma 11
to the family of the sets AP,P ′ of those clique separations which efficiently
distinguish the pair P, P ′ of distinguishable profiles in P.

Circle separations

Another special case of separation systems are those of circle separations discussed
in [26]: given a fixed cyclic order on a ground-set V , a circle separation of V is a
bipartition (A,B) of V into two disjoint intervals in the cyclic order. Observe
that the set of all circle separations is not closed under joins and meets and
hence not a subuniverse of the universe of all bipartitions of V :

Example 4.1.10. Consider the natural cyclic order on the set V = {1, 2, 3, 4}.
The bipartitions ({1} , {2, 3, 4}) and ({3} , {4, 1, 2}) of V are circle separations.
However, their supremum in the universe of all bipartitions of V is ({1, 3} , {2, 4}),
which is not a circle separation.

Let V be a ground-set with a fixed cyclic order and U = (U,6, ∗,∨,∧, |·|) the
universe of all bipartitions of V with a submodular order function |·|. Let S ⊆ U
be the set of all separations in U that are circle separations of V . Moreover, let
us denote as Sk the set of all those circle separations in S whose order is < k.

Given fixed integers m > 1 and n > 3, we call, for this application only, a
consistent orientation of Sk a k-tangle in S if it has no subset in

F = Fnm :=
{
F ⊆ 2U

∣∣∣∣ ∣∣⋂(A,B)∈F B
∣∣ < m and |F | < n

}
.

A tangle in S is then a k-tangle for some k, and a maximal tangle in S is a tangle
not contained in any other tangle in S. As usual, two tangles are distinguishable
if neither of them is a subset of the other; a separation s distinguishes two tangles
if they orient s differently, and s does so efficiently if it is of minimal order
among all separations in S distinguishing that pair of tangles.

Using Lemma 11 we can show that there is a canonical nested set of circle
separations which efficiently distinguishes all distinguishable tangles in S:

Theorem 4.1.11. The set S of all circle separations of V contains a tree set
T = T (S) that efficiently distinguishes all distinguishable tangles in S. Moreover,
this tree set T can be chosen canonically, i.e. so that for every automorphism α
of S we have T (Sα) = T (S)α.

In order to prove Theorem 4.1.11 we need the following short lemma:
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Lemma 4.1.12. Let r and s be two circle separations of V . If r and s cross,
then all four corner separations of r and s are again circle separations.

Proof. Let r = (A,B) and s = (C,D). Since r and s cross, the sets A ∩ C
and B ∩ D are non-empty and moreover intervals in the cyclic order. Thus,
B ∪D is also an interval and therefore r ∧ s = (A∩C , B ∪D) is indeed a circle
separation.

Let us now prove Theorem 4.1.11.

Proof of Theorem 4.1.11. For every pair P, P ′ of distinguishable tangles in S let
AP,P ′ be the set of all circle separations that efficiently distinguish P and P ′.
We define a partial order 4 on the set of all pairs of distinguishable tangles by
letting {P, P ′} ≺ {Q,Q′} for two distinct such pairs if and only if the separations
in AP,P ′ have strictly lower order than those in AQ,Q′ .

Let us show that the collection of these sets AP,P ′ splinters hierarchically;
the claim will then follow from Lemma 11.

For this let P, P ′ and Q,Q′ be two distinguishable pairs of tangles in S and
let r ∈ AP,P ′ and s ∈ AQ,Q′ . If r and s are nested, then r and s themselves are
corner separations from different sides of r and s that lie in AP,P ′ and AQ,Q′ ,
respectively, in which case there is nothing to show.

So suppose that r and s cross. Then, by Lemma 4.1.12, all corner separations
of r and s are circle separations. By switching their roles if necessary we may
assume that |r| 6 |s|; we shall treat the cases of |r| < |s| and |r| = |s| separately.

Let us first consider the case that |r| < |s|. Then {P, P ′} ≺ {Q,Q′}, so it
suffices to show that (SH1) is satisfied, i.e. to find a corner separation of r and s
in AQ,Q′ . Since Q and Q′ both orient s, which is of higher order than r, both Q
and Q′ also orient r. By |r| < |s| and the efficiency of s, r cannot distinguish Q
and Q′. Thus, some orientation r of r lies in both Q and Q′.

By renaming them if necessary we may assume that r ∈ P and r ∈ P ′.
Suppose now that one of r ∨ s and r ∨ s has order at most |s|. Then Q and Q′
would both orient that corner separation, and they would do so differently by
the definition of a tangle. Thus, that corner separation would lie in AQ,Q′ , as
desired.

Hence, we may assume that both of r ∨ s and r ∨ s have order higher than |s|.
Then, by submodularity, both r ∧ s and r ∧ s have order less than |r|. Therefore,
both of these corner separations get oriented by P and P ′, but neither of them
can distinguish P and P ′ by the efficiency of r. In fact by the consistency of P
and P ′ we must have (r∧s), (r∧s) ∈ P ∩P ′. However, the set {r, (r∧s), (r∧s)}
lies in F , contradicting the assumption that P and P ′ are tangles in S.

It remains to deal with the case that |r| = |s| and show that (SH2) is satisfied.
For this we shall find corner separations from different sides of r or of s that lie
in AP,P ′ and AQ,Q′ , respectively. By the submodularity of the order function,
and by switching the roles of r and s if necessary, we may assume that there are
orientations of r and s such that both r ∨ s and r ∨ s have order at most |r|.
By possibly renaming s and s we may further assume that r ∨ s distinguishes
P and P ′. Then, by the efficiency of r, we must have |r ∨ s| = |r|, and hence
|r ∨ s| 6 |s| by submodularity. Recall that we assumed |r ∨ s| = |r| = |s|, so one
of r ∨ s and r ∨ s must distinguish Q and Q′. Again, that corner separation
must in fact distinguish Q and Q′ efficiently, i.e. lie in AQ,Q′ . Now this corner
separation together with r ∨ s witnesses that (SH2) holds.
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4.2 Directed graphs
In this section we are going to see how we can reformulate our splinter Lemma 10
in order for us to make it applicable to distinguish tangles in directed graphs
(digraphs). Such a theorem for digraphs has been developed by Giannopoulou,
Kawarabayashi, Kreutzer, and Kwon in [51], where they showed that a directed
tree-decomposition of a digraph which distinguish all its tangles of order k can
be constructed in polynomial time. However, this tree-decomposition does not
distinguish the tangles efficiently. The reason why constructing such a tree-
decomposition in the setup of digraphs is more challenging lies in the definition
of directed separations (see Section 4.2.1). These do not form a universe of
separations, in particular one can not take corners of these directed separations
in the same way as for separations of an undirected graph.

However, Giannopoulou, Kawarabayashi, Kreutzer, and Kwon also proved in
[51] a result about efficient distinguishers: they were able to construct a structure
called a ‘tree-labelling’ for the set of tangles (for definitions see Section 4.2.1).
They then used this tree-labelling as an important step in the construction of the
tree-decomposition mentioned above. More precisely, they showed the following:

Theorem 4.2.1 ([51, Theorem 6.2]). Every set T of distinguishable tangles in
a digraph G has a T -tree-labelling.

An important part of the proof of Theorem 4.2.1 is the case where T consists
of distinct (k + 1)-tangles which induce the same k-tangle. This case is then
used to inductively construct the tree-labelling in Theorem 4.2.1. In this section
of this thesis we show two results.

First, we are going to see that this important part of the proof of Theorem 4.2.1
can in fact be simplified by using a variation of our splinter Lemma 10; for
this we are going to remark that Lemma 10 can in fact be formulated in an
even more general context, where we do no longer require the existence of a
separation system, but only a symmetric, reflexive relation corresponding to
‘nestedness’. The same idea will also later be used in Section 4.4 to develop
results like Lemma 10 for infinite structures.

This even more abstract version of Lemma 10 will then come in handy to
achieve our second result of this section: using a different relation than before in
this more abstract version of Lemma 10, we will be able to develop a theory of
directed separation systems, and show that we can find a tangle distinguishing
structure like the tree-labellings in Theorem 4.2.1 in this more abstract setting.
Moreover, if applied to the directed separations of a digraph, this will give us a
different proof of Theorem 4.2.1, solely based on this more abstract version of
our splinter Lemma 10.

This Section 4.2 is structured as follows: first, in Section 4.2.1 we are
going to give the definitions from [51] regarding digraphs and separations that
we need. Then in Section 4.2.2, we are going to see how Lemma 10 can be
generalized to work even without a separation system, and how this can be
used to simplify the part of the proof of Theorem 4.2.1 mentioned above. After
that, in Section 4.2.3, we are going to develop our theory of direct separation
systems and use the more general version of our splinter lemma to prove a
tree-of-tangles-like theorem for these directed separation systems. This yields an
alternative proof of Theorem 4.2.1.
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4.2.1 Directed graphs and separations
In this section we recall the definitions for separations and tangles in digraphs
that we need. These definitions are largely based on [51], however, in some cases
we are going to slightly adjust these definitions in order to make them more
compatible with the definitions about separations and tangles used in other parts
of this thesis, such as for graphs.

Given a digraph G and two vertex sets A,B ⊆ V (G), a (directed) edge
e = (v, w) ∈ E(G) is said to cross from A to B if v ∈ ArB and w ∈ BrA. An
edge e is a cross edge for A and B if e crosses from A to B or from B to A.

Unlike in the undirected case, we allow for separations {A,B} in digraphs
the existence of edges between ArB and BrA, as long as they all ‘cross in the
same direction’. With this definition a separation of a digraph reflects the notion
of strong connectivity: recall that a vertex set in a digraph is strongly connected
precisely if we find a directed path between any two vertices in that graph, i.e.
there exist paths in ‘both directions’. Thus, given a directed separation {A,B},
no strong component of G−A ∩B will meet both A and B.

Formally, let us say that a pair (A,B) of vertex sets of G is an (oriented)
directed separation of G if A ∪ B = V and there are either no cross edges
from A to B or no cross edges from B to A. As for undirected graphs, the
separator of (A,B) is A ∩B and the order of (A,B) is the size of the separator,
i.e. |(A,B)| = |A ∩ B|. We call the (unoriented) pair {A,B} the underlying
unoriented directed separation of (A,B) (and (B,A)). In this section we will
denote the set of all (unoriented) directed separations of a digraph G as S(G).

Now given an oriented directed separation X = (A,B), there are no edges
that cross from A to B or no edges that cross from B to A. To distinguish these
two cases, we also write the directed separation (A,B) as X = (A→ B) if there
are no cross edges from B to A, and as X = (A← B) if there are no cross edges
from A to B. Moreover, if X is an unoriented directed separation, we denote as
X+, X− ∈ X the sides of X so that (X+ → X−) is an orientation of X, i.e. X+

and X− are chosen so that there are no edges from X− rX+ to X+ rX−.1
We can now define what a tangle in a digraph shall be. A (directed) tangle

of order k in a digraph G is a set τ of oriented directed separations which all
have order < k, such that for every unoriented directed separation {A,B} of
order < k exactly one of (A,B) and (B,A) is contained in τ , and moreover any
three separation (A1, B1), (A2, B2), (A3, B3) ∈ τ satisfy the tangle condition in
that A1 ∪A2 ∪A3 6= V (G). We say that τ is a tangle if τ is a tangle of order k
for some natural number k.

We say that an (unoriented) directed separation {A,B} ∈ S(G) distinguishes
two directed tangles τ, τ ′ if (A,B) ∈ τ and (B,A) ∈ τ ′ (for some orientation
(A,B) of {A,B}). Two tangles are distinguishable if there exists a separation
which distinguishes them. Otherwise, they are indistinguishable. Note that τ
and τ ′ are indistinguishable precisely if τ ⊆ τ ′ or τ ′ ⊆ τ . Given some integer
l, two tangles τ and τ ′ are l-distinguishable if there exists a separation {A,B}
of order l which distinguishes τ and τ ′. Similarly, we define two tangles to
be < l-distinguishable, if there exists a separation {A,B} of order less than l
which distinguish them. If two tangles are not l-distinguishable, or not < l-
distinguishable, they are l-indistinguishable, or < l-indistinguishable, respectively.

1If X = {A, B} is a separation of the underlying undirected graph, i.e. there are no edges
from A r B to B r A and no edges from B r A to A r B, we choose X+ and X− arbitrary.
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If {A,B} is a separation of minimum possible order that distinguishes τ and τ ′,
then {A,B} distinguishes τ and τ ′ efficiently.

Finally, we define the tree-like structure distinguishing tangles obtained in [51].
Given a set T of tangles in a digraph G, let us say that a triple L := (L, β, γ) of
an (undirected) tree L and two maps β : V (L)→ T and γ : E(L)→ S(G) is a
tree-labelling of T if L satisfies the following two properties:

(TL1) β is a bijection and

(TL2) for any two distinct nodes t, t′ of L and the unique path P between them,
the separation γ(e) distinguishes β(t) and β(t′) efficiently for every edge e
of P , as long as e satisfies that γ(e) has minimum possible order among
all separations associated to P , i.e. |γ(e)| = min{|γ(e′)| : e′ ∈ E(P )}.

Note that this definition implies that, given any edge e of T , the separation
γ(e) is a minimum order distinguisher for the images under β of the end vertices
of e. In particular there are, for every e ∈ E(L), tangles for which γ(e) is an
efficient distinguisher.

Now Theorem 4.2.1 states that, given any set T of pairwise distinguishable
tangles, we can always find a tree-labelling for this set of tangles. A major step
in the proof of Theorem 4.2.1 from [51] is the following intermediate result, which
essentially allows one to prove Theorem 4.2.1 via an inductive argument:

Theorem 4.2.2 ([51, Theorem 6.3]). Let T be a set of tangles of order > l in
a digraph G which are pairwise l-distinguishable but < l-indistinguishable. Then
there is a T -tree-labelling (L, β, γ) of G such that |γ(e)| = l for all e ∈ E(L).

In the following, we are going to see how this result can actually be obtained
from a corresponding version of our splinter Lemma 10. The challenge here lies
in that, at least for the natural definition of declaring two unoriented directed
separations {A,B} and {C,D} as nested if and only if they are nested as set
separations, a tree-labelling does not give a nested set of separations. Moreover,
with the natural partial order originating from set separations, they will also not
form a universe of separations. Thus, we will not be able to use Lemma 10 as it
is stated in Section 4.1 to prove Theorem 4.2.2. Instead, we are going to see in
the next section that Lemma 10 can actually be formulated in a more general
context with the exact same proof. This variation of Lemma 10 will then be
applicable to obtain Theorem 4.2.2.

4.2.2 Abstracting Lemma 10 away from separation sys-
tems

As said above, the directed separations of a digraph do not form a universe
of separations if equipped with the natural partial order for set separations as
defined in Section 2.8. This is due to the fact that we can not guarantee that
there are corners for any two oriented directed separations. In fact, we can only
guarantee this for one of the two pairs of opposing corners: if given two directed
separations X and Y then (X+ ∪ Y +, X− ∩ Y −) and (X+ ∩ Y +, X− ∪ Y −) will
again give directed separations which will form one pair of opposite corners of
X and Y , however neither (X+ ∪ Y −, X− ∩ Y +) and (X+ ∩ Y −, X− ∪ Y +) will
in general be directed separations.
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Hence, if we want to apply Lemma 10 in a directed setting, we would either
need to come up with a different definition of a partial order on the directed
separations, for which they do form a universe of separations, or we need to
generalize the statement of Lemma 10 in order to be able to apply it to structures
other than universes of separations. As it turns out, both the statement and
proof of our splinter Lemma 10 can be formulated purely in terms of unoriented
abstract separations and the nestedness relation between them. Consequently,
we can define a more general structure encoding a set of unoriented separations
together with a nestedness relation on them and can then obtain a version of
Lemma 10 for these more general structures, i.e. a version of Lemma 10 which
does not reference a universe of separations at all.

For this, let A be any finite set, and let ∼ be a reflexive and symmetric
relation on A. We will think of ∼ as the relation of ‘being nested’; i.e. we will be
able to obtain Lemma 10 from the more general version of the splinter lemma
proved in this section as a simple corollary by applying it to our universe U of
unoriented separations as our set A and taking as ∼ the nestedness relation on
this set.

We now need to define what a ‘corner’ in this more general setup should be.
Since a central ingredient of our proof of Lemma 10 is the fish Lemma 2.3.1,
we will incorporate that lemma into our definition of corner. So let us say that
given two elements a, a′ ∈ A, a corner of a and a′ is any element b ∈ A with
the property that b ∼ c for all c ∈ A satisfying both a ∼ c and a′ ∼ c. In other
words, a corner of a and a′ is an element of A that is nested with all those
elements of A that are nested with both a and a′. In particular, unlike for the
classic definition of a corner between two abstract separations in a universe, both
a and a′ themselves are valid corners of a and a′.

This definition is actually all we need in order to define what splinters should
mean in our more abstract setup: given a finite set A together with a reflexive
symmetric relation ∼ on A, we say that a family A = {A1, . . . ,An} of subsets
Ai of A splinters if, for any ai ∈ Ai and any aj ∈ Aj , we have that there is a
corner b of ai and aj which is either contained in Ai and satisfies b ∼ aj , or is
contained in Aj and satisfies b ∼ ai. This means that for any two elements ai
and aj from Ai and Aj there should be a corner of these two which is contained
in one of the two sets Ai and Aj and is nested with the element aj or ai from
the other of the two. Note that, if ai and aj are nested, i.e. ai ∼ aj , then we
can always take one of the two as the required corner, thus it is enough to verify
the splinter condition for elements ai and aj which are not nested, i.e. which do
not satisfy ai ∼ aj .

Our more general version of Lemma 10 now reads as follows:

Lemma 12 (Abstract Splinter Lemma). Let A be a finite set and let ∼ be a
reflexive and symmetric relation on A. Let A = {A1, . . . ,An} be a family of
subsets of A which splinters. Then there is a set N = {a1, . . . , an} ⊆ A such
that ai ∈ Ai for every 1 6 i 6 n and such that a ∼ a′ for any a, a′ ∈ N .

We can prove Lemma 12 in exactly the same way as Lemma 10, for the
reader’s convenience we nevertheless include a proof here:

Proof of Lemma 12. We proceed by induction on n. The assertion clearly holds
for n = 1. So suppose that n > 1 and that the above assertion holds for all
smaller values of n.
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Suppose first that we can find some 1 6 i 6 n and an ai ∈ Ai so that ai is
nested with at least one element of Aj for each j 6= i, i.e. for every j 6= i there is
an aj ∈ Aj such that ai ∼ aj . Then the assertion holds: for j 6= i let A′j be the
set of those elements aj of Aj that are nested with ai, i.e. satisfy ai ∼ aj . Then
(A′j : j 6= i) is a family of non-empty sets which splinters by the definition of a
corner: if, aj ∈ A′j and ak ∈ A′k for some j, k 6= i, then ai ∼ aj and ai ∼ ak and
thus any corner b of aj and ak satisfies b ∼ ai. Hence, (A′j : j 6= i) splinters
because (Ai : 1 6 i 6 n) did. Thus, by the induction hypothesis we can pick a
set N ′ = {aj ∈ A′j : j 6= i} so that any two a, b ∈ N satisfy a ∼ b. Therefore,
N = N ′ ∪ {ai} is as required, as we have that a ∼ b for any two a, b ∈ N and
that N meets every Ai.

To conclude the proof it thus suffices to find an ai as above. To this end, we
apply the induction hypothesis to A1, . . . ,An−1 to obtain a set N ′ consisting of
some a1, . . . , an−1 which satisfy aj ∼ ak for all 1 6 j, k 6 n−1. Fix an arbitrary
an ∈ An. For all i < n, we have by our splinter condition that there either is a
corner of an and ai contained in An or that there is a corner contained in Ai. If
for some i we find a corner b between ai and an that is contained in An, this
ai is the desired separation for the above argument, as ai ∼ aj whenever j 6= i
and j 6= n and moreover ai ∼ b and b ∈ An. Otherwise, for each i < n, there
is a corner bi between ai and an contained in Ai, thus we can apply the above
argument to an, as an ∼ bi for all 1 6 i 6 n− 1.

We now want to use Lemma 12 to obtain a proof of Theorem 4.2.2. For that
let us define, given a set T of tangles of order > l in a digraph G which are
pairwise l-distinguishable but < l-indistinguishable, the set A as the set of all
directed separations of order l and let us define, for τ, τ ′ ∈ T as Aτ,τ ′ the set of
all those directed separations from A which efficiently distinguish τ and τ ′.

We then want to apply Lemma 12 to the family A = {Aτ,τ ′ : τ, τ ′ ∈ T }.
For this, we need to do define a relation ∼ on A, in such a way that on the one
hand, the family A splinters with respect to ∼ and on the other hand, the set N
of separations which we obtain from Lemma 12 allows us to obtain the desired
tree-labelling for Theorem 4.2.2. As it turns out, the following relation will do
exactly this.

Given a set T of tangles of a digraph, we say that two unoriented directed
separations {A1, B1}, {A2, B2} are nested with respect to T or T -nested, denoted
as {A1, B1} ∼T {A2, B2}, if the following holds:

(1) all tangles in T orient both {A1, B1}, {A2, B2}, and

(2) there are orientations (A1, B1) and (A2, B2) of {A1, B1}, {A2, B2} such
that either every tangle in T containing (A1, B1) also contains (A2, B2) or
every tangle containing (A2, B2) also contains (A1, B1).

An equivalent definition can be obtained as follows: any unoriented directed
separation {A,B} which is oriented by all tangles in T gives a bipartition
{TA, TB} of T by defining TA as the set of all tangles from T containing (B,A)
and TB as the set of all tangles from T containing (A,B). Now two unoriented
directed separations {A1, B1} and {A2, B2} which are oriented by all tangles in
T are nested with respect to T precisely if the two bipartitions of T induced
by {A1, B1} and {A2, B2} are nested with respect to the usual definition of
nestedness for bipartitions.
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This relation of being T -nested is clearly reflexive and symmetric. Let us
now see that the family A = {Aτ,τ ′ : τ, τ ′ ∈ T } defined above indeed splinters
with respect to this relation. Note that the following lemma uses the definition
of a corner in the setup of our nestedness relation.

Lemma 4.2.3. Let T be a set of tangles of order > l in a digraph G which are
pairwise l-distinguishable but < l-indistinguishable. Let X1 and X2 be directed
separations such that |X1| = |X2| = l. Suppose that X1 distinguishes τ1, τ

′
1 ∈ T

whereas X2 distinguishes τ2, τ
′
2 ∈ T . Then either X1 and X2 are nested with

respect to T or there is a corner of X1 and X2 which has order l and distinguishes
τ1 and τ ′1 or τ2 and τ ′2.

Proof. LetX1 = (A1 → B1) andX2 = (A2 → B2). Let us suppose thatX and Y
are not nested with respect to T . Thus, there are tangles τaa, τab, τba, τbb in T such
that (B1, A1), (B2, A2) ∈ τaa, (A1, B1), (B2, A2) ∈ τba, (B1, A1), (A2, B2) ∈ τab
and (A1, B1), (A2, B2) ∈ τbb. Now both (A1∩A2, B1∪B2) and (A1∪A2, B1∩B2)
are again directed separations. If one of the two, say (A1 ∩A2, B1 ∪B2) would
have order less than l, then, by the definition of a tangle, (B1∪B2, A1∩A2) ∈ τaa,
but (A1 ∩ A2, B1 ∪ B2) ∈ τbb contradicting the fact that τaa and τbb are < l-
indistinguishable. Thus, both (A1 ∩A2, B1 ∪B2) and (A1 ∪A2, B1 ∩B2) have
order exactly l.

Now the bipartition of T induced by (A1 ∩ A2, B1 ∪ B2) is one of the four
corners of the corresponding bipartitions of T induced by (A1, B1) and (A2, B2):
a tangle τ ∈ T contains (A1 ∩A2, B1 ∪B2) if and only if the tangle contains one
of (A1, B1) and (A2, B2). Thus, every separation Z which is T -nested with X
and Y is also T -nested with both (A1 ∩A2, B1 ∪B2) and (A1 ∪A2, B1 ∩B2).

Now let us assume that one of (A1∩A2, B1∪B2) and (A1∪A2, B1∩B2) also
distinguishes τ1 and τ ′1, say (A1 ∩A2, B1 ∪B2) does so. Then (A1 ∩A2, B1 ∪B2)
and (A2, B2) are nested with respect to T and thus (A1 ∩ A2, B1 ∪ B2) is the
desired corner.

If on the other hand neither (A1 ∩ A2, B1 ∪ B2) nor (A1 ∪ A2, B1 ∩ B2)
distinguish τ1 and τ ′1 then both τ1 and τ ′1 need to contain (A1 ∩ A2, B1 ∪ B2)
and (B1 ∩B2, A1 ∪A2). Thus, by the definition of a tangle, neither τ1 nor τ ′1 can
contain both (A1, B1) and (A2, B2) or both, (B1, A1) and (B2, A2). Thus, as
(A1, B1) distinguishes τ1 and τ ′1, one of the two, say τ1, needs to contain (A1, B1)
and (B2, A2) whereas the other one needs to contain (B1, A1) and (A2, B2).
Thus, (A2, B2) distinguishes τ1 and τ ′1. But this implies that (A2, B2) is the
desired corner.

We now have all the ingredients needed to use Lemma 12 to prove The-
orem 4.2.2.

Proof of Theorem 4.2.2. For any two tangles τ1 6= τ2 ∈ T , let Aτ1,τ2 be the set
of all unoriented directed separations which efficiently distinguish τ1 and τ2, and
let A =

⋃
τ1,τ2∈T Aτ1,τ2

By Lemma 4.2.3 the family A of all these sets Aτ1,τ2 splinters with respect
to the relation ∼T on A of being nested with respect to T . Thus, by Lemma 12,
there is a set N of directed separations which meets all the Aτ1,τ2 such that any
two separations from N are T -nested. Let us now see how we can use this set
N to obtain a tree-labelling for T .
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For this let us assume that N is ⊆-minimal with the property that N meets
every Ai. Let us take T as the vertex set of our tree L, and consequently let
the map β be the identity. We add an edge e between τ and τ ′ if and only if
|N ∩ Aτ,τ ′ | = 1. In that case, we let γ(e) be the unique separation in N ∩ Aτ,τ ′ .
Additionally, we shall define a map ρ from the set of orientations of the edges
of L, i.e. from the set E(L) := {(v, w) : {v, w} ∈ E(L)} to the set of oriented
separations in N , which maps the edge (τ, τ ′) to the orientation of the separation
in N ∩ Aτ,τ ′ contained in τ ′.

Let B be the set of bipartitions of T induced by the directed separations in
N , i.e. for every directed separation (A,B) with {A,B} ∈ N , we add to B the
bipartition (Aτ , Bτ ) = ({τ ∈ T : (B,A) ∈ τ}, {τ ∈ T : (A,B) ∈ τ}). Since N
is a set consisting of separations which are pairwise T -nested, the set B consists
of bipartitions which are pairwise nested for the usual definition of nestedness of
bipartitions. Moreover, T naturally induces a set O of consistent orientations
of B: given τ ∈ T we orient every bipartition in B towards the side containing
τ . Since N is a ⊆-minimal set distinguishing all the tangles in T , the set B is
⊆-minimal with the property that it distinguishes all the orientations in O for
the usual definitions for bipartitions.

Let (T, α) be the order-respecting B-tree (T, α) from Corollary 2.6.5. Then
V (T ) equals O and, given a directed edge (O,O′) ∈ E(T ), we have that α(O,O′)
is the unique bipartition in B which distinguishes O and O′. Thus, L is isomorphic
to (T, α) via the isomorphism µ mapping a tangle in T to the orientation in
O it induces. Moreover, given any directed edge (τ, τ ′) from L, the separation
ρ(τ, τ ′) induces the bipartition α(µ(τ), µ(τ ′)).

However, this isomorphism clearly implies that L is a tree and that our
construction indeed gives a tree-labelling: given any two tangles τ, τ ′ and an
edge e on the path between them, we can consider the corresponding edge e′
on the path between µ(τ) and µ(τ ′) in T and know that the bipartition α(e′)
distinguishes µ(τ) and µ(τ ′). Consequently, so does the directed separation ρ(e)
and consequently, the undirected separation γ(e) corresponding to ρ(e) does so
as well.

In the next section we are going to develop an abstract version of these
directed separations and are going to see that the ideas of this proof will actually
allow us to obtain a version of Theorem 4.2.1 in this even more abstract setting.

4.2.3 Abstract directed separation systems
As said in the previous sections, the separations of a digraph are not covered from
our usual notions of abstract separation systems inside a universe of separations.
This is why, in this section, we are going to develop a directed generalization of
abstract separation systems which does cover the separations of a digraph as an
instance. We prove a corresponding version of a tree-of-tangles-type theorem
for these directed analogue which in particular allows us to obtain a proof of
Theorem 4.2.1 as a corollary.

Unlike the separations of an undirected graph, the separations {A,B} of a
digraph come with a natural ‘direction’ (A→ B). To encode this in our abstract
theory, our directed separation system will be the union of two sets, which in
the instance of directed separations {A,B} of a digraph correspond to the set of
all the oriented separations of the form (A→ B) and the set of all the oriented
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separations of the form (B ← A). So let us say that a directed separation system
is a poset S = S ∪ S together with an order reversing involution ∗ : S → S
such that, for s ∈ S we have s := s∗ ∈ S, and vice versa. Note that we do not
require the two sets S and S do be disjoint, nevertheless it is easy to see that the
involution ∗ gives a bijection between S and S. We will usually denote elements
of S as s if we do not want to specify whether they lie in S or S.

Given such a directed separation system, we denote, given a separation s ∈ S
the pair {s, s} just as s and the set of all these pairs as S. The elements of S
are then also called unoriented directed separations. Conversely, given a subset
N of S we denote as N the set of all s ∈ S such that s ∈ N . Analogously we
define N and N .

If a directed separation system U is such that U and U are both lattices,
then we say that U (or U) is a directed universe of (directed) separations.

Given a directed separation system S , an orientation of S is a set O ⊆ S
such that for every s ∈ S we have that |O ∩ {s, s}| = 1.

Such an orientation O is consistent if there do not exist any two distinct
separations s, t ∈ O such that s∗ 6 t.

Given a directed universe U , some separation system S ⊆ U , and some
consistent orientation P of S , we say that P is a profile of S if for any s, t ∈ S ∩P
we have that (s ∨ t)∗ /∈ P and for any s, t ∈ S ∩ P we have that (s ∨ t)∗ /∈ P .

A separation s ∈ S is small if s 6 s∗. A profile P is regular if there is no
separation s ∈ P such that s∗ is small.

A natural notion of structural submodularity for these directed separation
systems now is the following: a directed separation system S ⊆ U is structurally
submodular if for any two r, s ∈ S , we have that r ∨ s ∈ S or r ∧ s ∈ S . Note
that this implies that also, for any r, s ∈ S, we have that r ∨ s ∈ S or r ∧ s ∈ S,
since ∗ is an order reversing involution.

Similarly, there is a natural definition of a submodular order function: a
function f : U → N is called an order function if f symmetric in that f(s) = f(s)
for all s ∈ U . It is called submodular if f(s) + f(t) > f(s ∨ t) + f(s ∧ t) for any
two s, t ∈ U . Note that this together with the fact that f is symmetric implies
that f(s) + f(t) > f(s ∨ t) + f(s ∧ t) for all s, t ∈ U .

Given a submodular order function on a directed universe U , the set
Sk = {s ∈ U : f(s) < k} is a structurally submodular directed separation sys-
tem. In that case we say that a profile P of Sk is a k-profile in U , and that P is
a profile in U if P is a k-profile for some integer k.

We can now, given a set of profiles P of a directed separation system S ,
generalize the above defined notion of P-nestedness for separations of a digraph
to arbitrary directed separation systems: we say that two unoriented directed
separations s and t from S are P-nested if there are orientation s and t of s and t
such that either every profile in P containing s also contains t, or every profile in
P containing t also contains s. A set of separations is called P-nested if any pair
of separations from that set is P-nested. We remark that this definition, just like
the corresponding definition of P-nestedness for separations of a digraph, can
also be formulated in terms of the induced bipartitions of P: given an oriented
directed separation s ∈ S , this separation naturally induces a bipartition of P
into the two sets Ps := {P ∈ P : s ∈ P} of those profiles containing s and
Ps := {P ∈ P : s ∈ P} of those profiles containing s. Now two unoriented
directed separations are nested precisely if the bipartitions of P induced by their
orientations are nested for the usual notion of nestedness of bipartitions.
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Given two profiles P and P ′ of potentially distinct directed separation systems
inside the same universe U , a separation s ∈ U distinguishes P, P ′ if there exists
an orientation s of s such that s 6= s∗, and s ∈ P but s∗ ∈ P ′. If U happens
to be a universe with a submodular order function, then s distinguishes P
and P ′ efficiently if s has minimum possible order among all separations in U
distinguishing P and P ′.

An example of a universe U of directed separations is the set S(G) of directed
separations of a digraph as defined in Section 4.2.1. This can be seen by defining
U as the set of all the directed separations (A→ B) of G and U as the set of all
the directed separations (A← B) of G2, and declaring (A,B) 6 (C,D) if and
only if A ⊆ C and D ⊇ B. The involution on U is given by (A→ B)∗ = (B ← A)
and (B ← A)∗ = (A→ B), for any separation (A→ B) ∈ U and any separation
(B ← A) ∈ U . Moreover, both U and U are indeed lattices which can be
seen from the fact that, given two separations (A → B), (C → D) ∈ U , both
((A ∪ C)→ (B ∩D)) and ((A ∩ C)→ (B ∪D)) are again directed separations.
In this setting a separation (A,B) is small precisely if B = V (G).

A natural submodular order function on this universe U = S(G) is given
by defining |(A,B)| := |A ∩B|. Consequently, if we let Sk (G) be the set of
all directed separations of order at most k in U , this gives us a structurally
submodular directed separation system inside U . Moreover, it is easy to see
that if τ is a k-tangle of G as in the definition above, i.e. τ does not contain any
three separations (A1, B1), (A2, B2), (A3, B3) such that A1 ∪ A2 ∪ A3 = V (G),
then τ is a regular k-profile in U .

Another example of a directed separation system is given by an ordinary
abstract separation system S . If we set S = S and define the involution on
S := S ∪ S = S the same as the involution on the abstract separation system S ,
then this S forms a directed separation system. Moreover, with this translation
also the concept of universes, profiles and (structurally) submodularity translates
from the classical notions for abstract separation systems to the corresponding
notions for our newly defined directed separation systems. In that sense, these
new definitions of directed separation systems and universes generalize the
existing theory of abstract separation systems.

We are now ready to use the exact same proof strategy as in our proof of
Theorem 4.2.2 using Lemma 12 to obtain a similar statement in the setting of a
directed separation system:

Theorem 4.2.4. Let U be a directed universe with a submodular order function,
let k, l ∈ N such that l < k and let P be a set of profiles of Sk such that any two
profiles in P are efficiently distinguished by a separation of order l. Then there
exists a set N ⊆ S of separations which is P-nested and distinguishes any two
profiles in P efficiently.

Proof Sketch. For distinct profiles P, P ′ ∈ P, let AP,P ′ be the set of all separa-
tions from Sk efficiently distinguishing P and P ′ and note that these separations
all have order exactly l.

As in the proof of Lemma 4.2.3, we can show that the family A of all theses
AP,P ′ splinters. For this suppose we are given s ∈ AP,P ′ and t ∈ AQ,Q′ which

2if (A, B) is a separation of the underlying undirected graph, i.e. there are no cross edges
from A r B to B r A and no cross edges from B r A to A r B, then (A, B) shall be contained
in both, U and U , which is covered by our definition, as we do not require the two sets U and
U to be disjoint
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are not P-nested. If either s ∈ AQ,Q′ or t ∈ AP,P ′ then s or t is the desired
corner separation of s and t. Otherwise, either one of P and P ′ contains both
s and t, or one of them contains both s and t. Moreover, as s and t are not
P-nested, there are profiles P1 and P2 in P such that s, t ∈ P1 and s, t ∈ P2.
Since P1 and P2 cannot be distinguished by a separation of order less than l,
this implies, by submodularity, that both s ∨ t and s ∧ t need to have order
l. But then one of these two separations is the corner required for the splinter
condition.

Thus, by Lemma 12, there is a set N ⊆ S with the desired properties.

We remark that the exact same proof would actually allow us to obtain a
slightly stronger result. Namely, we could in the setup of Theorem 4.2.4 define a
set N ⊆ S of separations to be strongly P-nested if for every two separations
s, t ∈ N either s 6 t, or t 6 s, or there are no profiles P, P ′ ∈ P such that
s, t ∈ P and s, t ∈ P ′. We note that this property commutes with ∗ and hence
that we also have for any s, t ∈ N that either s 6 t, or t 6 s or there does not
exist profiles P, P ′ ∈ P such that s, t ∈ P and s, t ∈ P ′.

Moreover, if s and t are strongly P-nested, then s and t are also P-nested.
But conversely, if s and t are P-nested, this may be the case just because there
is no profile in P containing s and t. Thus, it is possible that s and t are not
strongly P-nested as we do not find orientations s, t of s and t such that s 6 t
or t 6 s and there are profiles P, P ′ ∈ P such that s, t ∈ P and s, t ∈ P ′.

The proof of Theorem 4.2.4 actually allows us to deduce that there always
exists a strongly P-nested set of separations efficiently distinguishing any two
profiles in P in the above setup.

However, the property of being strongly P-nested is only slightly stronger
than the property of being P-nested. Since we also do not have a use case for
this stronger theorem, we preferred to work with the more natural notion of
P-nestedness, since that relation corresponds nicely to the nestedness relation of
the induced bipartitions of P.

Now it would be nice if we could show that, for a given set of profiles P
of a structurally submodular directed separation system, we can always find a
P-nested set of separations which distinguish all the profiles in P. However, as
we will see in a moment, it is in generally not possible to find such a set. A
necessity to find such a set would be a positive answer to the following question:

Question 4.2.5. Let U be a directed universe, let S ⊆ U be structurally
submodular and let P be a set of profiles of S. Does there exist a separation
s ∈ S which distinguishes some pair of profiles in P such that, for any two
profiles P,Q ∈ P which are not distinguished by s, there exists a separation
t ∈ S which distinguishes P and Q and is P-nested with s?

Moreover, actually any statement about distinguishing the profiles of a
structurally submodular directed separation system in some sort of ‘tree-like’
way the author could think of would imply a positive answer to Question 4.2.5.

But unfortunately, the general answer to Question 4.2.5 is ‘no’, as we shall
see in Example 4.2.6. Thus, it seems like the notion of directed structurally
submodularity is too weak to be able to distinguish profiles in some sort of
‘tree-like’ way.
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Example 4.2.6. Consider the system of directed bipartitions of a set of 8 points
depicted in Fig. 4.3:

Figure 4.3: Each directed separation is represented by a coloured line, and the
arrow on that line represents the direction for which that separation is contained
in S .

It is easy to calculate that this system is indeed a structurally submodular
directed separation system.

Moreover, each of the 8 points of the ground set induces a directed profile of
the separation system, let us denote as P the set of these 8 profiles. Now, for
each separation in S there is a pair of profiles in P for which that separation is
the only one distinguishing that pair of profiles. As moreover no separation in
S is P-nested with all the other separations in S, this example shows that we
cannot find a separation s as in Question 4.2.5.

In light of this example, it seems difficult to obtain any useful theorems about
structurally submodular directed separation systems. Therefore, we are instead
going to work for the rest of this section with directed separation systems Sk
induced by a submodular order function.

However, it will not be necessary for us to restrict ourselves to a set of profiles
P of one fixed such Sk. Instead, we will be able to work with profiles of some
universe U with a submodular order function, i.e. we do not require our profiles
to all be k-profiles for the same k. Thus, while we are, in a way, not able to
obtain a directed analogue of Theorem 1.1.3, we can prove, in some sense, a
non-canonical directed analogue of Theorem 1.1.2.

For the rest of this section suppose that we are given some directed universe
U with a submodular order function. Since we want to work with profiles of
different orders, we need to come up with a variation of our notion of P-nestedness
which can deal with a set P containing profiles of different order. Recall that
P-nestedness is only defined for separations which are oriented by all profiles
in P.

Luckily, it is possible to define a notion of nestedness with respect to a set P
of profiles of different orders, such that the sets AP,P ′ of separations efficiently
distinguishing the pair P, P ′ of profiles from P will indeed splinter with respect
to that relation. Moreover, this relation will still be strong enough to allow us
to use, when applied to the directed separations of a digraph, the set N from
our splinter lemma to obtain the tree-labelling from Theorem 4.2.1.

So, for the rest of this section, let P be a set of pairwise distinguishable
profiles in our directed universe U and note that the profiles in P do not need
to all be profiles of the same separation system Sk .

Let us define when two separations s and t from U are weakly P-nested. This
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definition will make a case distinction depending on the relation between the
order of s and t. If |s| < |t|, then we say that s and t are weakly P-nested if
there exists an orientation s of s such that any two profiles P and Q from P
which are < |s|-indistinguishable and are distinguished by t do not both contain
s.

If |s| = |t|, then we say that s and t are weakly P-nested if there are
orientations s and t of s and t such that there is no pair of profiles P and Q
from P which are < |s|-indistinguishable and distinguished by s where P and
Q both contain t and, analogously, there is no pair of profiles P and Q from P
which are < |s|-indistinguishable and distinguished by t where P and Q both
contain s.

A set of separations is weakly P-nested if every pair of separations from that
set is weakly P-nested.

We observe that if all profiles in P are profiles of the same separation system
Sk, then any set of separations of order less than k which is nested with respect
to P is also weakly P-nested. However, not every pair s, t of separations which
is weakly P-nested with respect to such a set P of profiles need to be P-nested,
as the definition of weak P-nestdness of s and t only takes those pairs of profiles
from P into account which are < min{|s|, |t|}-indistinguishable.

We now want to prove the following:

Theorem 13. If P is a set of distinguishable profiles in a directed universe U ,
then there exists a weakly P-nested set of separations which efficiently distin-
guishes every two profiles from P.

For this, we first need a lemma which gives us a characterization of when
two separations of the same order are not weakly P-nested:

Lemma 4.2.7. Given two separations s, t ∈ U , if |s| = |t|, then s and t are not
weakly P-nested precisely if there are four profiles Ps,t , Ps,t , Ps,t , Ps,t in P which
are pairwise < |s| indistinguishable and which satisfy x, y ∈ Px,y for x ∈ {s, s}
and y ∈ {t, t}.

Proof. It is easy to see that the existence of such four profiles implies that s and
t are not weakly P-nested.

So suppose for the other direction that s and t are not weakly P-nested.
Then, after potentially renaming s and t, there is a pair of profiles Ps,t , Ps,t
which is < |s|-indistinguishable such that s, t ∈ Ps,t and s, t ∈ Ps,t , and there is
a pair of profiles Ps,t , Ps,t which is < |s|-indistinguishable such that s, t ∈ Ps,t
and s, t ∈ Ps,t .

If these profiles are not pairwise < |s|-indistinguishable, then there is a
separation r ∈ U such that |r| < |s| and r distinguishes one of the profiles
Ps,t , Ps,t from one of the profiles Ps,t , Ps,t . Since Ps,t , Ps,t and Ps,t , Ps,t are
< |s|-indistinguishable and |r| < |s|, this implies that there is an orientation r
of r such that r ∈ Ps,t , Ps,t and r∗ ∈ Ps,t , Ps,t .

Then however, we can consider the pair {r ∨ t, r ∧ t} of separations, and
observe that one of these two separations has order < |t| = |s| by submodularity.
This separation of order less than |t| then needs to distinguish Ps,t from Ps,t or
Ps,t from Ps,t by the definition of a profile. This contradicts the fact that these
two pairs are each < |t|-indistinguishable.
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In order to be able to use Lemma 12 to prove Theorem 13, we need to show
that the family of the sets AP,P ′ of separations efficiently distinguishing the pair
P, P ′ of profiles in P weakly splinters with respect to P. For this we will need
some analogue to the fish Lemma 2.3.1, i.e. we need to find a separation which
can be used as a corner of two separation s and t which are not weakly P-nested.
We want to take as such a separation one of the two separation s ∨ t and s ∧ t.
Thus, we want to show that this separation, at least in the cases where we need
to find a corner of s and t, is P-nested with all separations which are P-nested
with s and t. As our definition of when two separations r and s are P-nested
depends on the relation between the orders of r and s, we will, in order to show
this, need to distinguish some cases. Our first lemma guarantees that, given two
separations s and t such that |s| 6 |t|, a separation from {s ∨ t, s ∧ t} is still
weakly P-nested with all those separations of order higher than the order of t.

It will turn out that it is enough to show this in the case where the separation
from {s ∨ t, s ∧ t} actually has the same order as t.

Lemma 4.2.8. Let r, s, t ∈ U such that |s| 6 |t| 6 |r| and s and t are both
weakly P-nested with r. Let c ∈ {s ∨ t, s ∧ t} such that |c| = |t|, then there
is an orientation c of c such that any two profiles P , Q from P which are
< |c| = |t|-indistinguishable and are distinguished by r do not both contain c.

Proof. There are orientations s and t of s and t witnessing that they are both
weakly P-nested with r. If c has an orientation c such that c > s or c > t,
say c > s, then clearly there cannot be two profiles P and Q in P which are
< |c|-indistinguishable, distinguished by r and both contain c: both P and Q
would then by consistency also need to contain s which contradicts the fact that
s witnesses that s and r are weakly P-nested.

So we may suppose that c has an orientation such that c = s∧ t, in particular
either s = s and t = t, or s = s and t = t. Let us suppose without loss of
generality the first of the two, thus c = c = s ∧ t. We claim that c is the desired
orientation of c.

Otherwise, there is a pair P,Q of profiles in P that is < |c| = |t|-indistinguish-
able, distinguished by r, and satisfies c ∈ P,Q. Thus, by the profile property,
s ∈ P or t ∈ P , and s ∈ Q or t ∈ Q. We may suppose that, after potentially
changing the roles of P and Q, we have that s ∈ P and t ∈ Q, but s ∈ P and
t ∈ Q: neither can both P and Q contain s as s witnesses that s and r are
weakly P-nested, nor can they both, by the same reason, contain t.

This implies that |s| = |t| since P and Q are < |t| indistinguishable. Thus, we
may suppose without loss of generality that r ∈ P and r ∈ Q, as r distinguishes
P and Q. Now since |s| = |t|, we may consider the profiles Ps,t , Ps,t ∈ P from
Lemma 4.2.7, and claim that P,Q, Ps,t , Ps,t are pairwise < |s|-indistinguishable.
Otherwise, there is a separation u such that |u| < |s| and u has an orientation u
such that u ∈ P,Q and u∗ ∈ Ps,t , Ps,t . But then, by submodularity, one of the
two separations u ∨ s and u ∧ s has order less than |s| and, by the definition of
a profile, distinguishes P from Q or Ps,t from Ps,t , which is a contradiction.

Thus, either r ∈ Ps,t or r ∈ Ps,t . In the first case, Ps,t together with
Q contradicts the assumption that t witnessed that t and r are weakly P-
nested, whereas r ∈ Ps,t would result in Ps,t together with P contradicting the
assumption that s witnessed that s and r are weakly P-nested.

Thus, there cannot be such profiles P and Q and thus c = c is as claimed.
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The next three lemmas are needed to show a corresponding statement for
separations r of order at most the order of t.

The first one will allow us to deduce in some cases that, if r is weakly P-nested
with both s and t, then we may assume that there is one orientation of r which
witnesses that r is weakly P-nested with both s and t.

Lemma 4.2.9. Let r, s, t ∈ U be separations such that |r| 6 |s| 6 |t|. Suppose
that s and t are not weakly P-nested, s and t are both weakly P-nested with r,
and there is a pair P,Q of profiles which is efficiently distinguished by t and not
distinguished by s. Then there is an orientation r of r such that there is no pair
of profiles P1, P2 from P which is < |r|-indistinguishable and distinguished by
one of s and t such that both P1 and P2 contain r.

Proof. Since P and Q are not distinguished by s, they both contain the same
orientation of s, say s. Since s and t are not weakly P-nested, there needs to
be another pair P ′, Q′ of < |s|-indistinguishable profiles which is distinguished
by t, say because of t ∈ P ′ and t ∈ Q′, and which both contain s∗. Our general
prove strategy will be to show that the four profiles P,Q, P ′, Q′ are all pairwise
< |s|-indistinguishable. This will then imply that they all four need to orient
r, and since r is weakly P-nested with s and t, we will then be able to analyse
which orientation of r they need to contain, which will yield the claim.

So let us suppose without loss of generality that t ∈ P and t ∈ Q.
We claim that P,Q, P ′, Q′ are pairwise < |s| indistinguishable. Indeed, if u

is a separation of order less than |s| which distinguish some of the two, then
there is, as P,Q and P ′, Q′ are pairwise < |s|-indistinguishable, an orientation
u such that u ∈ P,Q and u∗ ∈ P ′, Q′. Thus, there is a corner of u and t which
either contradicts the fact that P and Q are < |t|-indistinguishable or the fact
that P ′, Q′ are < |s| indistinguishable.

Now all four profiles P,Q, P ′, Q′ orient r. Thus, if |r| < |s| we are already
done: then they all need to contain the same orientation of r, say r∗. Thus,
r∗ can neither witness that r and s are weakly P-nested, nor that r and t are
weakly P-nested. Thus, r will need to witness both, which yields the claim.

So suppose in the following that |r| = |s|. Let us denote the orientation of r
contained in P as r. Now if r ∈ Q′, then this would imply that r can neither
witness that r and s are weakly P-nested, nor that r and t are, as P and Q′ are
< |r|-indistinguishable and distinguished by s and t. Thus, r∗ would need to
witness both, and would thus be the desired orientation of r. So suppose that
r∗ ∈ Q′.

Now either r ∈ P ′ or r∗ ∈ P ′. In the first case, we observe that then r∗ needs
to be the orientation of r which witnesses that r and s are weakly P-nested.
Since Q and Q′ are also distinguished by s, this then implies that also r ∈ Q.
Since Q and P ′ are distinguished by t, this then implies that r∗ also witnesses
that r and s are weakly P-nested, and is thus again the required orientation of r.

In the second case, r∗ ∈ P ′, we observe that, since t distinguishes P ′ and Q′,
the separation r needs to be the orientation of r which witnesses that r and t
are weakly P-nested. Thus, as before, since P and Q are also distinguished by t
we observe that r∗ ∈ Q. Hence, as P ′ and Q are also distinguished by s we note
that r needs to be the orientation of r which witnesses that r and s are weakly
P-nested. Therefore, r is the required orientation of r.

We can now use this lemma to show that, given two separations s and t, in
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some cases a separation from {s ∨ t, s ∧ t} will by weakly P-nested with those
separations r which are weakly P-nested with s and t and have an order between
the order of s and t.

Lemma 4.2.10. Let s, r, t ∈ U be separations such that |s| 6 |r| 6 |t|, s and t
are both weakly P-nested with r, and t efficiently distinguishes a pair P,Q of
profiles from P not distinguished by s. Let c ∈ {s ∨ t, s ∧ t} such that |c| = |t|,
then there is an orientation r of r such that any two profiles P , Q from P which
are < |r|-indistinguishable and are distinguished by c do not both contain r.

Proof. There is an orientation r of r witnessing that r and t are weakly P-nested.
We claim that this orientation is the required orientation of r. Otherwise, there
is a pair P ′, Q′ of < |r|-indistinguishable profiles that are distinguished by c and
both contain r. Since this pair is distinguished by c, but not distinguished by t,
the profiles P ′ and Q′ are, by the definition of a profile, distinguished by s, thus
|s| = |r|.

Since |s| = |r| and s and r are, by assumption, weakly P-nested, we thus
also find an orientation of r witnessing that r and s are weakly P-nested. By
Lemma 4.2.9, this orientation needs to be r as well. But this contradicts the
choice of P ′, Q′ since they both contain r and are distinguished by s. Thus, r is
the required orientation of r.

Finally, we can show that also those separations r of order less than the
order of s and t that are weakly P-nested with s and t will in some cases also
be weakly P-nested with the chosen separation from {s ∨ t, s ∧ t}. This lemma
actually follows directly from Lemma 4.2.9:

Lemma 4.2.11. Let s, r, t ∈ U be separations such that |r| 6 |s| 6 |t|, s and t
are both weakly P-nested with r, and t efficiently distinguishes a pair P,Q of
profiles from P not distinguished by s. Let c ∈ {s ∨ t, s ∧ t} such that |c| = |t|,
then there is an orientation r of r such that any two profiles P , Q from P which
are < |r|-indistinguishable and are distinguished by c do not both contain r.

Proof. There are orientations of r which witness that r is weakly P-nested with
s and t. By Lemma 4.2.9, these orientations needs to coincide and equal r, say.
Thus, r is clearly the desired orientation of r, by the definition of a profile.

We are now ready to prove the main Theorem 13 of this section:

Proof of Theorem 13. We consider, for P, P ′ ∈ P, the set AP,P ′ of those unori-
ented directed separations efficiently distinguishing P and P ′. We want to show
that the family of these AP,P ′ splinters with respect to relation of being weakly
P-nested. In order to do so, let s ∈ AP,P ′ , t ∈ AQ,Q′ , and suppose that |s| 6 |t|
and that s and t are not weakly P-nested.

If s distinguishes Q and Q′, then we can take s ∈ AQ,Q′ as the required
corner of s and t. So we may suppose that there is an orientation s of s such
that s ∈ Q,Q′. Let us assume that s = s, the case s = s is symmetric.

Let us now first consider the case that |s| < |t|. Since s and t are not weakly
P-nested, there needs to be a pair Qs , Q′s of profiles which are < |s|-indistinguish-
able such that s ∈ Qs , Q′s and t ∈ Qs, and t ∈ Q′s. If |s ∧ t| < |s|, then this
separation s ∧ t would, by the profile property and consistency, also distinguish
Qs and Q′s and would thus contradict the assumption that these two profiles
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are < |s|-indistinguishable. Thus, |s ∧ t| > |s| and therefore, by submodularity,
|s∨ t| 6 |t|. Consequently, s∨ t also distinguishes Q and Q′ and thus |s∨ t| = |t|
as Q and Q′ are < |t|-indistinguishable. Hence, s ∨ t is contained in AQ,Q′ and
by the Lemmas 4.2.8, 4.2.10, and 4.2.11 the separation s ∨ t is weakly P-nested
with all separations r which are weakly P-nested with both s and t. Thus, s ∨ t
is the desired corner.

Now if |s| = |t|, there either are again profiles Qs , Q′s as above, and we
can perform the same argument, or we can perform the same argument after
changing the roles of s and t.

Thus, by the splinter Lemma 12 there exists a weakly P-nested set N of
directed separations which meets all AP,P ′ , i.e. which efficiently distinguishes all
the profiles from P.

So given a directed universe U with a submodular order function, we can
distinguish all the profiles in P with such a weakly P-nested set. However,
what we actually want to have is a tree-like structure which distinguishes the
profiles, like the tree-labellings for digraphs. So let us now see how we can
construct such a structure from a weakly P-nested set. The underlying principle
of this structure will be the one of an S-tree, except that S now will be a set of
unoriented directed separations.

Given a directed separation system S , an S -tree3 consists of a tree T together
with a map α from the set E(T ) of the directed edges of T to the separations
in S such that α(v, w) = α(w, v)∗ for every edge (v, w) ∈ E(T ). Given a set P
of distinguishable profiles in a directed universe U , a U -tree (T, α) is for P if
there exists a bijection β : V (T ) → P with the following property: given any
two nodes v, w in V (T ) and the directed path vTw between v and w in T , we
consider the set α(vTw) := {α(w1, w2) : (w1, w2) ∈ vTw}. We require that,
given any separation s ∈ α(vTw) of minimal possible order, this separation
efficiently distinguishes β(v) from β(w), and it does so such that s ∈ β(w) and
s∗ ∈ β(v).

Let us now see how we can, given a directed universe U , a set P of distin-
guishable profiles in U and a weakly P-nested set of directed separations which
efficiently distinguishes P, construct a U -tree for P.

Theorem 4.2.12. Let U be a directed universe with a submodular order function,
P a set of pairwise distinguishable profiles in U , and let N be a weakly P-nested
set of separations that efficiently distinguishes any two distinguishable profiles in
P. Then there is a U -tree T for P such that the image of α is contained in N .

Proof. We may assume without loss of generality that the weakly P-nested set
N is chosen ⊆-minimal with the property that it efficiently distinguishes any
two distinguishable profiles in P efficiently.

We define our U -tree T as follows: let V (T ) = P. Now for every s ∈ N , we
add a single edge to T as follows. We pick an arbitrary pair of profiles P,Q in P
which in N is efficiently distinguished by s only, add an edge between P and Q
and define α(P,Q) = s, for the orientation s of s contained in Q. Consequently,
we then set α(Q,P ) = s∗, and note that s∗ ∈ P . Since N is chosen ⊆-minimal,
there need to exist, for every separation s ∈ N , a pair of profiles from P such

3We denote this object as S -tree instead of S-tree, to highlight that we are working with a
tree in the context of directed separation systems instead of an S-tree for an abstract separation
system S.
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that s is the only separation efficiently distinguishing that pair. Thus, in our
construction we add exactly one edge for every separation from N .

First, we need to show that T is a tree. For this we define, given k ∈ N an
equivalence relation ∼k on P by declaring that P ∼k Q if and only if P and Q
induce the same profile of Sk+1 , i.e. the restriction P �k of P to all separations
of order at most k equals Q�k.

We now show inductively that every contraction Tk = T/ ∼k is a tree, where
this contraction, in principle, may contain multiple edges. Thus, E(Tk) contains
precisely all those directed edges e from E(T ) for which α(e) has order at most k.

For the induction start, observe that α(e) has order 0 for every directed edge
e in T0. Let us denote the image of E(T0) under α as N0 , this equals to the set of
all separations of order 0 from N . Each separation s in N0 defines a bipartition
(P 0
s , P

0
s ) of P0 = {P |0 : P ∈ P} into the class P 0

s = {P ∈ P0 : s ∈ P} of those
profiles containing s and the class P 0

s = {P ∈ P0 : s ∈ P} of those profiles
containing s∗.

We observe that the set N0 is actually P0-nested, not just weakly P0-nested,
i.e. that these bipartitions need to be nested in the usual way for a system of
bipartitions: given s, t ∈ N0 there are orientations s and t of s and t which
witness that they are weakly P0-nested. This implies that there either is no
profile in P0 contain s and t, or no profile in P0 contain s and t∗ or no profile
in P0 containing s∗ and t which shows that the bipartitions of P0 induced by s
and t are nested in the usual way for bipartition.

Moreover, no two of the bipartitions induced by different s, t ∈ N0 can
coincide, since N was chosen ⊆-minimal.

Let us denote as B0 the set of all oriented bipartitions of P0 induced by one
of the separations in N0 , and note that B0 equals a usual separation system
of bipartitions of a set. Since every separation in N0 distinguishes some two
profiles, all the bipartitions in B0 are regular.

Every profile P ∈ P0 induces a consistent orientation of B0 by orienting every
bipartition in B0 towards the side containing P . Note that these orientations are
distinct for distinct profiles in P0. Let us denote as O0 the set of all the consistent
orientations of B0 induced by a profile in P0. As N was chosen ⊆-minimal, the
set B0 is a ⊆-minimal set of bipartitions which distinguishes all the orientations
in O0. Thus, by Corollary 2.6.5, there is an order-respecting B-tree (T ′, α′) such
that T ′ equals O0 and the image of α′ corresponds exactly to B0 . As there is a
natural bijection between O0 and P0, let us suppress this bijection and assume
that the vertex set of T ′ equals exactly P0.

We claim that the edge set of T ′ equals the edge set of T0 = T/ ∼0. Indeed,
by the construction in Corollary 2.6.5, T ′ contains an edge between two profiles
P and Q in P0 if and only if the bipartition α′(P,Q) is the only bipartition in
B0 distinguishing the orientations in O0 corresponding to P and Q. This is the
case precisely if N0 contains only one directed separation distinguishing P and
Q. Conversely, for any two profiles which are not adjacent in T ′, there are at
least two distinct bipartitions in B0 which distinguish the orientations in O0
corresponding to P and Q and thus P and Q are also distinguished by at least
two separations in N0.

Now since T0 contains an edge between two profiles only if these two are
distinguished by only one separation from N0, and conversely we contain one
such edge for each separation from N0, this implies that T0 contains an edge
between two profiles precisely if T ′ does. Moreover, the separations mapped to
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the orientated edges of T0 (by α) and T ′ by α′) coincide, i.e. for any P,Q ∈ P0
we have that the bipartition corresponding to α(P,Q) needs to equal α′(P,Q).
In particular, T0 is a tree as claimed.

For the induction step, let us denote, given a k-profile P ∈ P as PP the set
of (k + 1)-profiles in P which induce P . It is enough to show that, for every
such set PP , the subgraph induced by PP on Tk+1 is a tree, as Tk+1 is obtained
from Tk by expanding each node of Tk which corresponds to a k-profile P in P
by that subgraph.

We first observe that for every separation s in N , there is at most one
k-profile P in P such that s efficiently distinguishes profiles from PP : suppose s
distinguishes some (k + 1)-profiles P1, P2 ∈ PP efficiently, and at the same time
distinguish some (k + 1)-profiles Q1, Q2 ∈ PQ efficiently, for distinct profiles P
and Q from P . Since N distinguish all profiles from P from another, N contains
a separation t that efficiently distinguishes P and Q. Moreover, as P and Q
induce distinct profiles in P �k, this separation t has order at most k. Thus, s
and t cannot be weakly P-nested by definition, which contradicts the fact that
all separations from N are pairwise weakly P-nested.

Thus, for Pk the set of k-profiles induced by a profile in P , we can partition the
set Nk+1 of separations of order k+1 from N into the sets NP of those separations
efficiently distinguishing some two profiles form PP , i.e. Nk+1 =

⋃
P∈Pk NP for

NP = {s ∈ Nk+1 : s distinguishes two profiles P ′, P ′′ ∈ PP }.
Now given any k-profile P from P, the set NP again induces a nested set of

bipartitions of PP , and, exactly as in the induction start, we can show that the
subgraph of T induced on PP is a tree, again using the separation system of the
induced bipartitions and Corollary 2.6.5. Thus, T is indeed a tree.

Let us now see that for any two nodes P,Q in V (T ), any separation
s ∈ α(PTQ) of minimal possible order efficiently distinguishes P from Q, and
does so such that s ∈ Q and s∗ ∈ P . For this we note that either P and Q
induce distinct profiles in P0, or there needs to be some k ∈ N such that P and
Q induce the same profile Pk in Pk. If they induce distinct profiles in P0, they
correspond to distinct nodes in T0, and any edge on the path between P and Q
which corresponds to a separation of order 0 is also contained in T0. Since the
separations in T0 correspond to the bipartitions in (T ′, α′), any separation along
the directed path from P to Q distinguishes P and Q, and does so such that, for
(v, w) ∈ PTQ, the separation α(v, w) is contained in Q. If on the other hand P
and Q induced the same k-profile Pk, but distinct profiles of order (k + 1), then
we can perform the exactly same argument as above inside the subtree of Tk+1
induced on PPk .

Now Theorem 13 and Theorem 4.2.12 together imply Theorem 4.2.1.

Proof of Theorem 4.2.1. Since every tangle is a regular profile, Theorem 13
and Theorem 4.2.12 together imply that we find a U -tree T for T so that the
image of α is contained in N . Let us denote the bijection between T and T given
by that tree as β. Let us define a map γ : E(T )→ S(G) by letting γ(e) be the
unoriented separation corresponding to {α(e), α(e)}, for e, e the two orientations
of e. Then (T, β, γ) is the desired tree-labelling.
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4.3 A canonical tree-of-tangles theorem for struc-
turally submodular separation systems

4.3.1 Introduction
In this section we present the following canonical version of Theorem 1.1.3:

Theorem 14. Let S be a structurally submodular separation system and P
a set of profiles of S. Then there is a nested set N = N(S ,P) ⊆ S which
distinguishes P. This N(S ,P) can be chosen canonically: if ϕ : S → S′

is an isomorphism of separation systems and P ′ := {ϕ(P ) : P ∈ P} then
ϕ(N(S ,P)) = N(S′,P ′).

There are some technical subtleties in the formulation of Theorem 14 due to
the fact that neither the profile property nor structural submodularity need be
preserved by isomorphisms of separation systems. To avoid these difficulties, we
obtain Theorem 14 by first establishing the following more general but somewhat
more technical result, which slightly weakens the definitions of submodularity
and profiles in order to make them compatible with such isomorphisms:

Theorem 4.3.1. Let S be a separation system and P a collection of con-
sistent orientations of S such that S is P-submodular. Then there is a nes-
ted set N = N(S ,P) ⊆ S which distinguishes P. This N(S ,P) can be
chosen canonically: if ϕ : S → S′ is an isomorphism of separation systems
and P ′ := {ϕ(P ) : P ∈ P}, then ϕ(N(S ,P)) = N(S′,P ′).

Theorem 14 is then an immediate corollary of Theorem 4.3.1.
This section is structured as follows: in Section 4.3.2 we introduce the new

definition required for Theorem 4.3.1 and show that Theorem 14 indeed is an
immediate corollary of Theorem 4.3.1. In Section 4.3.3 we prove Theorem 14
and Theorem 4.3.1.

4.3.2 Submodularity with respect to a set of profiles
The first hurdle to overcome when aiming for a canonical version of Theorem 1.1.3
is to pin down what exactly ‘canonical’ ought to mean. At first glance this is
obvious: the construction of the nested set N shall use only invariants of S
and P, that is, properties which are preserved by isomorphisms of separation
systems. This approach, however, runs into a subtle difficulty: the definitions of
both structural submodularity and profiles depend on S being embedded into
an ambient universe of separations, whose existence Theorem 1.1.3 implicitly
assumes. An isomorphism ϕ : S → S′ of separation systems, though, need not
preserve such an embedding, which leads to the undesirable situation that a
construction isomorphic to that of N in S could be carried out in S′, even
though Theorem 14 may not be directly applicable to S′ due to differences in
their embeddings into ambient lattices.

To make our canonical version of Theorem 1.1.3 as widely applicable as
possible, and to keep the definition of canonicity as straightforward and clean as
possible, we must therefore tweak the assumptions of structural submodularity
and profiles of S in such a way that they no longer depend on any embedding into
a universe of separations, and are themselves invariants of isomorphisms between
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separation systems. This is made possible by the following observation: the proof
of Theorem 1.1.3 makes use of the assumptions that S is submodular and P
a set of profiles solely to deduce that whenever some r and s in S distinguish
some two profiles in P, then either their meet or their join (as provided by the
ambient lattice) is contained in S and likewise distinguishes that pair of profiles.

For our canonical Theorem 4.3.1 we will thus eliminate the need for an
ambient universe by asking of S and P that they have this property, with the
meets or joins now being taken directly in the poset S . Expressed solely in
terms of S and P, this ‘richness’ property is then preserved by isomorphisms
of separation systems, independently of any embeddings into lattice structures.
This solves the minor problem in the formulation of Theorem 14 of S′ not
meeting the assumption of the theorem despite being isomorphic to a separation
system which does. Theorem 14 is then obtained as a corollary of Theorem 4.3.1.

Let S be a separation system and P a set of consistent orientations of S .
Recall that given a set M ⊆ S of oriented separations, an element r ∈ S
is an infimum of M in S if r 6 s for each s ∈ M and additionally r > t
whenever t ∈ S is such that t 6 s for all s ∈ M . Dually, an element r ∈ S
is a supremum of M in S if r > s for each s ∈ M and additionally r 6 t
whenever t ∈ S is such that t > s for all s ∈M . In general a set M ⊆ S need
not have such an infimum or supremum in S .

Given two separations r and s in S we denote the infimum and supremum
of {r, s} in S by r ∧ s and r ∨ s, respectively, if those exist. Observe that
(r ∨ s)∗ = r ∧ s.

If r and s have a supremum r ∨ s in S , and every P ∈ P containing both r
and s also contains r ∨ s, then we call r ∨ s a P-join of r and s in S . Dually we
call r ∧ s a P-meet of r and s if (r ∧ s)∗ ∈ P for each P ∈ P containing both r
and s.

Finally, we say that S is P-submodular if every two crossing separations r
and s in S have a P-join or P-meet in S . For the remainder of this section we
assume S to be P-submodular.

Observe that P-submodularity is preserved by isomorphisms of separation
systems: if ϕ : S → S′ is an isomorphism and P ′ := {ϕ(P ) : P ∈ P}, then S′
is P ′-submodular. Using this notion of submodularity we can therefore meaning-
fully express canonicity in the context of Theorem 1.1.3.

Note, however, that we are not assuming the elements of P to be profiles
of S : this is precisely because we prove Theorem 4.3.1 without an ambient lattice
structure, which would be necessary to define profiles. Therefore, Theorem 4.3.1
improves on Theorem 1.1.3 not only by offering a canonical way of constructingN ,
but also by being applicable to an even larger number of separation systems.

Before getting to the proof of Theorem 4.3.1 itself, let us demonstrate that
it is in fact a strengthening of Theorem 1.1.3 by showing that Theorem 4.3.1
implies Theorem 14. The following lemma does just that by proving that in the
setting of Theorem 1.1.3 the assumptions of Theorem 4.3.1 are satisfied:

Lemma 4.3.2. Let S be a structurally submodular separation system inside some
universe U of separations and P a set of profiles of S . Then S is P-submodular.

Proof. We must show that any r and s in S have a P-meet or P-join. So
let r and s in S be given. Since S is structurally submodular, it contains the
infimum r ∧ s or the supremum r ∨ s of r and s in U . Let us assume the latter;
the other case is dual. Then r ∨ s is also the supremum of r and s as taken in S .
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Moreover, by the profile property, every P ∈ P containing both r and s also
contains r ∨ s, making this a P-join of r and s in S .

4.3.3 Proof of Theorem 14 and Theorem 4.3.1
In this section we will prove Theorem 14 and Theorem 4.3.1. To this end, for
the remainder of this section let S be a separation system and let P be a set of
consistent orientations of S such that S is P-submodular.

As usual, an important tool in our proof of Theorem 4.3.1 is the fish
Lemma 2.3.1. Since Lemma 2.3.1 is formulated in the context of a separa-
tion system that is contained in a universe of separations, we need to prove our
own version of this lemma:

Lemma 4.3.3 (See also Lemma 2.3.1,[21, Lemma 3.2]). Let r, s ∈ S be two
crossing separations in S and let t ∈ S be a separation that is nested with
both r and s. Given orientations r and s of r and s such that there exists a
supremum r ∨ s of r and s in S , the separation r ∨ s is nested with t. The same
is true for r ∧ s.

Proof. If t has an orientation t such that t 6 r or t 6 s, then clearly t 6 (r ∨ s).
Otherwise, since r and s cross, there must be an orientation t of t such that
r 6 t and s 6 t. Thus, by the fact that r ∨ s is the supremum of r and s in S ,
we have that (r ∨ s) 6 t.

Let us say that a separation s ∈ S is exclusive (for P) if it lies in exactly
one orientation in P. If P ∈ P is the orientation containing an exclusive
separation s, then we might also say that s is P -exclusive (for P). Observe that
if r is P -exclusive for P, then so is every s ∈ P with r 6 s.

For each P ∈ P let MP consist of the maximal elements of the set of all P -
exclusive separations. Equivalently, MP is the set of all maximal elements of P
that are exclusive for P.

Our strategy for proving Theorem 4.3.1 will be to canonically pick nested
P -exclusive representatives of all orientations P ∈ P that contain exclusive
separations, then discard from P and S all those orientations P for whom
we selected a representative and all those separations not nested with these
representatives, respectively. Iterating this procedure will yield the canonical
nested set.

In order for this strategy to work we must ensure that the sets MP are not
all empty. Our first lemma addresses this:

Lemma 4.3.4. If P and S are non-empty, then some MP is non-empty.

In the case of S being submodular in some universe of separations U and
P being a set of profiles of S , the existence of exclusive separations and
thus Lemma 4.3.4 is actually an immediate consequence of Theorem 1.1.3:
if N ⊆ S is a nested set which distinguishes P, and each element of N distin-
guishes some pair of profiles in P, then any maximal element of N is exclusive
for P. In other words, the separations labelling the incoming edges of leaves of
the tree associated with N are exclusive. (See [22] for the precise relationship
between nested sets and trees.)

However, since we are working with the more general notion of S being
P-submodular, we give an independent proof of Lemma 4.3.4.
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Proof of Lemma 4.3.4. If P consists of only one orientation the assertion is
trivial since S is non-empty. For |P| > 2 we show the following stronger claim
by induction on |P|:

If |P| > 2 there is for each P ∈ P a separation that is exclusive but
not P -exclusive for P.

For the base case |P| = 2 observe that any separation distinguishing the two
orientations in P has two exclusive orientations, one in each element of P.

Suppose now that |P| > 2 and that the claim holds for all non-singleton proper
subsets of P. Let P ∈ P be the given fixed orientation and set P ′ := P r {P}.
By the induction hypothesis applied to P ′ and an arbitrary orientation in P ′
there is an exclusive separation r for P ′, contained in some Q ∈ P ′. Applying
the induction hypothesis again to P ′ and Q yields another separation s that is
exclusive for P ′ and lies in some Q′ ∈ P ′ with Q 6= Q′.

If r or s is also exclusive for P, then we are done. So suppose not, that is,
suppose we have r, s ∈ P . Then r 6= s, and hence r and s must be incomparable
by the consistency of Q and Q′. If r 6 s, then s is Q-exclusive for P . Moreover,
s 6 r is not possible by the consistency of P . Thus, we may assume that r and s
cross.

By P-submodularity of S , there is a P-join or a P-meet of r and s in S ;
by symmetry we may assume that there is a P-join (r ∨ s) ∈ S . Since s is Q′-
exclusive, we have s ∈ Q and hence (r ∨ s) ∈ Q by the fact that r ∨ s is the
P-join of r and s. From (r ∨ s) > r we infer that r ∨ s is Q-exclusive for P ′.
Moreover, we cannot have (r ∨ s) ∈ P : it would be inconsistent with s ∈ P as r
and s cross.

Therefore, r ∨ s is exclusive but not P -exclusive for P.

We remark that, in the case of a submodular separation system S inside
a universe of separations and a set P of profiles, the stronger assertion used
for the induction hypothesis in this proof, too, can be established immediately
using Theorem 1.1.3: for |P| > 2 the tree associated with the nested set N ⊆ S
distinguishing P has at least two leaves, and hence some leaf for which the
separation labelling its incoming edge does not lie in the fixed profile P .

Returning to the proof of Theorem 4.3.1, let us find a way to canonically pick
representatives of those P ∈ P with non-empty MP in such a way that these
representatives are nested with each other. For the ‘canonically’-part of this we
will make use of the fact that the sets MP themselves are invariants of P and S .
For the nestedness we start by showing that separations from different MP ’s
cannot cross at all:

Lemma 4.3.5. For P 6= P ′ all r ∈MP and s ∈MP ′ are pairwise nested.

Proof. Suppose some r ∈ MP and s ∈ MP ′ cross. By P-submodularity of S ,
there is a P-join r ∨ s or a P-meet r ∧ s in S ; by symmetry we may suppose
that (r ∨ s) ∈ S . Then P , too, contains this separation since s ∈ P . But r ∨ s
is also P -exclusive and strictly larger than r, a contradiction.

It is possible, however, that the set MP itself is not nested. In fact the
elements of MP all cross each other, unless P = {P}: any r and s in MP

that are nested must point towards each other by maximality. But every other
orientation in P contains both r and s and would then be inconsistent. If we
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want to represent a P ∈ P with non-empty MP by an element of MP , we are
therefore limited to picking at most one element of MP . However, there is no
canonical way of singling out an element of MP to be the representative of P ; we
must therefore find another way of choosing an invariant P -exclusive separation,
using MP only as a starting point.

For this we will show that each MP has an infimum in S and that this
infimum is again P -exclusive:

Lemma 4.3.6. Let P ∈ P with MP 6= ∅ and P 6= {P} be given. Then MP

has an infimum sP in the poset S , and sP is P -exclusive for P. Moreover, if
some t ∈ S is nested with MP , then t is also nested with sP .

Proof. Fix an enumeration MP = {r1 , . . . , rn} and some t ∈ S that is nes-
ted with MP . We will show by induction on i that there is an infimum
si := inf{r1 , . . . , ri} in S ; that this infimum is P -exclusive for P; and that
it is nested with t. This then yields the claim for i = n.

The case i = 1 is trivially true, so suppose that i > 1 and that we already
know that the separation si−1 = inf{r1 , . . . , ri−1 } is the infimum of r1 , . . . , ri−1
in S , that it is P -exclusive, and that it is nested with t.

In the case that si−1 = ri we have either si−1 = ri or si−1 = ri . The latter
of these is impossible, since P contains both of the P -exclusive separations si−1
and ri . The former, however, gives that ri is the infimum of r1 , . . . , ri and thus
as claimed by ri ∈MP .

So suppose that si−1 6= ri. Let us first treat the case that ri and si−1 are
nested. Clearly the two cannot point away from each other since P is consistent.
If ri and si−1 are comparable, then one of the two is the infimum of ri and si−1
and thus the infimum of r1 , . . . , ri in S . Since both si−1 and ri are P -exclusive
and nested with t, this infimum is thus as claimed. Finally, if ri and si−1 point
towards each other, we obtain a contradiction: for then their inverses point away
from each other, making every orientation in P other than P inconsistent. Thus,
if ri and si−1 are nested the induction hypothesis holds for si .

Let us now consider the case that ri and si−1 cross. Then there needs
to be a P-join or a P-meet of ri and si−1 . However, we cannot have a P-
join ri ∨ si−1 in S since this join would be P -exclusive and strictly larger
than ri ∈MP . Therefore, there is a P-meet (r ∧ si−1 ) ∈ S . By consistency we
have that si ∈ P . Every orientation in P other than P contains ri as well as si−1
and hence si by the definition of P-meet, which shows that si is P -exclusive.
Finally, by Lemma 4.3.3, si is also nested with t.

It remains to show that after picking as a representative for each P ∈ P
with exclusive separations the infimum of MP , the set of separations in S that
are nested with all these representatives is still rich enough to distinguish all
orientations in P for which we have not yet picked a representative.

For this let S′ ⊆ S be the system of all those separations that are nested
with all MP , and let P ′ ⊆ P be the set of those orientations Q that have
empty MQ. Our next lemma says that if we restrict ourselves to S′, we can still
distinguish P ′:

Lemma 4.3.7. The separation system S′ is P ′-submodular and distinguishes P ′.

Proof. The fact that S′ is P ′-submodular is a direct consequence of Lemma 4.3.3:
it implies that for r and s in S any P-meet or P-join of them in S is contained
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in S′. Since P ′ ⊆ P, this P-join or P-meet is in fact a P ′-join or P ′-meet of r
and s in S′.

To see that S′ distinguishes P ′, let Q and Q′ be distinct orientations in P ′;
we shall show that some s′ ∈ S′ distinguishes them. For this choose a separation
s ∈ S which distinguishes Q and Q′ and which is nested with MP for as many
P ∈ P as possible. If s is nested with all MP we are done; otherwise there is
some P ∈ P for which s crosses some separation in MP .

So suppose that there is a P ∈ P for which s is not nested with MP . Among
all s′ ∈ S which distinguish Q and Q′ and which are nested with each MP ′ with
which s is nested, pick a minimal s′ with s′ ∈ P . We claim that this s′ is nested
with MP , contradicting the choice of s.

To see this, suppose that s′ crosses some r ∈ MP . Then there cannot
exist a P-join of r and s′ in S since this join would be a strictly larger P -
exclusive separation than r. Hence, there is a P-meet r ∧ s′ of r and s′ in S .
By P /∈ {Q,Q′} we have that both Q and Q′ contain r, and hence this separation
r ∧ s′ distinguishes Q and Q′ as well: one of the two orientations contains s′
and thus also r ∧ s′ by consistency. The other contains both s′ and r and thus
also (r ∨s′) = (r ∧s′)∗ by the fact that r ∧s′ is the P-meet of r and s′ . However,
by Lemma 4.3.3 and Lemma 4.3.5, this r ∧ s′ would be nested with each MP ′

with which s was nested, while being strictly smaller than s′ , a contradiction.

If MP is non-empty let us write sP for its infimum in S as in Lemma 4.3.6.
We are now ready to prove Theorem 4.3.1 by induction.

Proof of Theorem 4.3.1. We proceed by induction on |P|. If |P| 6 1 there is
nothing to show, so suppose that |P| > 1 and that the assertion holds for all
proper subsets of P.

Recall that S′ ⊆ S consists of all separations in S that are nested with all
sets MQ and that P ′ ⊆ P is the set of all Q ∈ P with empty MQ. Clearly
both S′ and P ′ are invariants of S and P since the sets MQ themselves are
invariants. For each non-empty MQ let sQ be its infimum in S as described
in Lemma 4.3.6. Then

N1 := {sQ : Q ∈ P r P ′}

is clearly a canonical set. From Lemma 4.3.6 we further know that N1 distin-
guishes all orientations in P r P ′ from each other and from each orientation
in P ′.

By Lemma 4.3.5, every element of MP is nested with every element of MP ′

for all P 6= P ′. Applying the ‘moreover’-part of Lemma 4.3.6 twice thus
implies that sP is nested with every element of MP ′ and subsequently with sP ′ .
Therefore, N1 is a nested set. Likewise, every separation in S′ is nested with N1.

Let us apply the induction hypothesis to P ′ in S′, as made possible by the
Lemmas 4.3.4 and 4.3.7, yielding a canonical nested set N2 ⊆ S′ which distin-
guishes P ′. Since S′ and P ′ themselves are invariants of S and P , we have that
the union N1 ∪N2 is the desired canonical nested set.

Proof of Theorem 14. By Lemma 4.3.2, given a structurally submodular separa-
tion system S and a set P of profiles of S, we know that S is P-submodular.
Thus, Theorem 14 follows from Theorem 4.3.1.
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4.4 Trees of tangles in infinite separation sys-
tems

4.4.1 Introduction
In Section 4.1 we introduced the ‘splinter lemma’, a unified lemma which implies
the known tree-of-tangles theorems for finite separations systems. The merit
of this lemma lies in the fact that, while it is strong enough to imply all these
results, the proof of the lemma is simple, and its assumptions are easy to check.

Lemma 10 (Splinter Lemma). Let U be a universe of separations and let
A = (Ai)i6n be a family of subsets of U. If A splinters, then we can pick an
element ai from each Ai so that {a1, . . . , an} is nested.

Lemma 10, in a sense, is yet another step in a series of abstractions in the
theory of tangles: rather than working with the tangles themselves, it operates
just on the collection of sets of separations distinguishing a given pair of these.

Recall that Lemma 10 is proved by induction: it finds a separation ai ∈ Ai
which is nested with some element of every other Aj , and then proceeds in-
ductively on the remaining n−1 family members, restricted to those separations
nested with ai. This approach cannot deal with infinite families of sets, however.

In this section of this thesis we overcome these difficulties and present a way
to obtain a version of Lemma 10 for infinite families of sets of separations which
is as abstract and therefore as widely applicable, as our original Lemma 10 and
which allow us to deduce the existing tree-of-tangles theorems in infinite graphs
(see [9, 14]). It asks more of the sets Ai than our finite splinter lemma; in return
however the set of separations we obtain will be canonical, i.e. invariant under
isomorphisms:

Lemma 15. If (Ai : i ∈ I ) thinly splinters with respect to some reflexive
symmetric relation ∼ on A :=

⋃
i∈I Ai, then there is a set N ⊆ A which meets

every Ai and is nested, i.e. n1 ∼ n2 for all n1, n2 ∈ N . Moreover, this set N
can be chosen invariant under isomorphisms: if ϕ is an isomorphism between
(A,∼) and (A′,∼′), then we have N((ϕ(Ai) : i ∈ I )) = ϕ(N((Ai : i ∈ I ))).

After stating some additional terminology as well as some basic facts in
Section 4.4.2, we prove this statement in Section 4.4.3. Like Lemma 10, the
statement of this lemma is a bit technical, as we want it to be as widely applicable
as possible. We then show the usefulness of this abstract lemma throughout
Section 4.4.4, by deducing the existing theorems about distinguishing tangles in
infinite graphs from it.

As a simple example, we start with applying it to tangles in locally finite
graphs. This application is straightforward and demonstrates a prototypical
application of Lemma 15.

After that, we show that it is also possible to apply Lemma 15 to arbitrary
infinite graphs. This application uses another new, and interesting, shift of
perspective: as in Section 4.2, we cannot apply Lemma 15 directly to the sets of
separations efficiently distinguishing two profiles since, in general, these do not
splinter thinly. Instead, we need to consider a slightly different set, namely, the
set of separators, to which Lemma 15 does apply:
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Theorem 16. Given a set of distinguishable robust regular profiles P of a graph
G there exists a canonical nested set of separators efficiently distinguishing any
pair of profiles in P.

This theorem acts as an intermediary result between the existing results
about tangles in arbitrary infinite graphs. On the one hand we can, waiving
canonicity, transform the nested set of separators back into a nested set of
separations, recovering the following result of Carmesin about distinguishing
tangles in infinite graphs by way of a nested set of separations:
Theorem 4.4.1 ([9, Theorem 5.12]). For any graph G, there is a nested set N
of separations that distinguishes efficiently any two robust principal profiles (that
are not restrictions of one another).

This theorem is a cornerstone in Carmesin’s proof that every infinite graph
has a tree-decomposition displaying all its topological ends. For more about the
relation between ends and tangles also see [19, 59]. We deduce Theorem 4.4.1
from Theorem 16 in Section 4.4.4.

On the other hand, if we want to keep canonicity, we can use Theorem 16
to deduce a result by Carmesin, Hamann and Miraftab [14]. They construct a
canonical object, which they call a tree of tree-decompositions, to distinguish
the tangles:
Theorem 4.4.2 ([14, Remark 8.3]). Let G be a connected graph and P a
distinguishable set of principal robust profiles in G. There exists a canonical tree
of tree-decompositions with the following properties:

(a) the tree of tree-decompositions distinguishes P efficiently;

(b) if t ∈ V (T ) has level k, then (Tt,Vt) contains only separations of order k;

(c) nodes t at all levels have |V (Tt)| neighbours on the next level and the graphs
assigned to them are all torsos of (Tt,Vt).

We deduce Theorem 4.4.2 from Theorem 16 in Section 4.4.4.
Theorem 16 is also an interesting result in its own right: the set of separators

that it provides is a natural intermediate object between the non-canonical nested
set of separations in Theorem 4.4.1 and the canonical tree of tree-decompositions
in Theorem 4.4.2.

Moreover, proving Theorem 4.4.1 or Theorem 4.4.2 by first proving The-
orem 16 and then deducing them breaks up the proof nicely and is, in total,
shorter than the original proofs from [9,14].

4.4.2 Additional terminology and basic facts
Recall that a profile P in a graph G is regular if it does not contain any co-small
separation of G, i.e. it contains no separation of the form (V (G), X). Note
that, in graphs, the irregular profiles are not of large interest, since they always
point towards either the empty set or a single non-cutvertex. Formally, we can
summarize this statement from [23] as follows:
Lemma 4.4.3 ([23]). Let G = (V,E) be a graph and P an irregular profile in
G then either G is connected and P = {(V, ∅)} or G has a non-cutvertex x ∈ V
such that

P = {(A,B) ∈ S2 : x ∈ B and (A,B) 6= ({x}, V )}.
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These irregular profiles are distinguished efficiently from each other and from
all other profiles in G by the set of separations

{{V (G), ∅}} ∪ {{V (G), {x}} : x ∈ V (G) and x is not a cutvertex of G}.

Every separation in this set is nested with all separations of G. Hence, our
efforts for applications in graphs will concentrate on regular profiles.

Given some set of vertices X ⊆ V (G), we say that a connected component C
of G−X is tight if N(C) = X.

For two vertices x, y ∈ V (G) of a graph G, an x–y-separator of order k is
a vertex set X ⊆ V (G) r {x, y} of size k such that x and y lie in different
components of G − X. We shall need the following basic fact about such
separators in infinite graphs at various points throughout this section.

Lemma 4.4.4 ([56, 2.4]). Let G be a graph, u, v ∈ V (G) and k ∈ N. Then there
are only finitely many separators of size at most k separating u and v minimally.

Additionally, we shall use the following more general observation about
separations from an arbitrary separation system that are nested with a corner
separation:

Lemma 4.4.5. Let r and s be two separations. Every separation nested with
one of r or s is also nested with at least one of r ∧ s and r ∨ s.

Proof. Let t be a separation nested with, say, r. Then t has an orientation t with
either t 6 r or t 6 r. In the first case t is nested with r ∨ s by t 6 r 6 (r ∨ s).
In the latter case t is nested with r ∧ s by t 6 r 6 (r ∧ s)∗.

Moreover, we will use that the separations in a universe of separations with
an order function that distinguish a given pair of profiles exhibit a lattice-like
structure:

Lemma 4.4.6. Let U be a universe with a submodular order function and P
and P ′ two profiles in U . If r, s ∈ P distinguish P and P ′ efficiently, then both
r ∨ s and r ∧ s also lie in P and distinguish P and P ′ efficiently.

Proof. If one of r ∨ s and r ∧ s has order at most |r| = |s|, then that corner
separation lies in P and distinguishes P and P ′ by their consistency and (P).
The efficiency of r and s now implies that neither of the two considered corner
separations can have order strictly lower than |r|. Therefore, by submodularity,
both of them have order exactly |r|, which implies the claim.

Furthermore, we shall need a way to transition between separations and
tree-decompositions in graphs. Such a method in finite graphs if for example
provided in [13]. As it turns out, the ingredients of that proof together with
Theorem 2.6.1 are all that is needed to show an analogous result for infinite
graphs, which we shall present here.

We shall need the following lemma, whose proof is inspired by [13].

Lemma 4.4.7. Let G = (V,E) be an infinite graph and let N ⊆ Sℵ0(G) be a
regular tree set. If we have for any ω-chain (A1, B1) < (A2, B2) < . . . which is
contained in N that

⋂
i∈NBi = ∅, then there exists a tree-decomposition (T,V)

of G whose set of induced separations is N .
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Moreover, this tree-decomposition can be chosen canonical: if ϕ : G → G′

is an isomorphism of graphs, then the tree-decomposition constructed for ϕ(N)
in G′ is precisely the image under ϕ of the tree-decomposition constructed for N
in G.
Proof. Let T = (V,E) be the tree from Theorem 2.6.1. Note that by [52, Theorem
3.9(iii)] any isomorphism between the edge tree sets of two distinct trees induces
an isomorphism of the underlying trees.

Let α be the isomorphism from the edge tree set of T to N . Recall that,
given some node t ∈ T we denote as α(t) the set

α(t) := {α(s, t) : (s, t) ∈ E}

of oriented separations. We define the bags of our tree-decomposition as
Vt :=

⋂
(A,B)∈α(t)B. Let us verify that (T,V) with V = (Vt )t∈T is the desired

tree-decomposition.
For (T1) let v ∈ V be given; we need to find a t ∈ T with v ∈ Vt. If v ∈ A∩B

for some (A,B) ∈ N then v ∈ Vt for t being either of the two end-vertices of the
edge whose image under α is (A,B). Otherwise v induces an orientationO of E(T )
by orienting each edge {x, y} of T as (x, y) if v ∈ B rA for (A,B) = α(x, y).

Observe that O is consistent. If O has a sink, that is, if there is a node t of T
all of whose incident edges are oriented inwards by O, then v ∈ Vt by definition
of O. If O does not have a sink then O contains an ω-chain. This is impossible
though, since by definition of O we would have v ∈

⋂
i∈NBi, where (Ai, Bi) is

the image under α of the i-th element of that ω-chain in O. Thus, (T1) holds.
The proof that (T2) holds can be carried out in much the same way due to

the fact that every edge of G is included in either A or B for each (A,B) ∈ N .
Before we check that (T3) holds, let us show that (T,V) indeed induces N .

For this we need to show that, if (x, y) is an oriented edge of T , then

α(x, y) =

 ⋃
z∈Tx

Vz ,
⋃
z∈Ty

Vz

 ,

where Tx and Ty are the components of T−xy containing x and y, respectively. So
let (x, y) ∈ E be given and α(x, y) = (A,B). Observe first that A∩B ⊆ Vx ∩ Vy
by definition. It thus suffices to show that A ⊇

⋃
z∈Tx Vz and B ⊇

⋃
z∈Ty Vz to

establish the desired equality.
To see this consider a vertex v ∈ Vz for some z ∈ Tx. Let e be the first

edge of the unique z–x-path in T and let α(e) = (A′, B′). We have e 6 (x, y)
by definition of an edge tree set, and hence (A′, B′) 6 (A,B) since α is an
isomorphism. From this we know that A′ ⊆ A. We further have (B′, A′) ∈ Fz
and thus, by definition of Vz, that v ∈ A′. This shows v ∈ A. The argument
that B ⊇

⋃
z∈Ty Vz is similar.

Having established that (T,V) indeed induces N , we can now deduce from
this that (T3) holds: if Vt1 and Vt3 are two bags of (T,V) which both contain
some vertex v, then v also needs to lie in the separator of every separation that
is an image under α of an edge on the path P in T from t1 to t3. Therefore, v
lies in every Vt2 with t2 ∈ P .

We remark that even in locally finite graphs it is not generally possible to
find a tree-decomposition which efficiently distinguishes all the distinguishable
robust regular bounded profiles, as witnessed by the following example:
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Figure 4.4: A locally finite graph where no tree-decomposition distinguishes all
the robust regular bounded profiles efficiently. The green separator is the one of
the only separation which efficiently distinguishes the profile induced by the K64

from the profile induced by the K128.

Example 4.4.8. Consider the graph displayed in Fig. 4.4. This graph is
constructed as follows: for every n ∈ N pick a copy of K2n+2 together with n+ 3
vertices wn1 , . . . , wnn+3. Pick 2n vertices of the K2n+2 and call them un1 , . . . , u

n
2n .

Additionally, pick 2n+1 vertices from K2n+2 , disjoint from the set of uni , and call
them vn1 , . . . , v

n
2n+1 . Now identify un+1

i with vni and add edges between every
wni and every wn+1

j as well as between wni and vn1 = un+1
1 .

Finally, we pick one copy of K10 and join one vertex v0
1 of this K10 to u1

1
and u2

1. Additionally, we pick two vertices w0
1, w

0
2 which are distinct from v0

1
from this K10 and add an edge between each w0

i and each w1
j .

Now each of the chosen K2n+2 induces a robust profile Pn of order 2
3 · 2n+1

which obviously is regular and bounded. The only separation which efficiently dis-
tinguishes Pn and Pn+1 is the separation sn with separator {vi1 : i < n} ∪ {un+1

j }.
Additionally, theK10 induces a robust profile P0 of order 4. However, the only

separation that efficiently distinguishes P0 and P1 has the separator {v0
1 , w

0
1, w

0
2}.

But these separations s1, s2, ..., and s0 can be oriented such as to form a chain of
order type ω+ 1. This chain witnesses that there cannot be a tree-decomposition
which distinguishes all regular bounded profiles efficiently: the separations given
by such a tree-decomposition would have to contain this chain of order type ω+1
which is not possible as every chain in the edge tree set of a tree has length at
most ω, cf. Lemma 4.4.7.

4.4.3 The thin splinter lemma
In this section we generalize the finite splinter lemma into an infinite setting. In
order to be able to obtain a statement like Lemma 10 in the infinite setting, we
will need to require that the separations involved do not, in a sense, cross too
badly in that they cross only finitely many separations of lower order.
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This will allow us to choose separations that minimize the number of separa-
tions crossing them, an idea which also appeared in Carmesin’s original proof of
Theorem 4.4.1 in [9], as well as in [14] and our proof of the canonical splinter
Lemma 11 for finite separation systems. However, our lemma here applies to a
more general setting and will allow us directly to deduce Carmesin’s theorem for
locally finite graphs.

In order to also be able to deduce the full Theorem 4.4.1 for arbitrary graphs,
we will state our lemma in more generality here: not as a lemma about nestedness
and separations, but as a lemma about a general nestedness-like relation, similar
to the version Lemma 12 of our splinter lemma. This allows us to apply the
lemma in Section 4.4.4 not to separations directly, where it would fail, but to
substitute separators as a proxy giving our Theorem 16. From this result we will
retrieve the separations for our proof of Theorem 4.4.1 in Section 4.4.4, but we
will also build from this a tree of tree-decompositions to deduce Theorem 4.4.2
in Section 4.4.4.

The statement of our Lemma 15 is also inspired by our canonical splinter
Lemma 11 for the finite setting, and it too will result in a canonical nested set,
a set which is invariant under isomorphisms.

So let A be some set and ∼ a reflexive and symmetric binary relation on A.
In analogy to our terminology for separation systems, we say that two elements
a and b of A are nested if a ∼ b. Elements of A that are not nested cross. As
usual, a subset of A is nested if all of its elements are pairwise nested, and a
single element is nested with a set N if it is nested with every element of N .

In an abuse of notation, given elements a and b of A, we call c ∈ A a corner
of a and b if every element of A crossing c also crosses one of a and b. Observe
that with this definition corners of elements of A exhibit the same behaviour as
was asserted by Lemma 2.3.1 for corner separations. However, in contrast to
the terminology of separation systems, we do not insist here that a corner of a
and b is itself nested with both a and b. This distinction will become relevant in
Section 4.4.4.

Now let (Ai : i ∈ I ) be a family of non-empty subsets of A and | | : I → N0
some function, where I is a possibly infinite index set. We shall think of |i|
as the order of the elements of Ai. For an a ∈ A and k ∈ N0 the k-crossing
number of a is the number of elements of A that cross a and lie in some Ai
with |i| = k. This k-crossing number is either a natural number or infinity. The
family (Ai : i ∈ I ) thinly splinters if it satisfies the following three properties:

(ST1) For every i ∈ I all elements of Ai have finite k-crossing number for
all k 6 |i|.

(ST2) If ai ∈ Ai and aj ∈ Aj cross with |i| < |j|, then Aj contains some corner
of ai and aj that is nested with ai.

(ST3) If ai ∈ Ai and aj ∈ Aj cross with |i| = |j| = k ∈ N0, then eitherAi contains
a corner of ai and aj with strictly lower k-crossing number than ai, or else
Aj contains a corner of ai and aj with strictly lower k-crossing number
than aj .

We are now ready to state and prove the main result of this section:

Lemma 15. If (Ai : i ∈ I ) thinly splinters with respect to some reflexive
symmetric relation ∼ on A :=

⋃
i∈I Ai, then there is a set N ⊆ A which meets
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every Ai and is nested, i.e. n1 ∼ n2 for all n1, n2 ∈ N . Moreover, this set N
can be chosen invariant under isomorphisms: if ϕ is an isomorphism between
(A,∼) and (A′,∼′), then we have N((ϕ(Ai) : i ∈ I )) = ϕ(N((Ai : i ∈ I ))).

Proof. We shall construct inductively, for each k ∈ N0, a nested set Nk ⊆ A
extending Nk−1 and meeting every Ai with |i| 6 k, so that the choice of Nk is
invariant under isomorphisms. The desired nested set N will then be the union
of all these sets Nk.

We set N−1 := ∅. Suppose that for some k ∈ N0 we have already constructed
a nested set Nk−1 so that Nk−1 is canonical and meets every Ai with |i| 6 k− 1.
We shall construct a canonical nested set Nk ⊇ Nk−1 that meets every Ai
with |i| 6 k.

Let N+
k be the set consisting of the following: for every i ∈ I with |i| = k,

among those elements of Ai that are nested with Nk−1, those of minimum
k-crossing number. We claim that Nk := Nk−1 ∪N+

k is as desired.
Since the choice of N+

k is invariant under isomorphisms, and Nk−1 is canonical
by assumption, Nk is clearly canonical as well. It thus remains to show that Nk
meets every Ai with |i| = k, and that the set Nk is nested.

To see that the former is true, let i ∈ I with |i| = k be given. It suffices to
show that Ai contains some element that is nested with Nk−1. If Ai already
meets Nk−1 there is nothing to show, so suppose that it does not. By (ST1)
every element of Ai crosses only finitely many elements of Nk−1; pick an ai ∈ Ai
that crosses as few as possible. Suppose for a contradiction that ai crosses some
element of Nk−1, that is, some aj ∈ Aj with |j| < |i|. But then, by (ST2), Ai
contains a corner of ai and aj that is nested with aj . This element of Ai does
not cross aj and therefore, by virtue of being a corner of ai and aj , crosses
fewer elements of Nk−1 than ai does, contrary to the choice of ai. Therefore, Nk
indeed contains an element of each Ai with |i| 6 k.

Let us now show that Nk is nested. Since Nk−1 is a nested set by assumption,
and every element of N+

k is nested with Nk−1, we only need to show that the set
N+
k itself is nested. So suppose that some two elements of N+

k cross. These two
elements then are some ai ∈ Ai and aj ∈ Aj with |i| = |j| = k. But now (ST3)
asserts that one of Ai and Aj contains a corner of ai and aj with a strictly lower
k-crossing number than the corresponding element ai or aj . Since both ai and
aj are nested with Nk−1, their corner is nested with Nk−1 as well, and hence
contradicts the choice of ai or aj for N+

k .

4.4.4 Applications of the thin splinter lemma
In this section we are going to apply Lemma 15 to infinite graphs. The application
to locally finite graphs in Section 4.4.4 will be a straightforward application to
a universe of separations, whereas in Section 4.4.4 we are going to use a more
involved argument.

For either case we will utilize the fact that separations which efficiently
distinguish two regular profiles are tight. Recall that for a set X ⊆ V a
component C of G−X is tight if N(C) = X. We say that a separation (A,B)
of G is tight if for X := A ∩ B each of A r B and B r A contains some tight
component of G−X.
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Lemma 4.4.9. Let P, P ′ be two distinct regular profiles in an arbitrary graph
G. If (A,B) is a separation of finite order that efficiently distinguishes P and
P ′, then (A,B) is tight.

Proof. Let (A,B) ∈ P , (B,A) ∈ P ′.
Suppose for a contradiction that BrA does not contain a tight component of

G− (A∩B). Let Y1, . . . Ym be an enumeration of all proper subsets of A∩B. For
every Yl let Cl be the set of components of G− (A∩B) in B with neighbourhood
exactly Yl. By consistency of P ′ we have (

⋃
Cl ∪ Yl, V r

⋃
Cl) ∈ P ′. Since

moreover (A,B) efficiently distinguishes P from P ′ and |Yl| < |A ∩B|, we know
that (

⋃
Cl ∪ Yl, V r

⋃
Cl) ∈ P as well. Moreover, (A ∩ B, V ) ∈ P since P is

regular. Thus, by an inductive application of the profile property (P) we have
that for every l

(A ∩B, V ) ∨ (
⋃
C1 ∪ Y1, V r

⋃
C1) ∨ · · · ∨ (

⋃
Cl ∪ Yl, V r

⋃
Cl) ∈ P.

However, for l = m this contradicts the assumption since

(A∩B, V )∨(
⋃
C1∪Y1, V r

⋃
C1)∨· · ·∨(

⋃
Cm∪Ym, V r

⋃
Cm)) = (B,A) /∈ P .

Locally finite graphs

In this section we apply Lemma 15 to the set of separations of a locally finite
graph, which will result in a canonical nested set of separations efficiently
distinguishing any two distinguishable regular profiles in G. The proof of this
theorem will be a straightforward application of Lemma 15 to sets AP,P ′ of
separations efficiently distinguishing two profiles in G. Following the strategy of
this proof, one might be able to obtain similar results for other infinite separation
systems, e.g., in a matroid.

So let G = (V,E) be a locally finite connected graph and P a set of robust
regular profiles in G.

Let I be the set of pairs of distinguishable profiles in P . For each pair P and
P ′ of distinguishable profiles in P let AP,P ′ be the set of all separations of G
that distinguish P and P ′ efficiently. Observe that by definition all separations
in AP,P ′ are of the same order; let us write |P, P ′| for this order.

Let A be the union of all the AP,P ′ . We wish to show that (Ai : i ∈ I ) thinly
splinters, using as the relation ∼ on A the usual nestedness of separations. We
shall prove first that (ST1) is satisfied, i.e. that each separation in anAP,P ′ crosses
only finitely many other separations from sets AQ,Q′ with |Q,Q′| 6 |P, P ′|.

Making use of the tightness of the separations in the AP,P ′ , (ST1) will follow
immediately from the following assertion:

Proposition 4.4.10. Let (A,B) be a separation that efficiently distinguishes
some two regular profiles in G. Then G has only finitely many tight separations
of order at most |(A,B)| that cross (A,B).

We shall derive Proposition 4.4.10 from the following lemma about tight
separations:
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Lemma 4.4.11. Let (A,B) and (A′, B′) be two tight separations of G. Then
(A′, B′) is either nested with (A,B), or its separator A′ ∩ B′ is a ⊆-minimal
x-y-separator in G for some pair x, y of vertices from (A ∩B) ∪N(A ∩B).

Proof. Since (A′, B′) is tight, each of A′ rB′ and B′ rA′ contains some tight
component of G− (A′∩B′). If A∩B meets all tight components of G− (A′∩B′),
then in particular A ∩B meets these two components, say in x and in y. But
then, A′ ∩B′ is a ⊆-minimal x-y-separator with x, y ∈ A ∩B.

Therefore, we may assume that A ∩ B misses some tight component C ′ of
G− (A′ ∩B′). By switching their names if necessary we may assume that this
component C ′ is contained in Ar B. Since C ′ ⊆ Ar B has no neighbours in
B rA but has A′ ∩B′ as its neighbourhood, we can infer that (A′ ∩B′) ⊆ A.

Consider now a tight component C of G− (A∩B) that is contained in BrA.
From (A′ ∩ B′) ⊆ A it follows that C does not meet A′ ∩ B′ and is hence
contained in either A′ r B′ or B′ r A′. By possibly switching the roles of A′
and B′ we may assume that C ⊆ A′ rB′. As above we can conclude from the
tightness of C that (A ∩B) ⊆ C.

It remains to check two cases. If (BrA)∩ (B′rA′) is empty we have B ⊆ A′
and B′ ⊆ A, that is, that (A′, B′) is nested with (A,B). The other remaining
case is that (B rA) ∩ (B′ rA′) is non-empty.

In that case, sinceG is connected, the set (A∩B)∩(A′∩B′) must be non-empty
as well, sinceN((BrA)∩(B′rA′)) ⊆ (A∩B)∩(A′∩B′). Pick a vertex z from that
set. Since (A′, B′) is tight, z has neighbours x and y in some tight components
of G− (A′ ∩B′) contained in A′rB′ and in B′rA′, respectively. Then A′ ∩B′
is a ⊆-minimal x-y-separator in G, and moreover x, y ∈ (A ∩ B) ∪ N(A ∩ B)
since z ∈ A ∩B.

Let us now use Lemma 4.4.11 to establish Proposition 4.4.10:

Proof of Proposition 4.4.10. Since G is locally finite, the set (A∩B)∪N(A∩B)
is finite. Therefore, by Lemma 4.4.4, there are only finitely many ⊆-minimal
x-y-separators of size at most |(A,B)| with x, y ∈ (A∩B)∪N(A∩B). Leveraging
again the fact that G is locally finite and using that G is connected, we get that
there are only finitely many separations of G with such a separator.

The assertion now follows from Lemma 4.4.11 since we know by Lemma 4.4.9
that (A,B) is tight.

The family (Ai : i ∈ I ) therefore satisfies (ST1). With regard to (ST2) we
can prove the following:

Lemma 4.4.12. Let (A,B) ∈ AP,P ′ and (C,D) ∈ AQ,Q′ with the property
that |(A,B)| < |(C,D)|. Then some corner separation of (A,B) and (C,D) lies
in AQ,Q′ .

Proof. Since |(A,B)| < |(C,D)|, it follows that both Q and Q′ orient {A,B}
the same, say (A,B) ∈ Q ∩Q′. If

|(A,B) ∨ (C,D)| 6 |(C,D)| or |(A,B) ∨ (D,C)| 6 |(C,D)|,

it follows that this corner separation efficiently distinguishes Q and Q′ by
Lemma 2.3.1, so suppose that this is not the case. Then submodularity implies
that

|(B,A) ∨ (C,D)| < |(A,B)| and |(B,A) ∨ (D,C)| < |(A,B)|,
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which in turn contradicts the efficiency of (A,B), since one of (B,A) ∨ (C,D)
and (B,A)∨ (D,C) would also distinguish the two robust profiles P and P ′.

Corollary 4.4.13. If ai ∈ Ai and aj ∈ Aj cross with |i| < |j|, then Aj contains
some corner separation of ai and aj.

Proof. This is the assertion of Lemma 4.4.12.

It remains to show that (Ai : i ∈ I ) satisfies (ST3). For this we need the
following lemma:

Lemma 4.4.14. Let (A,B) ∈ AP,P ′ and (C,D) ∈ AQ,Q′ with |(A,B)| = |(C,D)|.
Then there is either a pair of two opposite corner separations of (A,B) and (C,D)
with one element in AP,P ′ and one in AQ,Q′ , or else there are two pairs of op-
posite corner separations of (A,B) and (C,D), the first with both elements in
AP,P ′ and the second with both elements in AQ,Q′ .

Proof. From |(A,B)| = |(C,D)| it follows that P and P ′ both orient {C,D},
and likewise that Q and Q′ both orient {A,B}.

Let us first treat the case that one of P and P ′ orients both {A,B} and
{C,D} in the same way as one of Q and Q′ does. So suppose that, say, both P
and Q contain (A,B) as well as (C,D).

If P ′ contains (D,C), then (C,D) ∈ AP,P ′ and Lemma 4.4.6 results in
(A,B) ∨ (C,D) ∈ AP,P ′ and (B,A) ∨ (D,C) ∈ AP,P ′ . Thus, by (P) we also
have (A,B) ∨ (C,D) ∈ AQ,Q′ , producing the desired pair of opposite corner
separations. If Q′ contains (B,A), we argue analogously.

So suppose that (C,D) ∈ P ′ and (A,B) ∈ Q′. Then (B,A) ∨ (C,D) ∈ P ′
and (A,B) ∨ (D,C) ∈ Q′ by the profile property, since by submodularity and
the efficiency of (A,B) and (C,D) both of these corner separations have order
exactly |(A,B)|. These two separations, then, are opposite corner separations of
(A,B) and (C,D) with the first lying in AP,P ′ and the second lying in AQ,Q′ .

The remaining case is that no two of the four profiles agree in their orientation
of {A,B} and {C,D}. But then, both of (A,B) and (C,D) lie in AP,P ′ as well as
in AQ,Q′ , and the existence of two pairs of opposite corner separations, one with
both elements in AP,P ′ and one with both in AQ,Q′ , follows from Lemma 4.4.6
and the disagreement of the four profiles on {A,B} and {C,D}.

Using this lemma, we can now show that (Ai : i ∈ I ) satisfies (ST3) using
Lemma 4.4.5:

Lemma 4.4.15. If ai ∈ Ai and aj ∈ Aj cross with k = |i| = |j|, then either Ai
contains a corner separation of ai and aj with strictly lower k-crossing number
than ai , or else Aj contains a corner separation of ai and aj with strictly
lower k-crossing number than aj .

Proof. By switching their roles if necessary we may assume that the k-crossing
number of ai is at most the k-crossing number of aj .

From Lemma 4.4.14 it follows that Aj contains a corner separation of ai
and aj whose opposite corner separation lies in either Ai or Aj . Now Lemma 4.4.5
implies that the sum of the k-crossing numbers of this pair of opposite corner
separations is at most the sum of the k-crossing numbers of ai and aj . This
inequality is in fact strict since ai and aj cross each other but are each nested
with both corner separations.
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If the first corner separation is not already as desired, that is, if its k-crossing
number is not strictly lower than the k-crossing number of aj , we can infer that
the k-crossing number of the opposite corner separation is strictly lower than
that of ai . Since we assumed in the beginning that the k-crossing number of ai
is no greater than that of aj , this proves the claim.

We are now ready to prove the main result of this subsection, which is similar
to [14, Theorem 7.5]:

Theorem 4.4.16. Let G be a locally finite connected graph and P some set of
robust regular profiles in G. Then there exists a nested set N of separations
which efficiently distinguishes any two distinguishable profiles in P. Moreover,
this set is canonical, i.e. invariant under isomorphisms: if α : G → G′ is an
isomorphism, then α(N (G,P)) = N (α(G), α(P )).

Proof. The combination of Proposition 4.4.10, Corollary 4.4.13, and Lemma 4.4.15
shows that the family (Ai : i ∈ I ) thinly splinters. The nested set N ⊆ A
produced by Lemma 15 meets each set Ai and thus distinguishes all pairs of
distinguishable profiles in P efficiently.

The nested set found by Theorem 4.4.16 does not in general correspond
to a tree-decomposition of G, as Example 4.4.8 demonstrated. However, The-
orem 4.4.16 can be used to show that for every fixed integer k the subset of N
consisting of all separations of order at most k gives rise to a tree-decomposition
of G, as this subset will satisfy the conditions from Lemma 4.4.7. In particular
we can use Theorem 4.4.16 together with Lemma 4.4.7 to prove [14, Theorem
7.3], that there is for every k ∈ N, every locally finite graph G and every set P of
distinguishable robust regular profiles, pairwise distinguishable by a separation of
order at most k, a canonical tree-decomposition of G that efficiently distinguishes
all profiles from P.

Graphs with vertices of infinite degree

When we consider graphs with vertices of infinite degree, the method of the
previous section fails as we loose Proposition 4.4.10: it does not necessarily hold
that every separation in an AP,P ′ crosses only finitely many other separations
from sets AQ,Q′ with |Q,Q′| 6 |P, P ′|. Moreover, Dunwoody and Krön [33]
gave an example of a graph which does not contain a canonical nested set of
separations separating its ends. Since ends induce robust regular profiles, in
arbitrary graphs, it is not generally possible to find a canonical nested set of
separations distinguishing all the robust regular profiles.

To show the result for locally finite graphs we made use of the observation
that only finitely many different separators are involved, and then used that
every separator appears in only finitely many separations. Thus, in this section
instead of applying Lemma 15 directly to some set of separations, we are going
to apply it to only the set of separators.

With this approach we show that in an arbitrary graph you can find a
canonical nested set of separators which efficiently distinguishes all the robust
regular profiles in G. We shall make the meaning of this more precise shortly.
We propose that this set of separators is a natural intermediate object for
distinguishing profiles. Moreover, we will show that if we restrict ourselves to the

146



set of robust principal profiles – which we will define at the end of this section –
then from this set we can build both a non-canonical nested set of separations
as in Theorem 4.4.1 (from [9]) as well as a canonical tree of tree-decompositions
in the sense of [14].

Either of these objects can trivially be converted back to a set of separators.
Our technique splits the process of building either of these cleanly into two
independent steps, which makes it more accessible than the proofs in [9] and [14].
Moreover, the first step of this process also works for non-principal but regular
profiles, allowing us to also get an (intermediate) result for those profiles, unlike
the theorems from [9] and [14]. Note that distinguishing non-principal profiles is
also discussed extensively in [45].

Many of the techniques applied throughout are similar to or inspired by
arguments made in [14], particularly the approach of minimizing the crossing-
number, even though the different levels of abstraction make it hard to draw
concrete parallels.

Let us now begin with the formal notation. We say that a set of vertices
X ⊆ V (G) efficiently distinguishes a pair P and P ′ of profiles in G if there
exists a separation (A,B) of G with separator A ∩ B = X which efficiently
distinguishes P and P ′. Such a separation (A,B) is then a witness that X
efficiently distinguishes P and P ′.

Given some set of distinguishable robust regular profiles P of an (infinite)
graph G, we define as A the set of all such separators X which distinguish
some pair of profiles in P efficiently. We say that a separator X is nested with
Y ∈ A, i.e. X ∼ Y , whenever X is contained in C ∪ Y for some component C
of G− Y . In other words Y does not properly separate any two vertices of X.
This relation is reflexive, the following lemma shows that it is also symmetric on
A. Unfortunately, its natural extension to all finite subsets of V (G) is not. The
reader should take note that this will lead to some situations where we argue
that some set Y is nested with some X ∈ A provided that Y ∈ A.

Lemma 4.4.17. If X,Y ∈ A and X is contained in Y together with some
component of G− Y , then Y is contained in X together with some component
of G−X.

Proof. Pick a separation (A,B) witnessing that X ∈ A. Since this separation
efficiently distinguishes two regular profiles, by Lemma 4.4.9, there are at least
two tight components of G −X, one in either side of (A,B). At least one of
these tight components, say C, does not meet Y and is therefore contained in a
connected component C ′ of G− Y . Now, as required, we find

X = N(C) ⊆ C ∪N(C) ⊆ C ′ ∪N(C ′) ⊆ C ′ ∪ Y.

As usual, we take as I the set of pairs of distinguishable profiles in P. But
this time we define AP,P ′ for each pair P, P ′ in I to be the set of all the sets
of vertices in G which distinguish P and P ′ efficiently. All these separators in
AP,P ′ have the same size; this size shall be |P, P ′|.

We claim that {AP,P ′ : {P, P ′} ∈ I} thinly splinters. Before we can show
(ST1) we need to make two basic observations about how the vertices of a
crossing pair of separators in A lie:

Lemma 4.4.18. If X,Y ∈ A cross, then Y contains a vertex from every tight
component of G−X.
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Proof. If C is a tight component of G −X such that Y does not contain any
vertex of C, then C is contained in some component C ′ of G−Y . However, then
X = N(C) ⊆ C ′ ∪ Y , i.e. X is nested with Y contradicting the assertion.

Lemma 4.4.19. If X,Y ∈ A cross, then Y contains a pair of vertices v and w
such that X is a ⊆-minimal v–w-separator.

Proof. There are at least two tight components C1, C2 of G−X and Y meets
both of them by Lemma 4.4.18. Let v be a vertex in Y ∩ C1 and w a vertex in
Y ∩ C2. Since both C1 an C2 are tight components, X is indeed a ⊆-minimal
v-w-separator.

We can now combine these with Lemma 4.4.4 to show that we satisfy (ST1).

Lemma 4.4.20. For every pair of profiles P, P ′ ∈ P every X ∈ AP,P ′ has finite
k-crossing-number for all k 6 |P, P ′|.

Proof. By Lemma 4.4.19, for every Y ∈ A of size k which crosses X, there are
vertices v, w ∈ X which are minimally separated by Y . However, there is only a
finite number of pairs of vertices v, w in X and by Lemma 4.4.4 every pair has
only finitely many minimal separators of size k. Therefore, only finitely many
such Y ∈ A exist.

The following lemmas show how the separators of corner separations behave
under our new nestedness relation. We will need these to show (ST2) and (ST3).
Recall from Section 4.4.3 that a corner of two separators X,Y ∈ A is a separator
Z ∈ A which crosses only elements of A which cross either X or Y . Note that
this does not imply that Z is nested with X and Y .

Lemma 4.4.21. Let X,Y ∈ A be a crossing pair of separators and let (AX , BX)
and (AY , BY ), respectively, be separations which witness that these are in A.
Then, for every Z ∈ A which is nested with both X and Y , there is a component
CZ of G−Z, such that X ∪Y ⊆ CZ ∪Z. In particular (AX ∪AY )∩ (BX ∩BY ),
the separator of (AX , BX) ∨ (AY , BY ), is a corner of X and Y provided that it
lies in A.

Proof. We first show that Z does not separate X and Y . Since Z is nested with
X and X efficiently distinguishes two regular profiles, there is, by Lemma 4.4.9,
a tight component CX of G −X which is disjoint from Z. By Lemma 4.4.18,
there is a vertex y ∈ CX ∩ Y ⊆ Y r Z.

By a symmetrical argument there also exists a vertex x ∈ X r Z. Since CX
is tight, there is a path from x to y contained in CX except for x. This path
avoids Z.

Now, since Z is nested with X there is a component CZ of G − Z which
contains X r Z. In particular this component contains x. Similarly, there is
a component of G − Z containing Y r Z and hence, in particular, y. Since
Z does not separate x and y, this component is the same as CZ . Therefore,
X ∪ Y ⊆ CZ ∪ Z, as required. In particular, if (AX ∪ AY ) ∩ (BX ∩ BY ) ∈ A,
then (AX ∪ AY ) ∩ (BX ∩ BY ) ⊆ CZ ∪ Z, hence (AX ∪ AY ) ∩ (BX ∩ BY ) ∼ Z
and therefore (AX ∪AY ) ∩ (BX ∩BY ) is a corner of X and Y .
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Lemma 4.4.22. Let X,Y ∈ A be a crossing pair of separators and let (AX , BX)
and (AY , BY ), respectively, be witnesses that these are in A. If Z ∈ A is
nested with X, and each of the corner separations (AX , BX) ∨ (AY , BY ) and
(AX , BX) ∧ (AY , BY ) distinguishes some pair of profiles efficiently, then Z is
nested with one of the separators (AX∪AY )∩(BX∩BY ) or (AX∩AY )∩(BX∪BY ).

Proof. Since Z and X are nested, there is a component CZ of G−X such that
Z ⊆ CZ ∪X. Let us assume without loss of generality that CZ ⊆ AX , we will
show that Z is nested with (AX ∪AY ) ∩ (BX ∩BY ).

Since (AX , BX) ∨ (AY , BY ) efficiently distinguishes some regular profiles,
there is, by Lemma 4.4.9, a tight component of (AX ∪AY )∩(BX ∩BY ) contained
in (BX ∩BY ). However, Z ⊆ AX , so this component cannot meet Z. Hence, by
Lemma 4.4.18, Z cannot cross the separator (AX ∪AY ) ∩ (BX ∩BY ).

These now allow us to reuse the Lemmas 4.4.12 and 4.4.14 to show (ST2)
and (ST3):

Lemma 4.4.23. If two separators X ∈ AP,P ′ and Y ∈ AQ,Q′ cross and
|P, P ′| < |Q,Q′|, then there is a corner Y ′ ∈ AQ,Q′ of X and Y which is nested
with X.

Proof. Let (AX , BX) be a separation witnessing thatX ∈ AP,P ′ and let (AY , BY )
be a separation witnessing that Y ∈ AQ,Q′ . By Lemma 4.4.12 there is a
corner separation of (AX , BX) and (AY , BY ) which also distinguishes Q and Q′
efficiently. The separator Y ′ of this corner separation does not meet all tight
components of G−X, so Y ′ is nested with X and thus is by Lemma 4.4.21 as
desired.

Lemma 4.4.24. If two separators X ∈ AP,P ′ and Y ∈ AQ,Q′ cross and
|P, P ′| = |Q,Q′| = k, then either there is a corner Y ′ ∈ AQ,Q′ of X and Y which
has a strictly lower k-crossing-number than Y , or there is a corner X ′ ∈ AP,P ′
of X and Y which has strictly lower k-crossing-number than X.

Proof. By switching their roles if necessary we may assume that the k-crossing
number of Y is at most the k-crossing number ofX. Let (AX , BX) be a separation
witnessing that X ∈ AP,P ′ and let (AY , BY ) be a separation witnessing that
Y ∈ AQ,Q′ . By Lemma 4.4.14 there is a corner separation of (AX , BX) and
(AY , BY ) which efficiently distinguishes P and P ′ and whose opposite corner
separation efficiently distinguishes either P and P ′ or Q and Q′. Let us denote
their separators as Z and Z ′ respectively.

By the Lemmas 4.4.21 and 4.4.22 and the fact that Z and Z ′ are nested with
both X and Y we have that Z and Z ′ are corners of X and Y and that the
sum of the k-crossing numbers of Z and Z ′ is strictly lower than the sum of the
k-crossing numbers of X and Y .

Thus, if the k-crossing number of Z is strictly lower than the k-crossing
number of X, we can take Z for X ′. Otherwise, we can infer that the k-crossing
number of Z ′ is strictly lower than that of Y . Since we assumed in the beginning
that the |i|-crossing number of Y is not greater than that of X, this proves the
claim since we can then take Z ′ for X ′ or Y ′, depending.

With this all the requirements of Lemma 15 are satisfied. Immediately we
obtain the main result of this section:
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Theorem 16. Given a set of distinguishable robust regular profiles P of a graph
G there exists a canonical nested set of separators efficiently distinguishing any
pair of profiles in P.

As noted before, to be able to deduce Theorem 4.4.1 and [14, Remark 8.3] we
restrict our set P to be a set of principal robust profiles. A k-profile P in G is
principal if it contains for every set X of less than k vertices a separation of the
form (V (G)rC,C∪X) where C is a connected component of G−X. In particular,
every principal profile is regular. Note that this notion of principal profiles is
equivalent to the notion of ‘profiles’ in Carmesin’s [9]; the term principal profiles
comes from [14]. Observe that in locally finite graphs an inductive application
of the profile property (P) shows that every profile is principal.

This restriction to principal profiles is necessary for Theorem 4.4.1, as Elm
and Kurkofka [45, Corollary 3.4] have shown that there is a graph together with
a set of (non-principal but robust and distinguishable) profiles, which do not
permit the existence of a nested set of separations distinguishing all of them.

Nested sets of separations If we restrict P to a set of principal profiles,
the nested set of separators from Theorem 16 can be transformed into a nested
set of separations which still distinguishes all the profiles in P if we give up on
canonicity. This task is not entirely trivial.

The natural approach would be to take for each separator every one of
the separations belonging to one of its tight components, i.e. the separation
(C∪X,V rC) for every tight component C of G−X. However, if the separators
overlap the resulting set of separations might not be nested. The following recent
result by Elm and Kurkofka states that we need to omit no more than one of
the tight components for each separator to reclaim nestedness.

Theorem 4.4.25 ([45, Corollary 6.1]). Suppose that Y is a principal collection
of vertex sets in a connected graph G. Then there is a function K assigning
to each X ∈ Y a subset K(X) ⊆ CX (the set CX consists of the components of
G−X whose neighbourhoods are precisely equal to X) that misses at most one
component from CX , such that the collection

{{V rK,X ∪K} : X ∈ Y and K ∈ K(X)}

is nested.

Here, a principal collection of vertex sets is just a set Y of subsets of V such
that, for every X,Y ∈ Y, there is at most one component of G −X which is
met by Y . In particular, any nested set of separators is a principal collection of
vertex sets.

Having for every separator all but one of these tight component separations
is still enough to efficiently distinguish all the profiles in P. However, as
Theorem 4.4.25 does not give as a canonical choice for the function K, we need
to give up the canonicity at this point. However, this still allows us to prove the
following theorem by Carmesin:

Theorem 4.4.1 ([9, Theorem 5.12]). For any graph G, there is a nested set N
of separations that distinguishes efficiently any two robust principal profiles (that
are not restrictions of one another).
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Proof. If G is not connected, then every robust principal profile of G induces a
robust principal profile on exactly one of the connected components of G. It is
easy to see that we can then apply the theorem to all connected components
from G independently and obtain our desired nested set of separations of G
from those of the connected components together with separations of the form
(C, V r C) for connected components C of G. Thus, let us suppose that G is
connected.

Let N be the nested set of separations obtained by applying Theorem 4.4.25
to the set N of separators obtained from Theorem 16. Given any two profiles
P,Q ∈ P there is a separator X in N which efficiently distinguishes P and Q.
By Lemma 4.4.9 there are two distinct tight components C and C ′ of G−X such
that both (V r C,C ∪X) ∈ P and (C ′ ∪X,V r C ′) ∈ P efficiently distinguish
P and Q. However, at least one of these two separations is an element of N .

For the reader’s convenience, we also offer a direct proof of Theorem 4.4.1
which does not use Theorem 4.4.25. Instead, we perform an argument akin to
one of the arguments used in the proof of Theorem 4.4.25 but in slightly simpler
form, as the statement we need is a weaker one than Theorem 4.4.25.

Direct proof of Theorem 4.4.1. Let N be the nested set of separators obtained
from Theorem 16 applied to the set of robust principal profiles. Pick an enumer-
ation of N which is increasing in the size of the separators, i.e. an enumeration
N = {Xα : α < β} such that |Xα| 6 |Xγ | whenever α < γ.

We will construct a transfinite ascending sequence of nested sets (Nγ)γ6β ,
of separations. Each Nγ will contain only separations with separators in
{Xα : α < γ}, and every pair of profiles efficiently distinguished by such a
separator Xα, α < γ, will also be efficiently distinguished by some separation in
Nγ .

For the successor steps of our construction suppose that we already con-
structed Nγ and consider Xγ . Since Xγ is nested with all Xα satisfying α < γ,
we know that Xγ induces a consistent orientation of Nγ since any separation
(A,B) ∈ Nγ satisfies either Xγ ⊆ A or Xγ ⊆ B but not both, as |(A,B)| 6 |Xγ |.

Consider the set C of tight components of G −Xγ and let D be the set of
the remaining, non-tight, components of G−Xγ .

Given any separation (A,B) ∈ Nγ pointing away from Xγ (that is Xγ ⊆ A),
the side B is contained in the union of one component CB ∈ C together with
some components in D: since Xγ is nested with A ∩ B, there is a component
in G−Xγ containing (A ∩B) rXγ , thus, any other component C of G−Xγ

meeting B does not meet A∩B and must therefore satisfy N(C) ⊆ A∩B ∩Xγ ,
i.e. this component is not tight.

Given a tight component C ∈ C let DC ⊆ D be the set of all components D in
D with the property that there is some (A,B) ∈ Nγ pointing away from Xγ such
that D meets B and CB = C. Informally, these sets DC are the components
which we will need to group together with their C when choosing our next
separations. The DC are pairwise disjoint: indeed, given two separations (A,B)
and (A′, B′) pointing away from Xγ , if (B′, A′) 6 (A,B), then the set B′ and
B are disjoint, and if (A,B) 6 (A′, B′), then (A′ ∩B′) rXγ and (A ∩B) rXγ

cannot be contained in different tight components of G−Xγ .
Let Nγ+ consist of Nγ together with, for every tight component C ∈ C of

G −Xγ , the separation
(
C ∪

⋃
DC ∪Xγ , V (G) r (C ∪

⋃
DC)

)
. It is easy to
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see that this set is a nested set of separations. Moreover, any pair of profiles
efficiently distinguished by Xγ is efficiently distinguished by one of these new
separations.

For limit ordinals γ let Nγ :=
⋃
α<γ Nα, this set is nested since every pair in

Nγ is already in some Nα.
Then N := Nβ is the desired nested set of separations.

Canonical trees of tree-decompositions To canonically and efficiently
distinguish a robust set of principal profiles in a graph Carmesin, Hamann and
Miraftab [14] introduced more complex objects than nested sets of separations:
trees of tree-decompositions. These consist of a rooted tree where every node is
associated with a tree-decomposition. At the root this is a tree-decomposition of
G. At every remaining node there is a tree-decomposition of one of the torsos of
the tree-decomposition at the parent node. Their main result is the following:

Theorem 4.4.2 ([14, Remark 8.3]). Let G be a connected graph and P a
distinguishable set of principal robust profiles in G. There exists a canonical tree
of tree-decompositions with the following properties:

(a) the tree of tree-decompositions distinguishes P efficiently;

(b) if t ∈ V (T ) has level k, then (Tt,Vt) contains only separations of order k;

(c) nodes t at all levels have |V (Tt)| neighbours on the next level and the graphs
assigned to them are all torsos of (Tt,Vt).

We can also construct such a tree of tree-decompositions from our nested set
of separators. In order to do that, let us recall the most important definitions
from [14].

In a rooted tree (T, r), the level of a vertex t ∈ V (T ) is d(t, r) + 1. A tree of
tree-decompositions is a triple ((T, r), (Gt)t∈V (T ), (Tt,Vt)t∈V (T )) consisting of a
rooted tree (T, r), a family (Gt)t∈V (T ) of graphs and a family (Tt,Vt)t∈V (T ) of
tree-decompositions of the Gt. The graphs G′t assigned to the neighbours t′ on the
next level from a node t ∈ V (T ) shall be distinct torsos of the tree-decomposition
(Tt,Vt). This tree of tree-decompositions is a tree of tree-decompositions of G if
Gr = G.

A separation (A,B) of G induces a separation (A′, B′) ofGt if A∩Gt = A′ and
B ∩Gt = B′. Given two profiles P, P ′, we say that a tree of tree-decompositions
(efficiently) distinguishes P and P ′ if there is a separation (A,B) in G (efficiently)
distinguishing them and a node t ∈ V (T ) such that the separation induced by
(A,B) on Gt is one of the separation induced by the tree-decomposition (Tt,Vt)
of Gt.

In order to deduce Theorem 4.4.2 from Theorem 16 it is useful to observe
that our set of separators is nested in an even stronger sense: we say that
two separators X and Y are strongly nested if there is a component C of
G − X such that Y ⊆ C ∪N(C) and there is a component C ′ of G − Y such
that X ⊆ C ′ ∪N(C ′). The separators from the nested set N from Theorem 16
are strongly nested:

Lemma 4.4.26. If X and Y are a pair of nested separators each of which
efficiently distinguishes some pair of robust principal profiles, then they are
strongly nested.
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Proof. We show that there is a component C of G−X such that Y ⊆ C ∪N(C).
If Y ⊆ X the statement is obvious, by picking as C a tight component of

G − X. So we may assume that Y meets some component C of G − X in a
vertex v ∈ Y ∩ C. By nestedness Y ⊆ C ∪X. Suppose for a contradiction that
Y 6⊆ C ∪N(C), i.e. Y contains a vertex w ∈ X rN(C).

Since Y efficiently distinguishes two principal profiles, there are two distinct
tight components C1, C2 of G − Y , by Lemma 4.4.9. X meets at most one of
C1 and C2 since it is nested with Y ; without loss of generality we may assume
X ∩ C2 = ∅. Since C2 is a tight component of G− Y , there is a path P from v
to w with all its interior vertices in C2. On the other hand v lies in C and w
outside of C ∪ N(C), so N(C) separates v from w. But N(C) ⊆ X does not
meet P since X ∩ C2 = ∅. This is a contradiction.

Note that for a separator X to be strongly nested with itself is a non-trivial
property: it is precisely the statement that there is a tight component of G−X.
Thus, if we talk about a strongly nested set of separators, we mean that not only
any pair of distinct separators from that set is strongly nested, we also require
each of the separators from that set to be nested with itself.

Next we show that we can close our strongly nested set under taking subsets:

Lemma 4.4.27. Let N be a strongly nested set of separators and let N ′ be the
set of all subsets of elements of N . Then N ′ is strongly nested as well.

Proof. Let X,Y ∈ N and let X ′ ⊆ X,Y ′ ⊆ Y , possibly equal. Take CX to
be a component of G − X for which Y ⊆ CX ∪ N(CX), then in particular
Y ′ ⊆ CX ∪ N(CX). Since X ′ ⊆ X, there is some component CX′ ⊇ CX of
G−X ′, thus Y ′ ⊆ CX′ ∪N(C ′X).

By symmetry we also find a component CY ′ so that X ′ ⊆ CY ′ ∪N(CY ′)

So let N ′ be the strongly nested set of all subsets of separators from N , the
canonical nested set of separators from Theorem 16. As such, N ′ is canonical as
well. The following lemma about separations with strongly nested separators will
allow us to construct a tree of tree-decompositions from N ′ inductively, starting
with the separators of lowest size.

Lemma 4.4.28. If X,Y are distinct strongly nested separators and (AX , BX)
and (AY , BY ) are separations with separators X and Y respectively, such that
Y ⊆ BX , X ⊆ BY , then either (AX , BX) and (AY , BY ) are nested, or there is
a component C of G− (X ∩ Y ) which meets neither X nor Y .

Proof. Suppose that (AY , BY ) 66 (BX , AX). Then either there is a vertex in
AY which does not lie in BX , or there is a vertex in AX which does not lie
in BY . Since AX ∩ BX = X ⊆ BY and AY ∩ BY = Y ⊆ BX , either of these
cases implies that there is a vertex v in (AX rBX) ∩ (AY rBY ). This vertex v
needs to lie in some component C of G− (X ∪ Y ). However, C cannot send an
edge to X r Y since such an edge would contradict the fact that (AY , BY ) is a
separation. Similarly, C cannot be adjacent to any vertex of Y rX. Thus, C is
in fact a component of G− (X ∩ Y ) which meets neither X nor Y .

Now we are ready to deduce Theorem 4.4.2 from Theorem 16:
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Proof of Theorem 4.4.2. Let N ′ be as above. We will build our tree of tree-
decompositions inductively level-by-level, adding at stage k to every node t on
level k−1 new neighbours on level k, one for every torso of the tree-decomposition
(Tt,Vt). We do this in a way that ensures the following properties:

(i) If d(r, t) = k, then every separation in (Tt,Vt) has order k + 1.

(ii) Every separator in N ′ of size at least k + 2 is contained in exactly one of
the torsos of (Tt,Vt), whenever d(t, r) 6 k.

(iii) If d(t, r) = k, every torso of (Tt,Vt) meets at most one component of G−X
for every X ∈ N ′ of size 6 k with X ⊆ V (Gt).

Our inductive construction goes as follows: for k = 0 we consider the set S1
which consists of, for every separator X of size 1 in N ′ and every component C
of G−X, the separation (C ∪X,V (G) rC), unless C is the only component of
G−X.

Observe that S1 is a nested set of separations: any two separations with
the same separator are nested by construction and for separations with distinct
separators X and Y the separators are disjoint, so G− (X ∩Y ) = G is connected
and Lemma 4.4.28 gives that the separations are nested.

Moreover, every ω-chain (A1, B1) < (A2, B2) < . . . in S1 has
⋂
i∈NBi = ∅:

we may assume without loss of generality that no two of these separations have
the same separator since S1 has no 3-chain of separations with the same separator.
On the other hand a path from a vertex in

⋂
i∈NBi to A1 (which has finite

length) would need to meet all the infinitely many disjoint separators Ai ∩Bi.
Since S1 contains no separation with a small orientation by construction,

it is a regular tree set. Thus, by Lemma 4.4.7 it induces a canonical tree-
decomposition (Tr,Vr) of Gr = G. We assign this tree-decomposition to the
root of our tree of tree-decompositions and shall now verify (i) to (iii).

Observe that this decomposition satisfies (i) and (iii) as we only used sep-
arators of size 1 and every torso of (Tt,Vt) meets at most one component of
G − X for every X ∈ N ′ of size 6 1 with X ⊆ V (Gt). Moreover, (ii) is also
satisfied since every separator X in N ′ of size at least 2 is nested with each of
the separators used in (Tr,Vr): such a separator cannot be contained in two
distinct torsos since then a separation with separator in N ′ would separate them.
Conversely, there is a torso which contains X: otherwise consider a torso Vt
that contains as much of X as possible and another torso V ′t which contains a
vertex in X r Vt. Then one of the edges on the path between t and t′ in T again
corresponds to a separation which separates X. But this is not possible since
the separators of these separations are in N ′ and thus nested with X.

For the k-th step of our construction, for k > 1, we attach at every node t on
level k − 1 of our so-far constructed tree of tree-decompositions, for every torso
G′ of (Tt,Vt) a new node t′ (which then is at level k) with Gt′ := G′. We the
independently construct tree-decompositions for each of these torsos Gt′ . For
every torso we use all those separators from N ′ which are of size k + 1 and lie
inside that torso. Note that (ii) guarantees that every separator in N ′ of size
k + 1 is contained in exactly one of the newly added torsos.

Given one torso Gt′ of the tree-decomposition (Tt,Vt), we let Sk+1 be the
set of all separations (A,B) of Gt′ of order k + 1 with separator in N ′ and the
property that ArB is a component of G− (A ∩B) but not the only one.
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We claim that Sk+1 is a nested set of separations. Indeed, if two separations
from Sk+1 with different separators X and Y were to cross, then by Lemma 4.4.28
there would be a component of Gt′−(X∩Y ) avoiding X and Y . However, X∩Y
has size less than k, lies in N ′ and Gt′ meets, by (iii), at most one component of
G− (X ∩ Y ). Hence, if we take vertices x and y in Gt′ − (X ∩ Y ) we find a path
P between them in G− (X ∩Y ). But since Gt′ is obtained from G by repeatedly
building a torso, P ∩ Gt′ needs to contain a path between x and y in Gt′ . In
particular, this path does not meet X ∩ Y and thus Gt′ − (X ∩ Y ) has only one
component, in particular every component of Gt′ − (X ∩ Y ) meets X and Y .

Now consider an ω-chain (A1, B1) < (A2, B2) < . . . in Sk+1. We may
assume without loss of generality that no two of these separations have the same
separator, as in the case k = 0. If

⋂
i∈NBi is non-empty, then its neighbourhood

Z := NGt′ (
⋂
i∈NBi) needs to be properly contained in some Al∩Bl: every vertex

in Z needs to be contained in some Am∩Bm and if such a vertex lies in Am∩Bm,
then it also lies in An ∩Bn for every n > m. In particular, if |Z| > k + 1, there
would be an m such that Am ∩Bm ⊆ Z and thus An ∩Bn = Am ∩Bm∀n > m
contradicting the assumption that no two of the (Al, Bl) have the same separator.
Hence, |Z| 6 k and we can easily find an l such that Z ( Al ∩Bl.

But then again Gt′ would meet two distinct components of G−Z: one meeting⋂
i∈NBi and one meeting Al. This however is not possible since |Z| < |Al ∩Bl|

and Z ∈ N ′.
By construction Sk+1 contains no separation with a small orientation, thus

Sk+1 is a regular tree set, so by Lemma 4.4.7 the set Sk+1 induces a canonical
tree-decomposition (Tt′ ,Vt′) of Gt′ . In this way we construct all the tree-
decompositions for nodes at level k. We need to verify (i) to (iii). (i) is obvious.
For (ii) we observe that every separator in N ′ of size at least k + 2 which was
contained in Gt′ was nested with every separator of a separation in Sk+1 and
is therefore contained in exactly one of the torsos of (Tt′ ,Vt′), by the same
argument as in the case k = 0.

For (iii) we note that for separators X of size 6 k every torso of (Tt′ ,Vt′)
meets at most one component of G−X as, by induction Gt′ itself only meets
one component of G−X. For a separator X of size k + 1 let H be a torso of
(Tt′ ,Vt′). Firstly, H meets at most one component of Gt′ −X since if Gt′ −X
has more than one component, then X is one of the separators of (Tt′ ,Vt′) and
therefore, as Sk+1 includes every separation of the form (C ∪X,Gt′ rX) for
any component C of Gt′ −X, there needs to be a component C of Gt′ −X such
that H is contained in C ∪X.

Secondly, when building the torso Gt′ from G we never add edges between
distinct components of G−X since we only add edges inside of separators in N ′,
which are nested with X. Hence, if H would meet two components of G−X
it would also meet two component of Gt′ − X. Hence, H meets at most one
component of G−X. This gives (iii).

Verification of Correctness Let us now verify that the so constructed
tree of tree-decompositions ((T, r), (Gt)t∈V (t), (Tt,Vt)t∈V (T )) – which is canonical
by construction – has the properties (a) to (c) from the assertion. The properties
(b) and (c) are fulfilled by construction, so we only need to verify (a).

Let P, P ′ be two robust principal profiles from P . By Theorem 16, N ′ contains
some separator X which belongs to a separation efficiently distinguishing P

155



and P ′, say |X| = k. By our inductive construction, there is a unique Gt at
level k which contains X. Since P and P ′ are principal profiles, there are two
distinct components C,C ′ of G − X such that (V (G) r C,C ∪ X) ∈ P , and
(V (G) r C ′, C ′ ∪X) ∈ P ′. We claim that C ∩ V (Gt) is not empty.

Note that Gt is obtained from G by repeatedly taking some separation (A,B)
of order < k with X ⊆ B, deleting Ar B and making A ∩ B complete. If we
apply this operation for a single (A,B) which, say, turns some graph H with
V (H) ⊆ V (G) into H ′ then this preserves for H ′ the properties of H that (i)
H[C ∩ V (H)] is connected and (ii) every vertex in X has, in H, a neighbour
in C ∩ V (H). Thus, every vertex in X has, in Gt, a neighbour in C ∩ V (Gt)
proving that C ∩ V (Gt) is non-empty.

By a symmetrical argument not only C but also C ′ meets some component
of Gt −X. Moreover, no two distinct components of G−X can meet the same
component of Gt −X: this would require an edge between these components,
which would have to be added by the torso operation – but this operation only
adds edges inside a separator Y ∈ N ′. And since Y is nested with X, that is Y
meets only one component of G−X, this cannot add edges between different
components of G−X.

Thus, there is exactly one component Ct of Gt−X such that Ct ⊆ C and this
component is not the only one from Gt −X. So, by construction the separation
(Ct ∪X,Gt rX), which efficiently distinguishes the induced profiles of P and
P ′ onto Gt is induced by (Tt,Vt).
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4.5 Edge blocks
4.5.1 Introduction
In this section we are going to apply the results from Section 4.4 to another type
of ‘highly connected’ substructures of an infinite graph: those which we think of
as ‘edge-connected’. Related results can be found in [8,10–14,23,26,27,29–31,
33,36,39,42,45,46,48,49,53,58,68,74].

Unlike for vertex-connectivity, where there are multiple competing notions of
‘k-connected piece’, i.e. tangles, blocks and profiles, for edge-connectivity, there
does exist a single notion of ‘k-edge-connected pieces’ that undeniably is the
most natural one. Let k ∈ N ∪ {∞} and let G be any connected graph, possibly
infinite. We say that two vertices or ends are (<k)-inseparable in G if they cannot
be separated in G by fewer than k edges. This defines an equivalence relation on
V̂ (G) := V (G) ∪Ω(G) where Ω(G) denotes the set of ends of G (which is empty
if G is finite). Its equivalence classes are the ‘k-edge-connected pieces’ of G, its
k-edge-blocks. A subset of V̂ (G) is an edge-block if it is a k-edge-block for some k.
Note that any two edge-blocks are either disjoint or one contains the other. In
this section of this thesis we find a canonical tree-like decomposition of any
connected graph, finite or infinite, into its k-edge-blocks—for all k ∈ N ∪ {∞}
simultaneously. To state our result, we only need a few intuitive definitions.

A subset X ⊆ V̂ (G) lives in a subgraph C ⊆ G or vertex set C ⊆ V (G)
if all the vertices of X lie in C and all the rays of ends in X have tails in C
or G[C], respectively. If G is finite, saying that X lives in C simply means
that X ⊆ C. An edge set F ⊆ E(G) distinguishes two edge-blocks of G, not
necessarily k-edge-blocks for the same k, if they live in distinct components of
G−F . It distinguishes them efficiently if they are not distinguished by any edge
set of smaller size. Note that if F distinguishes two edge-blocks efficiently, then
F must be a bond, a cut with connected sides. A set B of bonds distinguishes
some set of edge-blocks of G efficiently if every two disjoint edge-blocks in this
set are distinguished efficiently by a bond in B. Two cuts F1, F2 of G are nested
if F1 has a side V1 and F2 has a side V2 such that V1 ⊆ V2. Note that this is
symmetric. The fundamental cuts of a spanning tree, for example, are (pairwise)
nested. One main result of this section reads as follows:

Theorem 17. Every connected graph G has a nested set of bonds that efficiently
distinguishes all the edge-blocks of G.

The nested sets N = N(G) that we construct, one for every G, have two
strong additional properties:

(i) They are canonical in that they are invariant under isomorphisms: if
ϕ : G→ G′ is a graph-isomorphism, then ϕ(N(G)) = N(ϕ(G)).

(ii) For every k ∈ N, the subset Nk ⊆ N formed by the bonds of size less than
k is equal to the set of fundamental cuts of a tree-cut decomposition of G
that decomposes G into its k-edge-blocks.

Tree-cut decompositions are decompositions of graphs similar to tree-decompo-
sitions but based on edge-cuts rather than vertex-separators. They were in-
troduced by Wollan [77], and they are more general than the ‘tree-partitions’
introduced by Seese [69] and by Halin [57]; see Section 4.5.4.
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The second additional property above is best possible in the sense that Nk
cannot be replaced with N : there exists a graph G (see Example 4.5.10) that
has no nested set of cuts which, on the one hand, distinguishes all the edge-
blocks of G efficiently, and on the other hand, is the set of fundamental cuts of
some tree-cut decomposition. (This is because the ‘tree-structure’ defined by a
nested set of cuts may have limit points, and hence not be representable by a
graph-theoretical tree.)

It turns out that the nested sets of bonds which make Theorem 17 true can
be characterized in terms of generating bonds (for the definition of generate
see Section 4.5.5):

Theorem 18. Let G be any connected graph and let M be any nested set of
bonds of G. Then the following assertions are equivalent:

1. M efficiently distinguishes all the edge-blocks of G;

2. For every k ∈ N, the 6k-sized bonds in M generate all the k-sized cuts
of G.

Nested sets of bonds which are canonical and satisfy assertion (ii) of The-
orem 18 have been constructed by Dicks and Dunwoody using their algebraic
theory of graph symmetries. This is one of the main results of their mono-
graph [17, II 2.20f]. Since the implication (ii)→(i) of Theorem 18 is straightfor-
ward, Theorem 17 can be deduced from their theory, but it is not stated in [17]
explicitly. Our Theorem 18 itself, in particular its highly non-trivial forward
implication (i)→(ii), does not follow from material in [17]. Since our proofs are
purely combinatorial, we can combine Theorem 17 and the forward implication
(i)→(ii) of Theorem 18 to obtain a purely combinatorial proof of the main result
of Dicks and Dunwoody. In particular, this result shows again that Lemma 15 is
highly flexible and can be used to distinguish highly connected structures in a
variety of contexts. Together, our proofs of Theorem 17 and Theorem 18 take
just over 7 pages in total.

This section is organized as follows. In Section 4.5.2 we introduce the tools
and terminology that we need. In Section 4.5.3 we prove Theorem 17, and we
show that we obtain a canonical set N . In Section 4.5.4 we relate each Nk to a
tree-cut decomposition. In Section 4.5.5 we prove Theorem 18.

4.5.2 Tools and terminology
Throughout this section, G = (V,E) denotes any connected undirected graph,
finite or infinite. When we say ends we mean vertex-ends as usual, not edge-ends.
If a subset X ⊆ V̂ (G), usually an edge-block, lives in a subgraph C ⊆ G or
vertex set C ⊆ V (G), we denote this by X v C for short. Recall that X v C
defaults to X ⊆ C if G is finite.

The following lemma is well-known [20, Exercise 8.12]; we provide a proof
for the reader’s convenience.

Lemma 4.5.1. Every edge of a graph lies in only finitely many bonds of size k
of that graph, for any k ∈ N.

Proof. Let e be any edge of a graph G, and suppose for a contradiction that
e lies in infinitely many distinct bonds B0, B1, . . . of size k, say. Let F be an
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inclusion-wise maximal set of edges of G such that F is included in Bn for
infinitely many n (all n, without loss of generality). Then |F | < k because the
bonds are distinct, and any bond Bn ) F gives rise to a path P in G− F that
links the endvertices of e. Now all the infinitely many bonds Bn must contain
an edge of the finite path P . But by the choice of F , each edge of P lies in only
finitely many Bn, a contradiction.

Corollary 4.5.2. Let G be any connected graph, k ∈ N, and let F0, F1, . . . be
infinitely many distinct bonds of G of size at most k such that each bond Fn has
a side An with An ( Am for all n < m. Then

⋃
n∈NAn = V .

Proof. If
⋃
nAn is a proper subset of V , then any A0–(V \

⋃
nAn) path in G

admits an edge that lies in infinitely many Fn, contradicting Lemma 4.5.1.

Cuts, bonds and separations

The order of a cut is its size. A cut-separation of a graph G is a bipartition {A,B}
of the vertex set of G, and it induces the cut E(A,B). Then the order of the
cut E(A,B) is also the order of {A,B}. Recall that in a connected graph, every
cut is induced by a unique cut-separation in this way, to which it corresponds.
A bond-separation of G is a cut-separation that induces a bond of G, a cut with
connected sides. We say that a cut-separation distinguishes two edge-blocks
(efficiently) if its corresponding cut does, and we call two cut-separations nested
if their corresponding cuts are nested. Thus, two cut-separations {A,B} and
{C,D} are nested precisely if they are nested in the universe of bipartitions of
V , i.e. if one of the four inclusions A ⊆ C, A ⊆ D, B ⊆ C or B ⊆ D holds.

Clearly, the set of all cut-separations forms a universe of separations (except
for the fact that this universe needs to contain the empty cut {∅, V } which we
not treat as a valid cut-separation), and consequently the set of all those cut-
separations of order less than k, for some integer k, corresponds to a separation
system Sk.

4.5.3 Proof of Theorem 17
The proof of our first main result will use Lemma 15, for that we need to show
that we find the required corners for the corresponding nestedness relation ∼
on the set A of all the bond-separations of a connected graph G that efficiently
distinguish some edge-blocks of G.

When a = {A,B} and b = {C,D} are two bond-separations, then we will
consider as corners of a and b one of the following four possible objects: either
{A∩C,B ∪D}, {A∩D,B ∪C}, {B ∩D,A∪C} or {B ∩C,A∪D}. These are
the four possibilities of how a new cut-separation can be built from {A,B} and
{C,D} using just ‘∪’ and ‘∩’ and also correspond to the corner separations of
{A,B} and {C,D} in the universe of cut-separations. Note that sometimes an
intersection may be empty so some of the four possibilities may not be valid
cut-separations; and sometimes a possibility is a cut-separation but not an
element of A. We will see in Lemma 4.5.4 that every possibility that happens to
lie in A is already a corner of {A,B} and {C,D} in the sense of our splinters
hierarchically condition, provided that {A,B} and {C,D} cross.

As the index set I of our family (Ai : i ∈ I ) of non-empty subsets of A
to which we want to apply Lemma 15 we will consider, as usual, the collection
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of all the unordered pairs formed by two disjoint edge-blocks of G, and each
Ai will consist of all the bond-separations of G that efficiently distinguish the
two edge-blocks forming the pair i. Then every Ai will be non-empty because
the edge-blocks forming i are disjoint. Our choice for the order |i| of an index i
shall be the unique natural number that is the order of all the bond-separations
in Ai. Note that each of the two edge-blocks forming i will be a k-edge-block
for some k > |i|.

Now in order to employ Lemma 15 to deduce Theorem 17, we first have to
verify that (Ai : i ∈ I ) thinly splinters. To this end, we verify (ST1) to (ST3)
below.

Recall that the k-crossing number of a, for an a ∈ A and k ∈ N, is the
number of elements of A that cross a and lie in some Ai with |i| = k. Note
that in our case, every bond-separation of order k can only possibly lie in sets
Ai with |i| = k. Thus, the k-crossing number of a bond-separation of arbitrary
finite order will be the number of efficiently distinguishing bond-separations of
order k crossing it. Thus, we can deduce that every k-crossing number is finite,
and thus that (ST1) holds, from Lemma 4.5.1:

Lemma 4.5.3. Every finite-order bond-separation of a graph G is crossed by
only finitely many bond-separations of G of order at most k, for any given k ∈ N.

Proof. Our proof starts with an observation. If two bond-separations {A,B}
and {A′, B′} cross, then A′ contains a vertex from A and a vertex from B. Let
v ∈ A′ ∩A and w ∈ A′ ∩B. Since G[A′] is connected, there exists a path from v
to w in G[A′]. This path, and thus G[A′], must contain an edge from A to B.
Similarly, G[B′] must contain an edge from A to B.

Now suppose for a contradiction that there are infinitely many bond-sep-
arations of order at most a given k ∈ N, which all cross some finite-order
bond-separation {A,B}. Without loss of generality, all the crossing bond-sepa-
rations have order k. Using our observation, the pigeonhole principle and the
finite order of {A,B}, we find two edges e, f ∈ E(A,B) and infinitely many
bond-separations {A0, B0}, {A1, B1}, . . . that all cross {A,B} so that e ∈ G[An]
and f ∈ G[Bn] for all n ∈ N. Let P be a path in G that links an endvertex v of
e to an endvertex w of f . Now v is contained in all the An and w is contained
in all the Bn, thus for every {An, Bn} there exists an edge of P with one end in
An and the other in Bn. However, every {An, Bn} corresponds to a bond of size
k of G and, again by the pigeonhole principle, infinitely many of these bonds
must contain the same edge of P . This contradicts Lemma 4.5.1.

Next, to show (ST2), we need the following lemma:

Lemma 4.5.4. If two cut-separations {A1, B1} and {A2, B2} cross, and a third
cut-separation {X,Y } is nested with both {A1, B1} and {A2, B2}, then {X,Y }
is nested with {A1 ∩A2, B1 ∪B2} (provided that this is a cut-separation).

Proof. Since {X,Y } is a cut-separation that is nested with both, {A1, B1} and
{A2, B2}, either X or Y is a subset of B1 or B2, in which case it is immediate
that {X,Y } is nested with {A1 ∩ A2, B1 ∪ B2} as desired, or, one of X and
Y is a subset of A1 and one of X and Y is a subset of A2. However, since
A1 ∪A2 6= V (G) (as {A1, B1} and {A2, B2} cross) it needs to be the case that
either X ⊆ A1 ∩ A2 or Y ⊆ A1 ∩ A2, so in either case {X,Y } is nested with
{A1 ∩A2, B1 ∪B2} as desired.
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Using this lemma, we can now show (ST2):

Lemma 4.5.5. If {A,B} ∈ Ai and {C,D} ∈ Aj cross with |i| < |j|, then Aj
contains some corner of {A,B} and {C,D} that is nested with {A,B}.

Proof. Let us denote the two edge-blocks in j as β and β′ so that β v C and
β′ v D. Since the order of {A,B} is less than |j|, we may assume without loss of
generality that β, β′ v A. We claim that either {A∩C,B∪D} or {A∩D,B∪C}
is the desired corner in Aj , and we refer to them as corner candidates. Both
are cut-separations that distinguish β and β′, and both are nested with {A,B}.
Furthermore, by Lemma 4.5.4, every cut-separation that is nested with both
{A,B} and {C,D} is also nested with both corner candidates. It remains to
show that at least one of the two corner candidates has order at most |j|, because
then it lies in Aj as desired. However, this follows as the order function on the
set of bond-separations is submodular: let us assume for a contradiction that
both corner candidates have order greater than |j|. Then the two inequalities

|E(A ∩ C,B ∪D)|+ |E(B ∩D,A ∪ C)| 6 |E(A,B)|+ |E(C,D)|
and |E(A ∩D,B ∪ C)|+ |E(B ∩ C,A ∪D)| 6 |E(A,B)|+ |E(C,D)|

imply
|E(B ∩D,A ∪ C)| < |i| and |E(B ∩ C,A ∪D)| < |i|.

Recall that the edge-blocks forming the pair i are k-edge-blocks for some values
k greater than |i|. One of the edge-blocks of the pair i lives in B, and due to the
latter two inequalities, this edge-block must live either in B∩D or in B∩C. But
then, either {B ∩D,A ∪ C} or {B ∩ C,A ∪D} is a cut-separation of order less
than |i| that distinguishes the two edge-blocks forming the pair i, contradicting
the fact that an order of at least |i| is required for that.

Finally, to show (ST3), we need the following lemma:

Lemma 4.5.6. Let {A1, B1} and {A2, B2} be crossing cut-separations such that
both {A1∩A2, B1∪B2} and {A1∪A2, B1∩B2} are cut-separations as well. Then
every cut-separation that crosses both {A1∩A2, B1∪B2} and {A1∪A2, B1∩B2}
must also cross both {A1, B1} and {A2, B2}.

Proof. Consider any cut-separation {X,Y } that crosses both {A1∩A2, B1∪B2}
and {A1 ∪A2, B1 ∩B2}. Since {X,Y } crosses {A1 ∩A2, B1 ∪B2}, both X and
Y contain a vertex from A1 ∩A2. Since {X,Y } crosses {A1 ∪A2, B1 ∩B2}, both
X and Y contain a vertex from B1 ∩B2. Hence, {X,Y } crosses both {A1, B1}
and {A2, B2}.

Let us now show (ST3):

Lemma 4.5.7. If {A,B} ∈ Ai and {C,D} ∈ Aj cross with |i| = |j| = k ∈ N,
then either Ai contains a corner of {A,B} and {C,D} with strictly lower k-
crossing number than {A,B}, or else Aj contains a corner of {A,B} and {C,D}
with strictly lower k-crossing number than {C,D}.

Proof. Let us assume without loss of generality that the k-crossing number of
{A,B} is less than or equal to the k-crossing number of {C,D}, and let us
denote the edge-blocks in j as β and β′ so that β v C and β′ v D. We consider
two cases.
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In the first case, {A,B} distinguishes the two edge-blocks β and β′. Hence,
β v A∩C and β′ v B ∩D, say. Then both {A∩C,B ∪D} and {B ∩D,A∪C}
distinguish the two edge-blocks β and β′ that form the pair j, and so they have
order at least |j| = k. Furthermore, we have, by submodularity,

|E(A ∩ C,B ∪D)|+ |E(B ∩D,A ∪ C)| 6 |E(A,B)|+ |E(C,D)| = 2k, (1)

so both {A ∩ C,B ∪ D} and {B ∩ D,A ∪ C} must have order exactly k. In
particular, both are contained in Aj , and they are corners of {A,B} and {C,D}
by Lemma 4.5.4. Next, we assert that the k-crossing numbers of {A∩C,B ∪D}
and {B ∩ D,A ∪ C} in sum are less than the sum of the k-crossing numbers
of {A,B} and {C,D}. Indeed, all the k-crossing numbers involved are finite
by (ST1), and the two cut-separations {A,B} and {C,D} cross which allows
us to deduce the desired inequality between the sums by the Lemmas 4.5.4
and 4.5.6, as follows:

• by Lemma 4.5.4, every {X,Y } ∈ A of order k that crosses at least one of
{A∩C,B ∪D} and {B ∩D,A∪C} must cross at least one of {A,B} and
{C,D}; and

• by Lemma 4.5.6, every {X,Y } ∈ A of order k that crosses both cut-sepa-
rations {A ∩ C,B ∪D} and {B ∩D,A ∪ C} must cross both {A,B} and
{C,D}.

But then, the strict inequality between the sums, plus our initial assumption
that the k-crossing number of {A,B} is less than or equal to that of {C,D},
implies that one of {A ∩ C,B ∪D} and {B ∩D,A ∪ C} must have a k-crossing
number less than the one of {C,D}, as desired.

In the second case, {A,B} does not distinguish the two edge-blocks β and β′.
Recall that all the edge-blocks in the two pairs i and j are `-edge-blocks for
some values ` > k. Hence, β ∪ β′ v A, say. Let us denote by β′′ the edge-block
in i that lives in B. Then either β′′ v B ∩ C or β′′ v B ∩D, say β′′ v B ∩D.
In total:

β v A ∩ C, β′ v A ∩D and β′′ v B ∩D.

Therefore, {A∩C,B∪D} distinguishes the two edge-blocks β and β′ forming the
pair j which imposes an order of at least k, and {B∩D,A∪C} distinguishes the
two edge-blocks forming the pair i which imposes an order of at least k as well.
Combining these lower bounds with (1) we deduce that both {A∩C,B∪D} and
{B ∩D,A ∪ C} have order exactly k. In particular, they are contained in Aj
and Ai respectively, and they are corners of {A,B} and {C,D} by Lemma 4.5.4.
Repeating the final argument of the first case, we deduce from the strict inequality
between the sums of the k-crossing numbers that either {A ∩ C,B ∪D} ∈ Aj
has strictly lower k-crossing number than {C,D}, or else {B ∩D,A ∪ C} ∈ Ai
has strictly lower k-crossing number than {A,B}, completing the proof.

We can now prove the first main result of this section:

Proof of Theorem 17. Let G be any connected graph. By the Lemmas 4.5.3,
4.5.5, and 4.5.7 we may apply Lemma 15 to the family (Ai : i ∈ I ) defined at
the beginning of this section. This results in the desired nested set N(G) ⊆ A.
To see that it is canonical, note that any isomorphism ϕ : G → G′ induces an
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isomorphism between (A,∼) and (A′,∼′), where the latter is defined like the
former but with regard to G′. Thus, by the ‘moreover’ part of Lemma 15, we
indeed obtain that ϕ(N(G)) = N(ϕ(G)).

4.5.4 Nested sets of bonds and tree-cut decompositions
Recall that, given a connected graph G, we denote by N = N(G) the canonical
set of nested bonds from Theorem 17 that efficiently distinguishes all the edge-
blocks of G. Furthermore, recall that the subset Nk ⊆ N is formed by the bonds
in N of order less than k. In this section, we show that:

• For every k ∈ N, the subset Nk ⊆ N is equal to the set of fundamental cuts
of a tree-cut decomposition of G that decomposes G into its k-edge-blocks.

To this end, we first introduce the notion of a tree-cut decomposition. Recall
that a near-partition of a set M is a family of pairwise disjoint subsets Mξ ⊆M ,
possibly empty, such that

⋃
ξMξ = M .

Let G be a graph, T a tree, and let X = (Xt)t∈T be a family of vertex sets
Xt ⊆ V (G) indexed by the nodes t of T . The pair (T,X ) is called a tree-cut
decomposition of G if X is a near-partition of V (G). The vertex sets Xt are the
parts or bags of the tree-cut decomposition (T,X ). When we say that (T,X )
decomposes G into its k-edge-blocks for a given k, we mean that the non-empty
parts of (T,X ) are the sets of vertices of the k-edge-blocks of G. In this section
of this thesis, we require the nodes with non-empty parts to be dense in T in
that every edge of T lies on a path in T that links up two nodes with non-empty
parts.

If (T,X ) is a tree-cut decomposition, then every edge t1t2 of its decomposition
tree T induces a cut E(

⋃
t∈T1

Xt ,
⋃
t∈T2

Xt ) of G where T1 and T2 are the two
components of T − t1t2 with t1 ∈ T1 and t2 ∈ T2. Here, the nodes with non-
empty parts densely lying in T ensures that both unions are non-empty, which is
required of the sides of a cut. We call these induced cuts the fundamental cuts
of the tree-cut decomposition (T,X ). Note that, unlike the fundamental cuts of
a spanning tree, the fundamental cuts of a tree-cut decomposition need not be
bonds.

It is important that parts of a tree-cut decomposition are allowed to be empty,
as the following example demonstrates.

Example 4.5.8. Let the graph G arise from the disjoint union of three copies
G1, G2 and G3 of K4 by selecting one vertex vi ∈ Gi for all i ∈ [3] and
adding all edges vivj (i 6= j ∈ [3]). Then the 3-edge-blocks of G are the
three vertex sets V (G1), V (G2) and V (G3). Since N(G) is canonical, we have
N3(G) = {F1, F2, F3 } where Fi := { vivj : j 6= i }. However, we cannot find
a tree-cut decomposition (T,X ) of G such that, on the one hand, T is a tree
on three nodes t1, t2, t3 and Xti = V (Gi) for all i ∈ [3], and on the other
hand, the fundamental cuts of (T,X ) are precisely the bonds in N3(G): the
decomposition tree T would then be a path of length two, and hence would
induce two fundamental cuts, but N3(G) consists of three bonds.

Similar like a tree-decomposition forms an S-tree, so does a tree-cut de-
composition: a tree-cut decomposition (T,X ) makes T into an S-tree for the
set S of cut-separations which correspond to its fundamental cuts. We will
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use this observation to relate the set Nk to a tree-cut decomposition, by using
Theorem 2.6.1 by Gollin and Kneip.

Nk is a set of fundamental cuts

The following theorem clearly implies that Nk is the set of fundamental cuts of
a tree-cut decomposition of G that decomposes G into its k-edge-blocks:

Theorem 4.5.9. Let G be any connected graph and k ∈ N. Every nested set of
bonds of G of order less than k is the set of fundamental cuts of some tree-cut
decomposition of G.

Proof. Let G be any connected graph, k ∈ N, and let B be any nested set of
bonds of G of order less than k. We write S for the set of bond-separations
which correspond to the bonds in B.

First, we wish to use Theorem 2.6.1 to find an S-tree (T, α) so that the map
α : E(T )→ S is an isomorphism. Since clearly no separation in S is small and
so S is a regular tree set, for this, it suffices to show that B cannot contain
pairwise distinct bonds F0, F1, . . . , Fω such that each bond Fα has a side Aα
with Aα ( Aβ for all α < β 6 ω. This is immediate from Corollary 4.5.2.

Second, we wish to find a tree-cut decomposition (T,X ) whose fundamental
cuts are precisely equal to the bonds in B. We define the parts Xt of (T,X ) by
letting

Xt :=
⋂
{D : (C,D) = α(x, t) where xt ∈ E(T ) }.

Then clearly the parts Xt are pairwise disjoint. To see that
⋃
tXt includes

the whole vertex set of G, consider any vertex v ∈ V (G). We orient each edge
t1t2 ∈ T towards the ti with v ∈ D for (C,D) = α(t3−i, ti). By Corollary 4.5.2
we may let t be the last node of a maximal directed path in T ; then all the edges
of T at t are oriented towards t, and v ∈ Xt follows. Therefore, X is a near-
partition of V (G). It is straightforward to see that B is the set of fundamental
cuts of (T,X ).

N is not a set of fundamental cuts

Finally, we show that there exists a graph G that has no nested set of cuts which,
on the one hand, distinguishes all the edge-blocks of G efficiently, and on the
other hand, is the set of fundamental cuts of some tree-cut decomposition.

Example 4.5.10. This example is a variation of Example 4.4.8. Consider the
locally finite graph displayed in Fig. 4.5. This graph G is constructed as follows.
For every n ∈ N>1 we pick a copy of K2n+2 together with n + 2 additional
vertices wn1 , . . . , wnn+2. Then we select 2n vertices of the K2n+2 and call them
un1 , . . . , u

n
2n . Furthermore, we select 2n+1 vertices of the K2n+2 , other than the

previously chosen uni , and call them vn1 , . . . , v
n
2n+1 . Now we add all the red edges

vni u
n+1
i , all the blue edges wni wn+1

j , and if n > 2 we also add the black edge
un1w

n
1 . Finally, we disjointly add one copy of K10 and join one vertex v0

1 of this
K10 to u1

1 and u1
2; and we select another vertex w0

1 ∈ K10 distinct from v0
1 and

add all edges w0
1w

1
i . This completes the construction.
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K8 K16 K32 K64 K128 K256

K10

Figure 4.5: The only cut that efficiently distinguishes the two edge-blocks defined
by K64 and by K128 is drawn in green.

Now the vertex sets of the chosen K2n+2 are (2n+2 − 1)-edge-blocks Bn. The
only cut-separation that efficiently distinguishes Bn and Bn+1 is

Fn := {
n⋃
k=1

Bn , V \
n⋃
k=1

Bn }.

Additionally, the vertex set of the K10 is a 9-edge-block B0. The only cut-sepa-
ration that efficiently distinguishes B0 and B1 is F0 := {B0, V \B0}. Therefore,
N(G) must contain all the cuts corresponding to the cut-separations Fn (n ∈ N).
But the cut-separations Fn define an (ω + 1)-chain

(B1, V \B1) < (B1 ∪B2, V \ (B1 ∪B2)) < · · · < (V \B0, B0),

soN(G) cannot be equal to the set of fundamental cuts of a tree cut-decomposition
of G by Theorem 2.6.1.

4.5.5 Generating all bonds
A set S of cut-separations generates a cut {X,Y } if and only if both (X,Y )
and (Y,X) can be obtained from finitely many oriented cut-separations in S by
taking suprema and infima, where

• (A,B) ∨ (A′, B′) := (A ∪A′, B ∩B′) is the supremum and

• (A,B) ∧ (A′, B′) := (A ∩A′, B ∪B′) is the infimum

of two cut-separations (A,B) and (A′, B′). In this section we prove Theorem 18:

Theorem 18. Let G be any connected graph and let M be any nested set of
bonds of G. Then the following assertions are equivalent:

1. M efficiently distinguishes all the edge-blocks of G;
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2. For every k ∈ N, the 6k-sized bonds in M generate all the k-sized cuts
of G.

For the proof, we need a generalized version of the star-comb lemma [20,
Lemma 8.2.2]. A comb in a given graph G means one of the following two
substructures of G:

1. The union of a ray R (the comb’s spine) with infinitely many disjoint finite
paths, possibly trivial, that have precisely their first vertex on R. The last
vertices of those paths are the teeth of this comb.

2. The union of a ray R (the comb’s spine) with infinitely many disjoint
pairwise inequivalent rays R0, R1, . . . that have precisely their first vertex
on R. The ends to which the rays R0, R1, . . . belong are the teeth of this
comb.

Given a set U ⊆ V (G)∪Ω(G), a comb attached to U is a comb with all its teeth
in U . A star attached to U is either a subdivided infinite star with all its leaves
in U , or a union of infinitely many rays that meet precisely in their first vertex
and belong to distinct ends in U .

Lemma 4.5.11 (Generalized star-comb lemma). Let U ⊆ V (G) ∪ Ω(G) be an
infinite set for a connected graph G. Then G contains either a comb attached to
U or a star attached to U .

Proof. If U contains infinitely many vertices of G, then we are done by the
standard star-comb lemma [20, Lemma 8.2.2]. Hence, we may assume that U
consists of ends and, say, is countable. Inductively, we choose for each end ω ∈ U
a ray Rω ∈ ω so that Rω is disjoint from all previously chosen rays, ensuring that
all chosen rays are pairwise disjoint, and we let U ′ consist of the first vertices of
these rays. Then we consider an inclusion-wise minimal tree T ⊆ G that extends
all the rays Rω with ω ∈ U . Let T ′ ⊆ T be the inclusion-wise minimal subtree
that contains U ′. Then, by the standard star-comb lemma, T ′ contains either a
star or a comb attached to U ′, and either extends to a star or comb attached
to U .

For more on stars and combs, see the series [4–7].
We are now ready to conclude this section of this thesis with a proof of

Theorem 18:

Proof of Theorem 18. (ii)→(i) Let M be any nested set of bonds of G such that,
for every k ∈ N, the 6k-sized bonds in M generate all the k-sized cuts of G,
and suppose for a contradiction that there are two edge-blocks β1, β2 which are
not efficiently distinguished by any bond in M . Let {X,Y } be some bond-sep-
aration which efficiently distinguishes β1 and β2, and let k be its order. Let
{ {A`, B`} : ` < n } be a finite set of 6k-sized bonds inM which generate {X,Y }.
Since M does not efficiently distinguish β1 from β2, for every ` < n we either
have that both β1 and β2 live in A`, or that both of them live in B`. However,
this implies that either both β1 and β2 live in X, or that both of them live in Y ,
as both X and Y are obtained as by a combination of unions and intersections
of the A` and B`. This contradicts the fact that {X,Y } distinguishes β1 and β2.

(i)→(ii) We assume (i). It suffices to prove (ii) for finite bonds. Let
B = E(V1, V2) be any bond of G of size k, say. By Theorem 4.5.9, the set
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formed by the 6k-sized bonds in M is the set of fundamental cuts of a tree-cut
decomposition (T,X ) of G. Write (T, α) for the S-tree that arises from (T,X ).

Since B is finite, only finitely many parts of (T,X ) contain endvertices of
edges in B. We let H be the minimal subtree of T which contains all the
nodes corresponding to these parts. Note that H is finite. Then we let H ′ be
the subtree of T which is induced by the nodes of H and all their neighbours
in T . The subtree H ′ might be infinite, but it is rayless. Let H be the tree-cut
decomposition of G which corresponds to the S-tree (H ′, α � E(H ′)).

We claim that every two edge-blocks of G that are distinguished by B are also
distinguished by some fundamental cut of H. For this, let β1 v V1 and β2 v V2
be any two edge-blocks of G that are distinguished by B. Then β1 and β2 are
also distinguished by a 6 k-sized bond in M , and hence some fundamental cut
of (T,X ) distinguishes β1 and β2 as well. Let st be an edge of T whose induced
fundamental cut distinguishes β1 and β2, chosen at minimal distance to H ′ in T .
Then β1 lives in C and β2 lives in D for (C,D) = α(s, t), say. We claim that st is
also an edge of H ′, and assume for a contradiction that it is not. Then s, say, is
not a vertex of H ′ and t lies on the s–H ′ path in T . Since {C,D} is an element
of M , it is a bond and in particular G[C] is connected. Moreover, C avoids the
endvertices of the edges in B, because t separates s from H. Therefore, C is
included in one of the two sides of B, say in V1, so β1 lives in V1. The node t,
however, cannot lie in H because this would imply s ∈ H ′, so t has a neighbour
u in T which separates t (and s) from H. Let (C ′, D′) := α(t, u). Since s and u
are distinct neighbours of t, we have (C,D) 6 (C ′, D′). As argued for (C,D),
we find that C ′ must be included in one of the two sides of B, and this side must
be V1 since C is included in both V1 and C ′. By the choice of st at minimal
distance to H ′, the edge-block β2 must live in C ′ (or we could replace st with tu,
contradicting the choice of st). But then, both β1 and β2 live in V1, the desired
contradiction.

We replace (T,X ) with H. Then:

Every two edge-blocks of G that are distinguished by B are
also distinguished by some fundamental cut of (T,X ). (∗)

Given a node t ∈ T , we denote by X̂t the subset of V̂ (G) which is the
union of all the (k + 1)-edge-blocks of G that live in D for all cut-separations
(C,D) = α(s, t) with (s, t) ∈ E(T ). Then X̂t ∩ V (G) = Xt and we call X̂t

the extended part of t. Note that extended parts of distinct nodes are disjoint.
Since T is rayless, the extended parts near-partition V̂ (G). As an immediate
consequence of (∗), every extended part of (T,X ) lives either in V1 or V2.

We colour the nodes of T using red and blue, as follows. We colour a node
t ∈ T red if X̂t is non-empty and X̂t v V1. Similarly, we colour a node t ∈ T
blue if X̂t is non-empty and X̂t v V2. Finally, we consider all the nodes t ∈ T̂
with X̂t = ∅. These induce a forest in T . We colour all the nodes in a component
of this forest red if the component has a red neighbour, and blue otherwise.

We let T1 ⊆ T be the forest induced by the red nodes, and we let T2 ⊆ T
be the forest induced by the blue nodes. The way in which we coloured the
nodes with empty extended parts ensures that, for every connected component
C of T1 or of T2, some node t ∈ C has a non-empty extended part X̂t. Note that
B = E(

⋃
t∈T1

Xt ,
⋃
t∈T2

Xt ) by the definition of T1 and T2. We claim that we
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are done if T contains only finitely many T1–T2 edges. Indeed, if s0t0, . . . , sntn
are the finitely many T1–T2 edges with s` ∈ T1 and t` ∈ T2, then

(V1, V2) =
∧

C: a component of T2

∨
`: t`∈C

α(s`, t`) .

Thus, it remains to show that T contains only finitely many T1–T2 edges. For
this, we consider the tree T̃ that arises from T by contracting every component
of T1 and every component of T2 to a single node. Since T is rayless, so is T̃ .
By Kőnig’s lemma, it remains to show that T̃ is locally finite.

Suppose for a contradiction that d ∈ T̃ is a vertex that has some infinitely
many neighbours cn (n ∈ N). Recall that all the sets Yc :=

⋃
{ X̂t : t ∈ c } where

c is a node of T̃ are non-empty. We choose one point un ∈ Ycn for every n ∈ N,
and we apply the star-comb lemma in the connected side G[Vi] of B where all
sets Ycn live to the infinite set U := {un : n ∈ N }. Then we cannot get a star,
because the finite fundamental cuts of (T,X ) induced by its Ti–d edges would
force the centre vertex to lie in Yd, contradicting the fact that Yd lives in V3−i.
Therefore, the star-comb lemma must return a comb contained in G[Vi] and
attached to U . Without loss of generality, each un is a tooth of this comb.

Let us consider the end of G that contains the spine of the comb. This end
is contained in a (k + 1)-edge-block β v Vi. And β in turn is included in a set
Yc where c is a component of Ti. Hence, c 6= d. But then, the fundamental cut
of (T,X ) which corresponds to the Ti–d edge on the c–d path in T separates a
tail of the comb from infinitely many un, a contradiction.
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4.6 Obtaining trees of tangles from tangle-tree
duality

4.6.1 Introduction
In this section of this thesis we demonstrate the versatility of the most abstract
version of the tangle-tree duality theorem: we deduce Theorem 1.1.3 and some
of its variations from it, reducing the two pillars of abstract tangle theory to a
single pillar.

In order to use tangle-tree duality to deduce tree-of-tangles theorems like
Theorem 1.1.3, we exploit the generality of the most abstract version of the
tangle-tree duality theorem, which reads as follows:
Theorem 4.6.1 (Tangle-tree duality theorem [30, Theorem 4.3]). Let U be a
universe containing a finite separation system S ⊆ U and let F ⊆ 2U be a set of
stars such that F is standard for S and S is F-separable. Then exactly one of
the following statements holds:

• there is an F-tangle of S;

• there is an S-tree over F .

The strength of Theorem 4.6.1 lies in the flexibility it allows in the choice
of F . This set F can be tailored to capture a wide variety of tangles and
clusters, allowing Theorem 4.6.1 to be employed in a multitude of different
settings ([26,29]). The freedom in choosing and manipulating F will also allow
us to achieve our goal of deducing tree-of-tangles theorems from Theorem 4.6.1:
by a clever choice of F we can ensure that there is no F-tangle of S, and that
the S-tree over F one then obtains will be a tree of tangles. We present multiple
variations of this idea throughout this section of this thesis.

In terms of simplicity and brevity, reducing the tree-of-tangles theorem to the
tangle-tree duality theorem in this way cannot compete with its direct proofs in
[27],[26] or Section 4.1, our general purpose solution to obtaining tree-of-tangles
theorems in a wide range of structures. (There, we showed an even more general
theorem than Theorem 1.1.3 which no longer mentions tangles or profiles at all,
but just talks about sets of separations fulfilling one simple-to-check condition.)

Instead of competing in terms of simplicity and brevity just for a proof of
the tree-of-tangles theorem, the aim of this section is to bridge the two parts
of the theory needed for their classical proofs. This can be viewed in two ways.
Firstly, that we introduce tools from tangle-tree duality into the world of trees
of tangles, which gives us a new method for building trees in this context very
unlike the proofs in [26,27,39].

Secondly, and perhaps more importantly, from the perspective of tangle-tree
duality this may be viewed as introducing a new range of ways of how to apply the
duality theorem by a careful choice of F . Previous applications of Theorem 4.6.1
all worked with largely similar choices of F , all designed to capture some notion
of ‘width’, whereas we specifically construct F in such a way that no F-tangle
can exist, thereby making sure that Theorem 4.6.1 gives us the dual object which
will be the desired tree of tangles.

A new result that we get from this method is that it allows us to bound the
degrees of the nodes in a tree of tangles in some contexts. Getting such a degree
condition out of the original proofs does not appear to be simple.
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The structure of this section is as follows. In Section 4.6.2 we will repeat the
required definitions from [21, 26, 27, 29, 30] not already given in Chapter 2. In
Section 4.6.3 we prove our first basic tree-of-tangles theorem, for structurally
submodular separation systems. A refined version of this argument will be given
in Section 4.6.4, where we show that the approach via tangle-tree duality yields
a bound on the degrees of the nodes in a tree of tangles. In Section 4.6.5 we
present a more involved argument to obtain a tree of tangles that distinguishes
a set of profiles efficiently. Again, this approach can be used to obtain a result
about the degrees in such a tree, and we do so in Section 4.6.6. In Section 4.6.7
we prove a tree-of-tangles theorem for tangles of different orders.

4.6.2 Terminology and background
The tree-of-tangles theorem (see [27])

For the purpose of this section, we shall use the following slightly more restrictive,
non-canonical version of Theorem 1.1.2:

Theorem 4.6.2 ([27, Corollary 3.7], modified). Let (U,6,∗ ,∨,∧, | |) be a
submodular universe of separations. For every set P of pairwise distinguishable
robust regular profiles in U there is a regular tree set T = T (P) ⊆ U of separations
such that:

(i) every two profiles in P are efficiently distinguished by some separation in
T ;

(ii) every separation in T efficiently distinguishes a pair of profiles in P.

Apart from the nested set T not being canonical, the major difference between
Theorem 1.1.2 and Theorem 4.6.2 lies in the fact that we require here that the
set P of profiles is regular and robust, whereas Theorem 1.1.2 only required P
to be a robust set of profiles. Moreover, we do not directly achieve that T is
a regular tree set, this however can easily be fixed at a later point: if T is a
nested set of separations which efficiently distinguish any two regular profiles
from P , then just deleting all separations with a small orientation from T results
in a regular tree set doing so as well, as no small separation can distinguish two
regular profiles.

Tangle-tree duality (see [30])

Given some set F of subsets of S, an F-tangle of S is a consistent orientation of
S which includes no subset in F . Given a submodular universe U , we say that
τ is an F-tangle in U if τ is an F-tangle of some Sk. Observe that profiles are
FP -tangles for the set FP of all ‘profile triples’ {r, s, (r ∨ s)∗} ⊆ S .

Often we will consider sets F of stars.
We say that a set F forces a separation s ∈ S if {s} ∈ F .
F is standard for S if it forces all trivial separations, that is F contains all

singletons {s} for co-trivial s ∈ S .
Recall that an S-tree (T, α) consists of a tree T together with a map α from

E(T ) to S which commutes with ∗. Given some set F of subsets of S, such an
S-tree (T, α) is over F if α(t) ∈ F for all t ∈ V (T ), i.e. for very node t of T the
set of all ingoing separations at that node is contained in F .
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An S-tree (T, α) is irredundant if for any node t ∈ V (T ) and distinct neigh-
bours t′, t′′ ∈ N(t) we have that α(t′, t) 6= α(t′′, t).

Note that, if F is a set of stars, then any irredundant S-tree over F is
order-respecting.

Given a separation system S inside a universe U and r, s0 ∈ S with s0 > r
and where r is neither degenerate nor trivial in S , the shifting map f ↓rs0

is
defined by letting, for every s > r,

f ↓rs0
(s) = s ∨ s0 and f ↓rs0

(s) = (s ∨ s0 )∗.

This map is defined on S>r r {r}, where S>r is the set of all separations t ∈ S
which have an orientation t with t > r, and S>r is the set of all orientations of
separations in S>r .

For an irredundant S-tree (T, α) over some set of stars with {r} = α(x), for
some leaf x of T , we write

αx,s0 := f ↓rs0
◦ α .

The resulting new tree (T, αx,s0 ) is called the shift of (T, α) from r to s0 if the
leaf x is the only one which has α(x) = {r}.

Given a separation system S inside a universe U and a star σ ⊆ S , a shift of
σ (to some s0 ∈ S ) is a star of the form

σs0
x := {x ∨ s0} ∪ {y ∧ s0 : y ∈ σ r {x}} ,

where x ∈ σ. Note that if, for some r ∈ S , we have x > r, then σs0
x is the image

of σ under f ↓rs0
.

A separation s emulates r in S if s > r and for every t ∈ S r {r} with t > r
we have s ∨ r ∈ S . The separation s emulates t in S for F if additionally for
every star σ ∈ F with r /∈ σ and every x ∈ σ with x > r we have σsx ∈ F .

Note that for an irredundant S-tree (T, α) over some set of stars F with
{r} = α(x), for some leaf x of T , the shift from r to s0 is again an S-tree over
F if s0 emulates r in S for F .

A separation system S is separable if for any two non-trivial nondegenerate
separations r1 , r2 ∈ S with r1 6 r2 there exists a separation s0 ∈ S , with
r1 6 s0 6 r2 such that s0 emulates r1 in S and s0 emulates r2 in S. The
separation system S is F-separable if we can choose, for any two such r1 and r2
which are non-trivial nondegenerate and not forced by F , such an s0 so that s0
emulates r1 in S for F and s0 emulates r2 in S for F .

The abstract tangle-tree duality theorem now states the following:

Theorem 4.6.1 (Tangle-tree duality theorem [30, Theorem 4.3]). Let U be a
universe containing a finite separation system S ⊆ U and let F ⊆ 2U be a set of
stars such that F is standard for S and S is F-separable. Then exactly one of
the following statements holds:

• there is an F-tangle of S;

• there is an S-tree over F .

If, in the following, we speak of the duality theorem, we mean Theorem 4.6.1.
The condition of F-separability is sometimes split into two parts which, in

sum, are stronger: firstly, that S is separable and secondly that F is closed
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under shifting, that is, every shift σ′ of a star σ ∈ F is also in F if σ′ ⊆ S .
(Compare [26, Lemma 12].)

We shall need the following additional lemmas from the literature:

Lemma 4.6.3 ([30, Lemma 2.1]). Every irredundant S-tree (T, α) over stars is
order-respecting. In particular, α(E(T )) is a nested set of separations in S .

Lemma 4.6.4 ([30, Lemma 2.3]). If (T, α) is an S-tree over F , possibly redund-
ant, then T has a subtree T ′ such that (T ′, α′) is an irredundant S-tree over F ,
where α′ is the restriction of α to E(T ′). If (T, α) is rooted at a leaf x and T
has an edge, then T ′ can be chosen so as to contain x and ex, the edge incident
to x in T .

Lemma 4.6.5 ([26, Lemma 13]). Let U be a universe of separations and S ⊆ U
a structurally submodular separation system. Then S is separable.

Moreover, we shall need a variant of [30, Lemma 4.2] which follows with the
exact same proof:

Lemma 4.6.6 ([30]). Let F ⊆ 2U be a set of stars. Let (T, α) be a tight and
irredundant S-tree with at least one edge, over some set of stars, and rooted at
a leaf x. Assume that r := α(ex ) is non-trivial and nondegenerate, let s0 ∈ S
emulate r in S for F , and consider α′ := αx,s0 . Then (T, α′) is an order-
respecting S-tree in which {s0 } is a star associated with x but with no other leaf
of T . Moreover α′(t) ∈ F for all t 6= x with α(t) ∈ F .

The only difference in the statement between Lemma 4.6.6 and [30, Lemma
4.2] is that [30, Lemma 4.2] requires that (T, α) is an S-tree over F , whereas
we only require (T, α) to be an S-tree over some set of stars. Consequently,
in [30, Lemma 4.2] it is shown that then (T, α′) is an S-tree over F ∪ {{s0}}
whereas we only conclude that α′(t) ∈ F whenever α(t) ∈ F .

Splices in submodular universes

In addition to the existing terminology, we shall need the following new concept,
which has already been considered in [29], but has not been given a name there:
in a submodular universe U a separation s is a splice for a separation r with
r 6 s if there is no separation t with r 6 t 6 s and |t| < |s|. A splice between
two separations r and s with r 6 s is one of minimum order among all t with
r 6 t 6 s.

These splices are good choices for proving separability due to the next lemma.
It follows directly from the proof of Lemma 3.4 of [29] which, phrased in our
terminology, considers a splice between two separations. We recapitulate the
main argument of this proof below.

Lemma 4.6.7 ([29]). Consider Sk ⊆ U in a submodular universe. If s ∈ Sk
is a splice for r ∈ Sk , then, for every t ∈ U with t > r, the order of t ∨ s is at
most the order of t. In particular, s emulates r in Sk .

Proof sketch, see [29, Lemma 3.4]. If the order of t ∨ s were greater than the
order of t, then, by submodularity, the order of t ∧ s would be less than the
order of s. However, by the fish Lemma 2.3.1, r 6 t ∧ s 6 s and this contradicts
the fact that s is a splice for r.
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This lemma then directly implies the ultimate statement of [29, Lemma 3.4]:

Lemma 4.6.8 ([29, Lemma 3.4]). Every Sk ⊆ U in a submodular universe is
separable.

4.6.3 Structurally submodular separation systems
In this section we will prove the first tree-of-tangles theorem of this section
of this thesis. It is a theorem for regular profiles, all of the same structurally
submodular separation system, and states as follows:

Theorem 4.6.9. Let S be a structurally submodular separation system. Then
S contains a nested set that distinguishes the set of regular profiles of S.

By itself Theorem 4.6.9 is nothing special; indeed, it is a slight weakening
of Theorem 1.1.3, which asserts the same but without requiring the profiles to
be regular. In this case the ingredients of the proof are more interesting than its
result: we shall obtain Theorem 4.6.9 as a direct consequence of Theorem 4.6.1.

So let S be a structurally submodular separation system inside some uni-
verse U . Since we are interested in the regular profiles of S we may assume
that S has no degenerate elements. Our strategy will be as follows: we shall
construct a set F ⊆ 2U for which there is no F-tangle of S, and so that every
element of F is included in at most one regular profile of S. If we can achieve
this, then Theorem 4.6.1 applied to this set F will yield an S-tree over F . The
set N of edge labels of this S-tree (T, α) will then be the desired nested set
distinguishing all regular profiles of S: each regular profile P of S orients the
edges of T and hence includes a star σ of the form α(t) for some t ∈ V (T ). By
choice of F this σ is included in no other regular profile of S, which means that
it distinguishes P from all other profiles.

To construct this set F , first let P be the set of all ‘profile triples’ in S :
the set of all {r, s, (r ∨ s)∗} ⊆ S . For a consistent orientation of S it is then
equivalent to be a profile of S and to be a P-tangle. Furthermore, let C be the
set of all {s} with s ∈ S co-small. Finally, let M consist of each of the sets
maxP of maximal elements of P for each regular profile P of S. We then take

F := P ∪ C ∪M .

With these definitions the regular profiles of S are precisely its (P ∪ C)-tangles;
and there are no F-tangles of S since each regular profile P of S includes
maxP ∈M ⊆ F . If this F were a set of stars and if we could feed this F
to Theorem 4.6.1, we would receive an S-tree over F and the edge labels of this
S-tree would be our desired nested set, since each element of F is included in at
most one regular profile of S: indeed, the regular profiles of S have no subsets
in P or C, and each element maxP ∈M is included only in P itself.

Unfortunately, we are still some way off from plugging F into Theorem 4.6.1:
we need to ensure that F is a set of stars that is standard for S and that S
is F -separable. Out of these the second and one half of the third are easy: F is
standard for S since C ⊆ F is, and S is separable by Lemma 4.6.5.

We thus need to show that S is not only separable but F-separable. Un-
fortunately our current set F is not even a set of stars yet. However, in [23] a
solution was laid out for this exact situation: a series of lemmas from [23] shows
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that we can simply make F a set of stars and close it under shifting without
altering the set of F-tangles of S.

The way to do this is as follows. Given two elements r and s of some set
σ ⊆ S , by submodularity, either r ∧ s or r ∧ s must lie in S . Uncrossing r and s
in σ then means to replace either r by r ∧ s or s by r ∧ s, depending on which of
these two lies in S . (Structural submodularity ensures that at least one of them
does.) Uncrossing all pairs of elements of σ in turn yields a star σ∗, which we
call an uncrossing of σ. (Note that σ∗ is not in general unique since it depends
on the order in which one uncrosses the elements of σ.) It is then easy to see
that a regular profile of S includes σ if and only if it includes σ∗:

Lemma 4.6.10 ([23, Lemma 11]). If a regular profile of S includes an uncrossing
of some set, it also includes that set.

Conversely, if a regular consistent orientation of S includes some set, it also
includes each uncrossing of that set.

Let us write F∗ for the set of all uncrossings of elements of F . Then F∗ is a
set of stars that is standard for S. We are still not done, however, since F∗ need
not be closed under shifting. We can fix this in a similar manner though.

Just as for uncrossings it is not hard to show that the inclusion of a star’s
shift in a regular profile implies that star’s inclusion:

Lemma 4.6.11 ([23, Lemma 13]). If a regular profile of S includes a shift of
some star, it also includes that star.

In [23] the definition of a shift of a star contains additional technical assump-
tions on σ and s0 , keeping in line with the precise assumptions of Theorem 4.6.1.
However, the proof of Lemma 4.6.11 does not necessitate this, and neither does
its application.

Lemma 4.6.11 says that if we close F∗ under shifting we, again, do not alter
the set of F∗-tangles of S. Formally, set G0 = F∗, and for i > 1 let Gi be the
set of all shifts of stars in Gi−1. Write F̂∗ :=

⋃
i∈N Gi. Then, by Lemma 4.6.11,

the F̂∗-tangles of S are precisely its F∗-tangles, which is to say that there are
no F̂∗-tangles of S. Moreover, this set F̂∗ still has the property that each star
in it is included in at most one regular profile: let us say that σ̂∗ ∈ F̂∗ originates
from σ ∈ F if σ̂∗ can be obtained by a series of shifts from an uncrossing of σ.
The Lemmas 4.6.10 and 4.6.11 then say that, if σ̂∗ ⊆ P for a regular profile P ,
and σ̂∗ originates from σ ∈ F , then σ ⊆ P . Since the only element of F which P
includes is maxP , this implies that no other regular profile of S includes σ̂∗.

We can thus formally prove Theorem 4.6.9:

Proof of Theorem 4.6.9. Define P, C, M, F , F∗, and F̂∗ as above. Then F̂∗
is standard for S since C ⊆ F̂∗, and closed under shifting by construction.
By Lemma 4.6.5 S is separable. Together this gives that S is F-separable.
Hence, we can apply the tangle-tree duality Theorem 4.6.1 to obtain either
an F̂∗-tangle of S or an S-tree over F̂∗.

We claim that the first is impossible. For suppose that P is some F̂∗-tangle
of S. From C ⊆ F̂∗ we know that P is a regular and consistent orientation
of S. If P has the profile property (P), then we could derive a contradiction
from the Lemmas 4.6.10 and 4.6.11 since S has no F-tangle. On the other
hand, if P is not a profile, then P includes some set σ ∈ P . By the second part
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of Lemma 4.6.10 P then also includes some (in fact: each) uncrossing of σ and
hence a set in F∗ ⊆ F̂∗, contrary to its status as an F̂∗-tangle.

So let (T, α) be the S-tree over F̂∗ returned by Theorem 4.6.1, which we may
assume to be irredundant (Lemma 4.6.4). Let N be the image of α. Then N
is a nested subset of S (Lemma 4.6.3). Let us show that N distinguishes all
regular profiles of S. Since (T, α) is an S-tree over F̂∗ each consistent orientation
of S includes some star σ̂∗ ∈ F̂∗ ∩ 2N . In particular if P is a regular profile
of S, then P includes some σ̂∗ ∈ F̂∗ ∩ 2N . Since the only element of F which P
includes is maxP , this σ̂∗ must originate from maxP . Consequently, no other
regular profile of S can include σ̂∗, since none of them include maxP . Thus, σ̂∗
distinguishes P from every other regular profile of S. Since P was arbitrary this
shows that N distinguishes all regular profiles of S.

Let us make some remarks on this proof of Theorem 4.6.9. First, in the
definition of F , we could have used other sets M: the only properties of M
that we used is that every regular profile of S contains some set fromM, and
that no element ofM is included in more than one such regular profile. We will
put this observation to good use in Section 4.6.4, where we will make a more
refined choice forM than simply collecting the sets of maximal elements from
each profile.

Second, with the approach shown here it is not easy to strengthen The-
orem 4.6.9 to the level of Theorem 1.1.3 by dropping the assumption of regularity,
since Lemma 4.6.11 cannot do without this regularity.

In the remainder of this section we will show a more direct version of the
proof presented above. This proof will be the guiding principle by which we will
approach the issues of efficiency and profiles of differing order in Sections 4.6.5
and 4.6.7.

The core idea is that one can take as F the set of all stars that are included
in at most one regular profile of S. An S-tree over this set F would immediately
lead to the desired nested set distinguishing all regular profiles. Moreover, this F
is standard for S since C ⊆ F . To obtain this S-tree over F from Theorem 4.6.1
one would only need to show two things, namely that S is F -separable and that
there is no F-tangle of S. The first of these amounts to Lemma 4.6.11; the
second requires the two insights that every F-avoiding consistent orientation
is a regular profile, and that each regular profile of S includes some star in F ,
both of which retrace some steps of Lemma 4.6.10.

Lemma 4.6.12. Let S ⊆ U be a structurally submodular separation system and
let P be a profile of S . There exists a star σ ⊆ P such that no other profile of S
includes σ.

Proof. Let σ ⊆ P be a star which minimizes the number of profiles which
include σ. Suppose for a contradiction that there exists a profile P ′ 6= P with
σ ⊆ P ′. Some separation s, say, distinguishes P from P ′. Clearly s crosses some
element of σ.

Suppose that, subject to the above, σ and s are chosen so that the number
of separations in σ that s crosses is minimum. Let t ∈ σ be a separation that
s crosses. If either of the corner separations t ∨ s or t ∨ s was in S , then,
by the profile property, it would distinguish P and P ′. It would also, by the
fish Lemma 2.3.1, cross one less separation in σ than s does, contradicting the
choice of s.
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So, by submodularity, the corner separations t ∧ s and t ∧ s are in S . Note
that, by the profile property, any profile including

σ′ := σ r {t} ∪ {t ∧ s, t ∧ s}

also includes σ. Consequently, σ′ together with s are a better choice than σ and
s, a contradiction.

Lemma 4.6.13. Given any set P of profiles of S , every consistent orientation
O of S which is not a profile in P contains a star σ which is not contained in
any profile in P.

Proof. Since O is not a profile in P there is, for every profile P in P , a separation
s such that s ∈ O but s ∈ P . Pick a set N ⊆ O which contains one such
separation for every profile in P and is, subject to this, 6-minimal: that is, there
is no other such set N ′ together with an injective function α : N ′ → N satisfying
s′ 6 α(s′) for all s′ ∈ N ′.

If N is a nested set, then N contains the desired star, so suppose that s, t ∈ N
cross. By submodularity we may suppose, after possibly renaming s and t, that
s ∧ t ∈ S and thus, by consistency, s ∧ t ∈ O. We claim that N r {s} ∪ {s ∧ t}
is also a candidate for N , contradicting the 6-minimality. So suppose that
N r {s} ∪ {s ∧ t} does not contain a separation r such that r ∈ P , say. Then
clearly s ∈ P and t ∈ P , thus, by the profile property s∨ t ∈ P which is precisely
such an r, a contradiction.

We are now ready to give a proof of Theorem 4.6.9 without resorting to
Lemma 4.6.10:

Theorem 4.6.9. Let S be a structurally submodular separation system. Then
S contains a nested set that distinguishes the set of regular profiles of S.

Direct Proof. Let P be the set of regular profiles of S. Let FP ⊆ 2S consist of
all stars σ ⊆ S for which one of the following is true:

(i) No profile in P includes σ, or

(ii) Precisely one profile in P includes σ.

This FP is, by Lemma 4.6.11, closed under shifting: any shift of a star contained
in at most one profile is again contained in at most one profile. The set FP
is also standard for S , since co-small separations are contained in no regular
profile.

By Theorem 4.6.1 there either exists an S-tree over FP , or an FP -tangle
of S. In the former case we obtain the desired nested set. For the latter case
observe that every FP -tangle P , say, is a regular profile: by Lemma 4.6.13
every consistent orientation which avoids FP is a profile and if P would not
be regular, it would contain a co-small separation s which is impossible, since
{s} ∈ FP . So, by Lemma 4.6.12, there exists a star σ ⊆ P which every profile
other than P avoids. In particular σ ∈ FP , which contradicts the fact that P is
an FP -tangle.
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4.6.4 Application: Degrees in trees of tangles
In this section we are going to see that our proof of Theorem 4.6.9 in Section 4.6.3
has one advantage over the usual, more direct proofs of Theorem 4.6.9 from
[26] and Section 4.1: it allows us to easily control the maximum degree of the
resulting tree. More precisely: let S be a structurally submodular separation
system and P a regular profile of S. In this section we answer the following
question: over all trees of tangles that distinguish all regular profiles of S, how
low can the degree of the node containing P in those trees of tangles be?

Let us first make this notion of degree in a tree of tangles formal. For the
purposes of this application only, a tree of tangles (for S) is an irredundant
S-tree (T, α) whose set of edge labels distinguishes all regular profiles of S. For
a regular profile P of S and a tree of tangles (T, α), the node of P in T is the
unique sink of the orientation of T ’s edges induced by P , and the degree of P
in (T, α) is the degree of this node.

Our question is thus: what is the minimum degree of P in (T, α) over all
trees of tangles (T, α)?

A lower bound for this degree can be established as follows. Let δ(P ) denote
the minimal size of a set of separations which distinguishes P from all other
regular profiles of S. If t is the node of P in some tree of tangles (T, α), then α(t)
is such a set of separations which distinguishes P from all other regular profiles
of S; thus, the degree of P in every tree of tangles (T, α) is at least δ(P ).

We show that this lower bound can be achieved: there is a tree of tangles
(T, α) for S in which P has degree exactly δ(P ). In fact (T, α) will be optimal
in this sense not just for P , but for all regular profiles of S simultaneously.
Additionally, the degrees of those nodes of (T, α) that are not the node of some
regular profile will not be unreasonably high: the maximum degree of T will be
attained in some profiles’ node.

Theorem 4.6.14. Let S be a structurally submodular separation system. Then
there is a tree of tangles (T, α) for S in which each regular profile P of S has
degree exactly δ(P ). Furthermore, if ∆(T ) > 3, then ∆(T ) = δ(P ) for some
regular profile P of S.

To prove Theorem 4.6.14 we will follow the first proof of Theorem 4.6.9,
making a more refined choice of M, and utilize the fact that uncrossing and
shifting a set cannot increase its size.

We will later see an example of a structurally submodular separation system
in which δ(P ) 6 2 for every profile P but ∆(T ) = 3 for every tree of tangles T ;
this will demonstrate that the last assertion of Theorem 4.6.14 is optimal in that
regard.

Observe further that the set of maximal elements of a profile P is a set
which distinguishes P from every other profile of S. (In fact, the maximal
elements of P distinguish P from every other consistent orientation of S.)
Therefore, δ(P ) 6 |maxP | and hence the degree of P in the tree of tangles
from Theorem 4.6.14 is at most |maxP |.

Let us now prove Theorem 4.6.14:

Proof of Theorem 4.6.14. For each regular profile P of S pick a subset DP ⊆ P
of size δ(P ) which distinguishes P from every other regular profile of S. Let D
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be the set of these DP . Define P and C as in the proof of Theorem 4.6.9, and set

F := P ∪ C ∪ D .

From here, define F∗ and F̂∗ just as in Theorem 4.6.9 and follow the same proof.
The result is an S-tree over F̂∗, which we may assume to be irredundant and
hence a tree of tangles for S.

Now let P be a regular profile of S, let t be the node of P in T , and
σ̂∗ := α(t). As in the proof of Theorem 4.6.9 the only element of F from
which σ̂∗ can originate is DP . Since uncrossing and shifting DP cannot increase
its size we have |σ̂∗| 6 |DP | = δ(P ). Conversely we have |σ̂∗| > δ(P ) since σ̂∗
distinguishes P from all other regular profiles. Thus, the degree of P in (T, α) is
indeed δ(P ).

Finally, if ∆(T ) > 3, the maximum degree of T is attained in some node t
whose associated star α(t) originates from some DP ∈ D, since all elements
of F̂∗ originating from elements of P or C have size at most three. As above, we
thus have |α(t)| 6 |DP | = δ(P ), giving ∆(T ) = δ(P ).

Let us see an example showing that we cannot guarantee to find T with
maximum degree less than three, even if all regular profiles of S have δ(P ) 6 2:

Figure 4.6: A ground-set and system of bipartitions.

Example 4.6.15. Let V consist of the six points in Fig. 4.6, and S be the
separation system given by the six outlined bipartitions of V together with {∅, V }.
(That is, S contains (A,B) and (B,A) for each of these bipartitions {A,B}. We
have (A,B) 6 (C,D) :⇔ A ⊆ C, and (A,B)∗ = (B,A). Compare [29].) The
regular profiles of S correspond precisely to the six elements of V : each v ∈ V
induces a profile of S by orienting each bipartition towards v, and conversely each
profile of S is of this form. Each profile P has at most two maximal elements,
giving δ(P ) 6 2. However, every tree of tangles for S must contain the outer
three bipartitions and hence have a maximum degree of at least three.

4.6.5 Efficient distinguishers
Often our structurally submodular separation system S is actually an Sk , the
set of all separations of order less than k, of some submodular universe U .
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In this case we are not just interested in a nested set N of separations which
distinguishes all profiles, but one which does so efficiently. Recall that this means
that N , for any two profiles, contains a distinguishing separation of minimum
possible order. In this section we are going to see how this can be achieved
for regular profiles of a fixed Sk utilizing the duality theorem together with a
separate application of its core mechanism: shifting S-trees.

We will prove this theorem:

Theorem 4.6.16. Let U be a submodular universe and let P be a set of regular
profiles of Sk . Then there exists a nested set N ⊆ Sk efficiently distinguishing
all the profiles in P.

Our approach is similar to the one of the direct proof in Section 4.6.3, but
we shall restrict our set of stars so that they do not interfere with efficiency.

Consider a nested set of separations which distinguishes all profiles efficiently
and, subject to this, is ⊆-minimal. Every profile P induces an orientation of this
set, and the maximal elements of this orientation form a star. The separations in
this star are, in a way, ‘well-connected’ to the profile. We make this a condition
on the stars we consider. For a star σ and a profile P , we say that σ has the
property Eff(P ) if the following holds:

@ s ∈ σ and s′ ∈ P : s 6 s′ and |s′| < |s|. (Eff(P ))

This condition ensures that, for two profiles P and P ′, a star σ with prop-
erty Eff(P ) containing s, and a star σ′ with property Eff(P ′) containing s, the
separation s needs to be an efficient P–P ′-distinguisher. For if s is not efficient,
consider an efficient P–P ′-distinguisher r ∈ P . Then r cannot be nested with s,
since s 6 r would contradict property Eff(P ) whereas r 6 s would contradict
property Eff(P ′). But r cannot cross s either: if it did we would have either
|r∨s| < |s| or |r∧s| < |s| by submodularity, again contradicting property Eff(P )
or Eff(P ′), respectively.

Property Eff(P ) is preserved under taking shifts:

Lemma 4.6.17. Let s ∈ Sk be a splice for r ∈ Sk and let σ ⊆ Sk be a star
with some x ∈ σ with x > r. If a profile P contains both σ and σ′ := σsx and σ
has property Eff(P ), then also σ′ has property Eff(P ).

Proof. Suppose for a contradiction that σ′ does not have property Eff(P ), that
is, above some t ∧ s ∈ σ′, where t ∈ σ, there is a separation t′ ∈ P of lower order
than t ∧ s.

We will first show that we may assume t′ 6 t. Since s is a splice for r we
have |s ∧ v| > |s|, and thus by submodularity |s ∧ t| 6 |t|. So if t′ > t, then
this contradicts the assertion that σ has property Eff(P ). If however t′ crosses
t, then, by the profile property of P and property Eff(P ) of σ, the supremum
t′ ∨ t has at least the order of t. By submodularity then, t′ ∧ t has at most the
order of t′ . This is also a separation in P which is above t ∧ s and of lower order
than t ∧ s, so we may consider it instead.

Now, since s is a splice for r we have that |v′ ∧ s| > |s|, so by submodularity
t′ ∧ s has at most the order of t′ . But this t′ ∧ s is the same as t ∧ s since
t > t′ > t ∧ s. So we have |t ∧ s| 6 |t′ |, which contradicts the assumption that
|t′ | < |t ∧ s|.
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We define Fe as the set of all stars σ ⊆ Sk which are contained in at most
one profile in P and which, if they are contained in a profile P ∈ P, fulfil
property Eff(P ).

From the Lemmas 4.6.11 and 4.6.17 immediately we obtain the following
corollary:

Corollary 4.6.18. Sk is Fe-separable.

However, an S-tree over Fe does not necessarily give rise to an efficient
distinguisher set for P because we make no assumptions on those stars which
are not contained in any profile. Our proof of Theorem 4.6.16 will need to make
additional arguments on why an efficient such tree exists.

It would be much more elegant if we could introduce a condition, similar to
Eff(·), on the stars which are in no profile, so as to guarantee that any Sk-tree
over these stars is as desired. However, all possible such properties that the
authors could come up with failed to give F-separability and there is reason
to believe that such a solution is not possible: the critical part in the proof of
Theorem 4.6.16 will make a global argument, specifically that of two shifts of
one separation one is an efficient distinguisher. Separability on the other hand
is defined in terms of each individual shift of a star.

For this section’s analogue of Lemma 4.6.12, we define the fatness of a star σ
as the tuple (nk−1, nk−2, . . . , n1, n0), where ni is the number of separations of
order i in σ. We will consider the lexicographic order on the fatness of stars.

Lemma 4.6.19. Given a set P of regular profiles of Sk , every profile P ∈ P
includes a star in Fe.

Proof. By Lemma 4.6.12 P includes a star which is contained only in P . Take
such a star σ which has lexicographically minimal fatness and suppose for a
contradiction that σ does not have property Eff(P ). So take s ∈ σ and r ∈ P
with s 6 r and |r| < |s|. Among the possible choices for r, let r be one which
crosses as few separations in σ as possible. If r were nested with σ, then the
maximal elements of σ ∪ {r} would form a star of lower fatness, thus we may
suppose that r crosses some x ∈ σ.

By the choice of r, the corner separations r ∨ x and r ∧ x must have strictly
higher order than |r| since both are > s. Thus, by submodularity, the corner
separations r ∧ x and r ∧ x have strictly lower order than |x|. Now the star
σ′ := σ r {x} ∪ {r ∧ x, r ∧ x} has a lower fatness. This star is still contained in
P by consistency and in no other profile, since every profile which includes σ′
also includes σ by the profile property applied with x and r. This contradicts
the choice of σ.

We are now able to prove Theorem 4.6.16:

Proof of Theorem 4.6.16. We may apply Theorem 4.6.1 for Fe since Sk is Fe-
separable by Corollary 4.6.18 and Fe is standard since co-trivial separations
are not contained in any regular profile. From this theorem we cannot get
an Fe-tangle: such a tangle cannot be a profile in P by Lemma 4.6.19, and
Lemma 4.6.13 states that every consistent orientation which is not a profile in
P includes a star which is not contained in any profile in P, but each of these
stars is contained in Fe, so no such orientation is an Fe-tangle. So instead, there
exists an Sk-tree over Fe.
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Among all Sk-trees over Fe pick an irredundant one, (T, α) say, whose
associated separations efficiently distinguishes as many pairs of profiles as possible.
Let us suppose that some pair of profiles P1, P2 is not distinguished efficiently
by this tree.

Consider the nodes vP1 , vP2 of this tree corresponding to P1 and P2. These
nodes are distinct, since every star in Fe is contained in at most one profile.
Moreover, we can assume without loss of generality that in no node on the path
between vP1 and vP2 there lives a profile Q: in that case either the pair P1, Q
or the pair Q,P2 would not be efficiently distinguished by (T, α) either, so we
could consider them instead.

Let sP1 be the separation associated to the first edge on the path from vP1

to vP2 and let sP2 be the separation associated to the first edge on the path
from vP2 to vP1 . There exists a separation t which efficiently distinguishes P1
and P2 and is nested with sP1 and sP2 : if t ∈ P1 is not nested with, say sP1 , we
know by property Eff(P ) that sP1 ∨ t needs to have order at least |sP1 |, thus
sP1 ∧ t has order at most |t|, so it efficiently distinguishes P1 and P2 and is
nested with sP . Thus, by the fish Lemma 2.3.1, there indeed needs to exist such
a t which efficiently distinguishes P1 and P2 and is nested with sP1 and sP2 .
Moreover, t has an orientation such that sP1 6 t 6 sP2 , otherwise the existence
of t again contradicts either property Eff(P ) or Eff(Q). Note that t thus is a
splice between sP1 and sP2 and therefore t emulates sP1 for Fe and t emulates
sP2 for Fe.

Let TP1 be the subtree of T consisting of the component of T − vP1 which
contains vP2 together with vP1 and similarly let TP2 be the subtree consisting of
the component of T − vP2 containing vP1 together with vP2 .

We consider the trees (TP1 , αP1) and (TP2 , αP2) obtained from (TP1 , α�TP1)
and (TP2 , α�TP2) by applying the shifts f ↓sP1

t
and f ↓sP2

t
, respectively. Consider

now the tree (T ′, α′) obtained from these two trees by identifying the respective
edges associated with t. By applying Lemma 4.6.6 with the two shifted trees
the combined tree is again over Fe. We may again assume it to be irredundant.
We are going to show that it efficiently distinguishes more pairs of profiles than
(T, α).

Let Q1, Q2 be a pair of profiles which were efficiently distinguished by a
separation r associated to an edge of (T, α). If r is not associated to any edge of
(T ′, α′), then, without loss of generality, either sP1 6 r 6 sP2 or both sP1 6 r
and sP2 6 r.

In the first case r distinguishes P1 and P2 and therefore |r| > |t|. By the
definition of the shift, our tree (T ′, α′) contains both, r ∨ t and r ∧ t, and both
of them have order at most the order of r, by Lemma 4.6.7. However, one of
r ∨ t, r ∧ t and t distinguishes Q1 and Q2 and does so efficiently.

In the second case, by the definition of the shift, our tree (T ′, α′) contains
both, r ∨ t and r ∨ t, and both of them have order at most the order of r, again
by Lemma 4.6.7. Again, one of r ∨ t and r ∨ t distinguishes Q1 and Q2 and does
so efficiently.

Thus, since (T ′, α′) additionally efficiently distinguishes P1 and P2 with t,
this contradicts the choice of (T, α).
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4.6.6 Degrees in efficient trees of tangles
In this section we apply our method from Section 4.6.4 to Theorem 4.6.16
to obtain a tree of tangles of low degree, but this time one which efficiently
distinguishes the profiles. That is, we are interested in the minimal degrees of
a tree of tangles whose associated separations efficiently distinguish all regular
profiles of Sk.

Extending the definitions of Section 4.6.4, let us say that a tree of tangles
(T, α) for Sk is efficient if the set of edge labels not only distinguishes all regular
profiles of Sk, but does so efficiently.

Given a k-profile P , we denote by δe(P ) the minimal size of a star σ ⊆ P with
property Eff(P ) which distinguishes P from all other regular profiles of Sk, i.e.
every other regular profile orients some s ∈ σ as s. Note that, by Lemma 4.6.19,
there exists such a star for every regular profile P , thus δe(P ) is a well-defined
natural number.

We denote by δe,max the maximum of δe(P ) over all regular profiles P .
We can give a bound on δe(P ) which is not in terms of stars or nested sets:

Lemma 4.6.20. Let P be a regular k-profile in U and let DP ⊆ P be a subset
of P which contains, for every regular k-profile P ′ 6= P in U , a separation which
efficiently distinguishes P from P ′. Let us denote as m the number of maximal
elements of DP . Then δe(P ) 6 m.

Proof. It is enough to consider a set DP ⊆ P so that m = |maxDP | is as small
as possible. Moreover, we may assume without loss of generality that every
element of DP distinguishes P efficiently from some other profile in P, since we
could otherwise remove it from DP . We may furthermore assume that, subject
to all this, DP is chosen so that maxDP is 6-minimal. Furthermore, we may
suppose that, for separations r 6 s in DP , the order of r is lower than the order
of s, since otherwise we could just remove r from DP .

If the maximal separations in DP are pairwise nested, they satisfy prop-
erty Eff(P ) by the fact that they distinguish P efficiently from some other profile
P ′. Further, every profile P ′ is distinguished from P by some maximal separation
in DP : there is an efficient P -P ′ distinguisher s ∈ DP and thus a maximal
separation t > s in DP also distinguishes P from P ′. Hence, if the maximal
elements of DP are pairwise nested, they are a candidate for δe(P ) and therefore
witness that δe(P ) 6 m.

So suppose that this is not the case, so two maximal separations s, t ∈ DP

cross and, without loss of generality, |s| 6 |t|. By the definition of DP , there is
a profile Ps which is efficiently distinguished from P by s ∈ DP . Similarly, there
is such a profile Pt for t.

Since DP was chosen to have as few maximal elements as possible, the
separation s ∨ t has greater order than t: otherwise we could, by consistency
and the profile property, replace t in DP by s ∨ t. Thus, by submodularity, the
order of s ∧ t is less than the order of s. In particular, by efficiency of s and t,
neither Ps nor Pt contains (s ∧ t)∗ = s ∨ t.

Thus, s ∧ t and s ∧ t have order precisely |s| and |t|, respectively: if one of
them had lower order this would, by the profile property, contradict the fact
that s or t, respectively, efficiently distinguishes P from Ps or Pt, respectively.
This means that, in particular, s ∧ t efficiently distinguishes P from Ps.
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For every r 6 s in DP we have assumed |r| < |s|. Both r ∧ t and r ∧ t
have at most the order of r due to submodularity, the efficiency of t, the profile
property and consistency, analogue to the above.

Let us consider the set D′P obtained from DP by removing all r 6 s, and
adding s ∧ t as well as, for every r 6 s, any r ∧ t and r ∧ t which efficiently
distinguishes P from some other profile. By the above, this set D′P distinguishes
P from every other regular profile, and is a candidate for DP . The maximal
separations of D′P and of DP are the same except that s in DP is replaced
by s ∧ t in D′P . This contradicts the choice of DP with 6-minimal maximal
elements.

To limit the degree of the node of P in our tree of tangles we want to remove
from Fe all the stars which are contained in P but are larger than δe(P ). In
order to achieve a maximum degree of δe,max we also need to limit the size of
the stars in Fe which are contained in no profile to δe,max. Like in Section 4.6.4,
we cannot limit the maximum degrees below 3. Along the lines of the proof
of Lemma 4.6.10, the next lemma shows that we can find, in every consistent
orientation O of Sk which is not a profile, a star of size 3 contained in O and in
no profile.

Lemma 4.6.21. Every consistent orientation O of Sk which is not a profile
contains a star σ of size 3 which is not contained in any profile.

Proof. Since O is not a profile, there are s, t ∈ O such that s ∧ t ∈ O. By
submodularity, either s ∧ t or s ∧ t ∈ S , let us suppose the former one. Then
σ = {s ∧ t, t, s ∧ t} is a star in O and σ cannot be contained in any profile: any
profile P needs to contain either s or s, and the profile property implies that P
then cannot contain both, s ∧ t and s ∧ t.

We can now show the following variant of Theorem 4.6.16, which shows that
we can find a tree of tangles of bounded degree:

Theorem 19. Let U be a submodular universe and let P be the set of regular
profiles of Sk . Then there exists a tree of tangles (T, α) such that, for every
profile P ∈ P, the degree of P in (T, α) is δe(P ) and the maximal degree of T is
at most max{δe(P), 3}.

Proof. Let Fse be the subset of Fe consisting of, for every profile P , all stars
from Fe of size δe(P ) contained in P , together with all stars of size at most
max{δe(P), 3} from Fe not contained in any profile. For any star σ and any
shift σrs of σ we have |σ| > |σrs |. Further, Sk is Fe-separable by Corollary 4.6.18.
Moreover, the shift of a star cannot contain any profile which does not contain
the original star by Lemma 4.6.11, thus Sk is also Fse -separable.

Thus, all we need to show is that applying Theorem 4.6.1 cannot result
in an Fse -tangle, the rest of the proof can then be carried out as the proof of
Theorem 4.6.16: instead of S-trees over Fe we now consider S-trees over Fse ,
and observe that the shifting argument in the proof of Theorem 4.6.16 again
shifts stars in Fse to stars in Fse .

However, applying Theorem 4.6.1 indeed cannot result in an Fse -tangle: such
a tangle cannot be a regular profile, since by our definition of δe(P ), there is a
star in Fse contained in P . But every consistent orientation which is not a regular
profile either contains a star {s} for a co-small separation s – each such star is
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also contained in Fe – or contains, by Lemma 4.6.21 a star of size 3 not contained
in any profile. Either such star is also contained in Fse by definition.

4.6.7 Tangles of mixed orders
In this section we would like to use the ideas from Section 4.6.5 to obtain a proof
of Theorem 4.6.2 using tangle-tree duality. The challenge of Theorem 4.6.2 com-
pared to Theorem 4.6.16 is that the set of profiles P considered in Theorem 4.6.2
consists of profiles of different orders. In particular, there might be profiles P1
and P2 in P which are efficiently distinguished by separations of order k, say,
and there might be another profile Q ∈ P which has only order l < k and thus
does not orient the separations which efficiently distinguish P1 and P2. Thus,
we cannot simply require the stars in our set F to be contained in at most one
profile: the resulting S-tree over F would not necessarily distinguish all profiles
in P , for example it might not distinguish the profiles P1 and Q from above. Our
solution to this problem will be to restrict the set of stars further by additionally
requiring that all the separations in a star in F ‘could be oriented’ by every
profile in P, even if that profile has lower order than the separation considered.

With this further restricted set of stars however S will no longer be F-
separable, but it will only fail to do so under rather specific circumstances.
Thus, in order to obtain a result in the fashion of Theorem 4.6.2, we need a
slightly stronger version of Theorem 4.6.1, which allows us to exclude this specific
situation in the requirement of F-separability.

More precisely, we need the following result from [41]:

Theorem 4.6.22 ([41, Theorem 7.1.]). Let U be a finite universe, S ⊆ U a
separation system, and F ⊆ 2S a set of stars such that F is standard for S and
S is critically F-separable. Then precisely one of the following holds:

• there is an S-tree over F ;

• there is an F-tangle of S.

Here, a separation r in S is said to be F-critical if there exists a star
σ ∈ F such that r ∈ σ, but there is no σ′ ∈ F with σ′ ∩ r = {r}. S is said to
be critically F-separable if all F -critical separations r, r′ ∈ S with r 6 r′ satisfy
that there exists a separation s0 ∈ S which emulates r in S for F such that s0
emulates r′ in S for F . In particular, every F -separable separation system S is
also critically F-separable.

We can use this version of the duality statement to obtain a result similar to
Theorem 4.6.2, however our construction only works in distributive universes –
recall that this means that r ∨ (s ∧ t) = (r ∨ s)∧ (r ∨ s), always – since we need
the following result from [34], which can be also found in [27]:

Lemma 4.6.23 ([27, Theorem 3.11], [34, Theorem 1], strong profile property).
Let U be a distributive universe and S ⊆ U structurally submodular, then for
any profile P of S and any r and s ∈ P there does not exist any t ∈ P such that
r ∨ s 6 t.

Moreover, our method will not allow us to distinguish all robust profiles,
instead we need a slight strengthening of robustness: we say that a k-profile P
is strongly robust if, for any s ∈ P and r ∈ U where s ∨ r and s ∨ r both have
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at most the order of s, one of s ∨ r and s ∨ r is in P . Note that most instances
of tangles, for example tangles in graphs, are strongly robust profiles.

For this section let U be a distributive submodular universe and let P be
some set of pairwise distinguishable strongly robust profiles in U (possibly of
different order).

To handle the issue that not all separations in a tree of tangles for profiles
of different orders are oriented by all the considered profiles, we introduce the
following additional definition: a consistent orientation O of Sk weakly orients a
separation s as s if O contains a separation r such that s 6 r. If we want to
omit s we just say O weakly contains s.

We will now only consider stars of separations where every separation is at
least weakly oriented by all the profiles in P. Specifically, we work with the set
Fd consisting of all stars σ with the following properties:

1. There exists at most one profile P ∈ P such that σ ⊆ P .

2. For every profile P ∈ P such that σ 6⊆ P there exists s ∈ σ such that P
weakly orients s as s.

3. If there exists a P ∈ P such that σ ⊆ P , then σ satisfies property Eff(P ).

We want to show that U is critically Fd-separable, and our first step to do
so is to show that splices – which we want to use in separability – are weakly
oriented by every profile in P.

Lemma 4.6.24. Let U be a distributive submodular universe and let P be a set
of strongly robust profiles in U . Suppose that r and s are Fd-critical separations
in U with r 6 s, then every splice between r and s is weakly oriented by every
profile in P.

Proof. Since r and s are Fd-critical, they are contained in some star in Fd and
hence weakly oriented by every profile in P.

Let t be a splice between r and s. If t is not weakly oriented by every profile
in P, then P contains a profile P of order at most |t| which weakly orients r as
r and s as s, since every witnessing separation that a profile weakly orients r
as r or s as s also witnesses that it weakly orients t. Let MP

r be the set of all
separations wr in P satisfying r 6 wr and having minimal possible order with
that property. Let wr ∈MP

r be chosen 6-maximally. Let ws be defined for s,
accordingly.

Observe that if wr 6 s, respectively, then, by the order-minimality of MP
r ,

the order of wr is at least |t| so P orients t, which contradicts the assumption
that P does not weakly orient t. Similarly, ws 6 r results in a contradiction.

Suppose now that wr crosses s.
We claim that every profile P ′ in P which weakly orients s as s also weakly

contains either s ∨wr or s ∨wr . This then implies that {s, s ∧wr , s ∧wr } is a
star in Fd, which will contradict the Fd-criticality of s.

So suppose that P ′ weakly orients s as s, witnessed by some w ∈ P ′ with
w > s.

If wr ∨ w had order at most the order of wr , this would contradict the
choice of wr : by Lemma 4.6.23 applied to the separations wr , ws , w ∧ wr , the
profile P would need to contain wr ∨w which contradicts the choice of wr being
6-maximal in MP

r .
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Similarly, if w ∧wr had order less than the order of wr , this would contradict
the choice of wr : by consistency P would need to contain w∧wr which contradicts
the definition of MP

r , from which wr was chosen.
Thus, by submodularity, w ∧ wr has order less than the order of w, and

w ∧ wr has order at most the order of w. Hence, as P ′ is strongly robust, P ′
contains either w ∨ wr or w ∨ wr and therefore either weakly orients s ∧ wr as
s ∨ wr or s ∧ wr as s ∨ wr .

This proves the claim which results in a contradiction to the assumption
that s is Fd critical. Thus, we may suppose that wr does not cross s and, by a
symmetric argument, that ws does not cross r. Hence, r 6 ws and s 6 wr . We
may therefore assume without loss of generality that wr = ws .

r s

t

wr = ws
P

If wr = ws crosses t, then, by the choice of t, neither wr ∧ t nor wr ∧ t has
order less than |t|, thus wr ∨ t and wr ∨ t both have order at most the order of
wr . By the strong robustness of P applied to wr , wr ∧ t and wr ∧ t, we know
that either wr ∨ t ∈ P or wr ∨ t ∈ P . However, both contradict the 6-maximal
choice of wr . So, instead wr is nested with t, that is, t has an orientation t such
that t 6 wr , so t is weakly oriented by P , as claimed.

Note that the assumption that our profiles are strongly robust is essential in
this argument, for example for the case wr = ws : if we only assume robustness,
we can not conclude that P contains either wr ∨ t or wr ∨ t and thus would not
obtain a contradiction.
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The next step is to verify that shifting with a splice as in Lemma 4.6.24 maps
stars in Fd to stars in Fd, which will prove that U is critically Fd-separable:

Lemma 4.6.25. Let r and s0 be separations which are weakly oriented by every
profile in P and suppose that s0 is a splice for r. Let σ ∈ Fd be a star which
contains a separation x > r. Then the shift σs0

x of σ from x to s0 is again an
element of Fd.

Proof. Since s0 is a splice for r, by Lemma 4.6.7, s ∨ s0 has at most the order
of s for every s > r.

Let σ be any star in Fd containing a separation x > r. By the above,
if σ ⊆ Sk for some k, then also the shift σs0

x is a subset of Sk . Hence, by
Lemma 4.6.11, every profile in U which contains σs0

x also contains σ. Now if
some profile P contains σ, then P orients every separation in σs0

x , and thus
either P contains the inverse of some separation in σs0

x or σs0
x ⊆ P .

Hence, by Lemma 4.6.17 it is enough to show that every profile from P which,
for some y ∈ σ, weakly contains y also weakly contains y′ for some separation
y′ ∈ σs0

x .
So suppose such a profile P , for some y ∈ σ, weakly contains y and suppose

that this is witnessed by wy ∈ P . If r 6 y , then y is shifted onto y ∧ s0 and
therefore wy also witnesses that P weakly contains y ∧ s0 while y ∨ s0 ∈ σs0

x .
Thus, we may suppose that r 6 y and therefore that y is shifted onto y ∨ s0 .

If P weakly orients s0 as s0 , then P also weakly contains y ∧ s0 6 s0 while
y ∨ s0 ∈ σs0

x .
Thus, we may suppose that P weakly orients s0 as s0 , witnessed by w0 ∈ P .
By our assumptions on s0 we know that the order of s0 ∧ wy is at least the

order of s0 and thus, by submodularity, s0 ∧ wy has order at most the order
of wy, i.e. it is oriented by P . By Lemma 4.6.23 applied to w0 , wy ∈ P and
s0 ∧wy we can therefore conclude that P contains s0 ∨wy , i.e. P weakly contains
y ∨ s0 6 s0 ∨ wy .

In order to use our stronger tangle-tree duality Theorem 4.6.22 with our set
Fd of stars to obtain a tree of tangles for strongly robust profiles it only remains
for us to show that this application cannot result in an Fd-tangle. We do this in
the following two lemmas.

Lemma 4.6.26. For every profile P in U and every set P ′ of strongly robust pro-
files in U distinguishable from P , there exists a nested set N which distinguishes
P efficiently from all the profiles in P ′.

Proof. For every profile Q ∈ P ′ pick a 6-minimal separation sQ ∈ P which
efficiently distinguishes Q from P . We claim that the set N consisting of all
these separations sQ is nested and therefore as claimed.

So suppose that this is not the case, so sQ and sQ′ , say, cross. We may
assume without loss of generality that |sQ | 6 |sQ′ |. Now sQ ∨ sQ′ has order at
least the order of sQ′ since otherwise, by the profile property, sQ ∨ sQ′ would
also distinguish P and Q′ and would thus contradict the fact that sQ′ did so
efficiently. Thus, |sQ ∧ sQ′ | 6 |sQ |.

Now Q′ orients sQ and it cannot contain sQ since then, by the profile property,
sQ∧sQ′ would also distinguish P andQ′ efficiently and would therefore contradict
the 6-minimal choice of sQ′ .
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Thus, sQ ∈ Q′. Now |sQ ∧ sQ′ | > |sQ′ | since otherwise, again by the profile
property, sQ ∧ sQ′ contradicts the 6-minimal choice of sQ′ .

Thus, by submodularity, |sQ ∧ sQ′ | < |sQ | and |sQ ∧ sQ′ | 6 |sQ |. But, by
strong robustness, either sQ ∨ sQ′ or sQ ∨ sQ′ is in Q. In particular, sQ ∧ sQ′
or sQ ∧ sQ′ efficiently distinguishes P and Q and therefore contradicts the
6-minimal choice of sQ .

Unlike for structurally submodular separation systems in Lemma 4.6.13 or
efficient distinguishers in Lemma 4.6.21, in this setup we can not necessarily find
a star in Fd which is contained in O but in no profile in P for every orientation
O of U which not include any profile in our set P of strongly robust profiles.
This is because we require that every profile in P weakly orients a separation in
our star outwards, but the stars constructed in Lemma 4.6.21, for example, do
not necessarily have this property. Thus, we are going to, instead, find a star σ
contained in both O and exactly one profile from P. Since each such star also
lies in Fd, this will be enough to ensure that our application of Theorem 4.6.22
does not result in an Fd-tangle.

Lemma 4.6.27. For every consistent orientation O of U and every set P 6= ∅ of
distinguishable strongly robust profiles in U there exists a star σ in Fd contained
in O.

Proof. Pick a star σ (not necessarily from Fd) with the following properties:

(i) σ ⊆ O.

(ii) σ is contained in at least one profile in P.

(iii) Property Eff(P ) is satisfied for every profile P ∈ P such that σ ⊆ P .

(iv) Every P ∈ P either contains σ or weakly contains s for some separation
s ∈ σ.

(v) For every separation s ∈ σ and any profile σ ⊆ P there exists a profile
Q ∈ P such that s is an efficient P -Q distinguisher.

Note that the empty set is such a star. Let us further assume that we choose
our star σ fulfilling (i)-(v) so that as few profiles in P as possible contain σ.

If only one profile contains σ, then σ ∈ Fd is as desired, so let us suppose for
a contradiction that there are at least two such profiles.

Pick two such profiles P1, P2 ⊇ σ such that the order of an efficient P1-P2-
distinguisher is as small as possible. Pick an efficient P1-P2-distinguisher s which
crosses as few elements of σ as possible. O orients s, say s ∈ O. If s is nested
with σ, the maximal elements of σ ∪ {s} form a star violating the definition of
σ: every profile containing this new star also contains σ. To see that (iii) is
fulfilled, note that there is no profile P ⊇ σ in P such that s ∈ P for which
there is a s′ of lower order than s such that s 6 s′ ∈ P , since such an s′ would
be a distinguisher of lower order than s for some pair of profiles containing σ,
contrary to the choice of s.

Thus, we may assume that s is not nested with σ, say s crosses t ∈ σ. Since,
by (v), there is some profile Q 3 t for which t is an efficient P1-Q-distinguisher,
we know that at least one of s ∧ t and s ∧ t has order at least the order of t:
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otherwise this would contradict the fact that t is an efficient P1-Q-distinguisher
by robustness (if |t| < |s|) or the profile property (if |s| 6 |t|) of Q.

Hence, by submodularity, the order of at least one of s∨ t and s∨ t is at most
the order of s and that separation is therefore also an efficient P1-P2-distinguisher
(by the profile property and consistency), which would make it a better choice
for s, a contradiction.

Therefore, σ contains precisely one profile and therefore, by construction,
σ ∈ Fd.

Together with Theorem 4.6.22, these lemmas give a proof of a tree-of-tangles
theorem for strongly robust profiles of different orders in a submodular universe.
This theorem does not give efficient distinguishers; we will deal with efficiency
in a later step.

Theorem 4.6.28 (Tree-of-tangles theorem for different orders). Let
U = (U,6,∗ ,∨,∧, |·|) be a submodular distributive universe of separations. Then,
for every distinguishable set P of strongly robust profiles in U , there is a nested
set T = T (P) ⊆ U of separations such that:

(i) every two profiles in P are distinguished by some separation in T ;

(ii) for any profile P ∈ P, any maximal s ∈ P ∩ T and any s′ ∈ P such that
s 6 s′ we have |s| 6 |s′ |.

Proof. By Lemma 4.6.24 and Lemma 4.6.25 the set U is critically Fd-separable
for the set Fd defined above. Thus, we can apply Theorem 4.6.22. This can,
by Lemma 4.6.27, not result in an Fd-tangle, thus there is a U -tree over Fd.
By Lemma 4.6.4, we may assume that this U -tree is irredundant. The set of
separations associated to edges of this tree is then a nested set T .

Every profile in P induces a consistent orientation of T , since all the separ-
ations in T are weakly oriented by every profile in P. The maximal elements
of this orientation form a star σP in Fd, and this star is a subset of P by the
definition of Fd.

To see that T distinguishes every pair of profiles in P, consider two profiles
P and Q in P . These two profiles cannot induce the same orientation of T , since
then σP = σQ would be a subset of both P and Q, contradicting the definition
of Fd. Thus, some s ∈ σP witnesses that P weakly orients some t ∈ σQ as t
and, vice versa, t witnesses that Q weakly contains s. Of these two separations
s and t, the one of lower order is thus a P–Q-distinguisher in T .

(ii) is then immediate from the definition of Fd.

Note that the nested set constructed in Theorem 4.6.28 does not yet necessar-
ily distinguish any two profiles efficiently. However, we can use Theorem 4.6.16
in combination with Theorem 4.6.28 to obtain such a set:

Theorem 4.6.29 (Efficient tree-of-tangles theorem for different order profiles).
Let U = (U,6,∗ ,∨,∧, |·|) be a submodular distributive universe of separations.
Then, for every distinguishable set P of strongly robust profiles in U , there is a
nested set T = T (P) ⊆ U of separations such that every two profiles in P are
efficiently distinguished by some separation in T .
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Proof. Let k be the maximal order of a profile in U . Let T be the U -tree over
Fd from the proof of Theorem 4.6.28. We consider the ⊆- maximal subtrees Ti
of T with the property that no internal node of Ti corresponds to a profile in P .
Clearly T =

⋃m
i=1 Ti and no two Ti share an edge.

We are going to simultaneously replace each of the nested sets of separations
corresponding to the Ti’s with other separations in such a way that the resulting
set of separations is still nested, and we ensured that every pair of profiles
contained in some Ti is efficiently distinguished by this new set of separations.

So, given some Ti, let Pi be the set of profiles in P living, in T , in one of the
leaves of Ti. Let Li be the set of all separations associated to one of the directed
edges adjacent and pointing away from such a leaf. Note that Li is a star. For
every s ∈ Li let Ps ∈ Pi be the unique profile corresponding to a leaf of Ti and
containing s.

It is easy to check that for any two profiles P and Q in Pi there is an efficient
P–Q-distinguisher t which is nested with all of Li : pick one t which is nested
with as many separations from Li as possible. Now t cannot cross an s ∈ Li
such that Ps = P or Ps = Q, as in that case, for t ∈ Ps, either t ∨ s or t ∧ s
would, by submodularity, consistency and the profile property, be an efficient
P -Q–distinguisher and as such contradict the choice of t by Lemma 2.3.1. If on
the other hand t crosses some s ∈ Li , such that Ps /∈ {P,Q}, then not both of
s ∨ t and s ∨ t can have order less than the order of s by the profile property
since, by (ii), there is no s′ ∈ Ps such that s 6 s′ and |s| > |s′ |. Thus, the order
of either s ∨ t or s ∨ t is at most the order of t, however by Lemma 4.6.23 and
the fish Lemma 2.3.1 this separation then contradicts the choice of t.

Moreover, there exists such an efficient P–Q-distinguisher t which has an
orientation t such that s 6 t for every s ∈ Li : otherwise s 6 t for some
orientation of t and if neither P = Ps nor Q = Ps, then both P and Q would
weakly orient t as t since they weakly contain s. On the other hand, if P = Ps,
say, then, again by (ii), the order of t is at least the order of s, thus s itself would
be the required efficient P–Q-distinguisher.

Now consider, for every Ti, the set U i of all separations t in U nested with Li
and fulfilling the additional property of having, for every s ∈ Li , an orientation
such that s 6 t, i.e. U i is the set of all separations in U inside of Li . U

i is closed
under ∨ and ∧ in U by the fish Lemma 2.3.1, thus the restriction of U to U i is
again a submodular universe of separations.

Given any s ∈ Li , the down-closure of s is a regular profile of U i. Note that
every efficient distinguisher for the profiles induced by s1 and s2 ∈ Li on U i is
also an efficient distinguisher of Ps1 and Ps2 .

By Theorem 4.6.16 applied to the set of all separations of order less than k
in U i, we thus find a U i-tree T̂ i over Fe (defined for Pi). The corresponding
nested set Ni efficiently distinguishes all these profiles induced by some si ∈ Li .

But now the nested set N given by
⋃m
i=1(Ni ∪ Li) is as desired: it is easy to

see that this set is nested and every Ni efficiently distinguishes any two profiles
in Pi. Moreover, we only ever changed separations inside of Li for every Ti.

The set N also contains an efficient P–Q-distinguisher for profiles P and
Q in different Ti’s: a profile R whose node in T lies on the path between the
nodes containing P and Q, respectively, also does so in the tree induced by
N . Thus, if we have efficient distinguishers for P and R and for R and Q,
respectively, in N , then one of the two is also an efficient P–Q-distinguisher. An
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inductive application of this argument proves the claim that the set N efficiently
distinguishes any two profiles in P.
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Chapter 5

Abstract separation systems

The last chapter of this thesis is devoted not to tangles or other ‘highly connected
structures’ in some context, but instead to abstract separation systems themselves.
A lot of results in this thesis, as well as in tangle theory in general, are formulated
in the context of these abstract separation systems, so better understanding
them gives a better insight on tangle theory in general.

For example, there are different notions of submodularity of a separation
system: a separation system could be structurally submodular in the surrounding
universe of separations, or it could be the set Sk for some submodular order
function on that universe, and so far no one has shown that these two classes of
separation systems are not actually the same, i.e. constructed an explicit example
of a structurally submodular separation system for which there does not exist a
submodular order function and a natural number k such that this system equals
Sk. Such a construction is one of the tasks we perform in Section 5.1. Moreover,
we there also show that actually every structurally submodular separation system
can be obtained as a disjoint union of systems of bipartitions. These results are
published in [38], which is joint work with Jakob Kneip and Maximilian Teegen,
however the results presented in Section 5.1 are joint work with Maximilian
Teegen only.

Finally, in Section 5.2 we are concerned with a related question: although we
have seen in Section 5.1 that not every structurally submodular separation system
arises as the Sk for some submodular order function, it is still unclear, how much
these two different concepts can differ from each other. More specifically we are
concerned with the question of whether the separations in every structurally
submodular separation system can be enumerated in such a way that the set
of the first i separations, for every integer i, is again a structurally submodular
separation system. We construct an example of such a structurally submodular
separation system inside a non-distributive universe, for which this is not the case.
We also consider this question for separation systems inside distributive universes
and show, that there the problem is actually equivalent to a question about
systems of sets. Moreover, we solve a variation of that problem, by showing that
such an enumeration is indeed possible if one considers a slightly different notion
of submodularity. Section 5.2 is joint work with Jakob Kneip and Maximilian
Teegen and published in [40].
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5.1 The Structure of Submodular Separation
Systems

5.1.1 Introduction
My co-authors and I have, in much of our work, relied heavily on structural
submodular separation systems. Indeed, separation systems which are structur-
ally submodular in some universe of separations form the most relevant class of
separation systems nowadays, and the most general theorems of abstract tangle
theory are formulated in their context [26,36,39,41].

However, so far no one has analysed under which conditions this structural
submodularity of a separation system S inside a universe U actually arises from
some submodular order function, that is whether we can find some submodular
order function and an integer k such that S equals Sk . If this is the case, we say
that the submodularity of S in U is order-induced in U . This question, under
which conditions the submodularity of a separation system is order-induced, is
what we approach in Sections 5.1.3 and 5.1.4. In Section 5.1.3 we prove that not
every structurally submodular separation systems is order-induced:

Theorem 20. There exists a separation system S which is submodular in a
universe U of set bipartitions whose submodularity in U is not induced by a
submodular order function on U .

More precisely, we present a necessary condition for the submodularity of
a separation system in a universe U to be order-induced in U , and use this to
give concrete examples of systems which are submodular in some universe U of
separations but whose submodularity is not order-induced in this U .

In Section 5.1.4 we consider another aspect of order-induced submodularity.
Whether the submodularity in a universe U of a separation system is order-
induced or not depends, a priori, on the choice of U . As a simple example,
consider the case that a separation system S is submodular in a universe U of
separations, and that U is a subuniverse of some larger universe U ′ of separations.
Then S is submodular also in U ′. If the submodularity of S in U is witnessed by
some submodular order function on U , we may ask whether we can extend this
function to U ′ to witness that S is submodular also in U ′. We show that this can
be done in some cases. The general question of whether it is always possible to
extend such a witnessing submodular order function to a larger universe remains
open.

Finally, in Section 5.1.5, we present two decomposition theorems for separation
systems that are submodular in distributive universes. Our first decomposition
theorem allows us to write every such separation system S as a (not necessarily
disjoint) union of three smaller ones, each of which is not only again submodular
in the same universe, but is also closed under taking existing corners in S .
Thus, we cover S by smaller, simpler, ‘spanned’ subsystems. To prove this,
we introduce a variation of Birkhoff’s representation theorem for universes of
separations instead of lattices. Moreover, in our decomposition theorem, the
subsystems can be chosen disjoint, unless the separation system to be decomposed
is one of set bipartitions.

Separation systems that are submodular in the (natural) universe U of bipar-
titions of a set V cannot be decomposed disjointly into submodular subsystems.
Indeed, every non-empty subsystem would have to contain the separations (V, ∅)
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and (∅, V ), since these form opposite corners of every pair of inverse separations.
By submodularity in U one of these – and hence also the other as its inverse –
would have to lie in this subsystem.

Separation systems of set bipartitions are, however, very concrete and bet-
ter understood than the more general abstract separation systems. We may
view these bipartition systems as the ‘elementary parts’ which make up the
separation systems that are submodular in distributive universes. Applying our
decomposition theorem repeatedly, for as long as disjoint decompositions are
possible, we can thus break down every separation system that is submodular in
a distributive universe into those elementary subsystems.
Theorem 21. Every separation system S which is submodular in some dis-
tributive universe U of separations is a disjoint union of corner-closed subsystems
S1 , . . . , Sn of S (which are thus also submodular in U) each of which can be
corner-faithfully embedded into a universe of bipartitions.

Careful analysis of the proof of our decomposition theorem allows us to
explicitly specify the subsystems.

The research in this section was inspired, in part, by our search for a solution
to the unravelling problem which can be found in Section 5.2.

5.1.2 Preliminaries
Additionally to the terminology given in Chapter 2, we need some essential
additional terminology from lattice theory. In this section, we state this termin-
ology and also introduce some definitions specific to this section, most of which
are generalizations of definitions made for separation systems and universes of
separations to posets and lattices, respectively.

Lattice theory

A sublattice L′ of a lattice L is a subset of L which is closed under pairwise joins
and meets in L.

Recall that an important example of a lattice is the subset lattice of a finite
set V which consists of all subsets of V , ordered by inclusion. In fact, all
finite distributive lattices can be represented as such a set of subsets where
∨ and ∧ coincide with union and intersection. This is a fundamental result
of lattice theory known as the Birkhoff representation theorem, which we can
state after the following additional definitions: a non-bottom element x ∈ L is
join-irreducible if whenever x = a ∨ b for some a, b ∈ L, then x ∈ {a, b}. The
set of all join-irreducible elements of L is denoted J (L) and forms a partially
ordered set with the order inherited from L. Given a partially ordered set (P,6),
the down-closed sets in P form a distributive lattice with ⊆ as the partial order,
union as join and intersection as meet. This lattice is denoted as O(P ).
Theorem 5.1.1 (Birkhoff representation theorem; cf. [16, §5.12]). Let L be a
finite distributive lattice. The map η : L→ O(J (L)) defined by

η(a) = {x ∈ J (L) : x 6 a} = daeJ (L)

is an isomorphism of lattices.
Given a lattice L, any subset P ⊆ L together with the restrictions of ∨ and

∧ (as partial functions) is called a partial lattice. [54]
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Submodularity and additional terminology

Moreover, we need some terminology specific to this section, mostly generalized
versions of established terminology.

A separation system S is a subsystem of another separation system S′ if
S ⊆ S′ and the involution on S is the restriction of the involution on S′. In
particular, S is a subset of S′ which is closed under the involution on S′. If a
subsystem S of a universe U is closed under joins and meets in U , we say that S
(together with the restrictions of ∨ and ∧) is a subuniverse of U . For example,
the bipartition universe B(V ) on a set V is a subuniverse of the universe of set
separations of V .

[21] considers submodular order functions for universes of separations, we
will need the more general notion of such a function for arbitrary lattices. Given
a lattice L, a function f : L→ R+

0 is called submodular if

f(a ∨ b) + f(a ∧ b) 6 f(a) + f(b)

for all a, b ∈ L. Note that we here, unlike for separation systems, allow our
function to take values in R+

0 instead of N. However, as already mentioned in
the introduction, for finite separation systems we could have also defined an
order function to take values in R+

0 instead of N, due to Lemma 2.4.1.
We say that a subset P is order-induced submodular in a lattice L, or that the

submodularity of P in L is order-induced in L if there exists some submodular
function f on L such that P = {a ∈ L : f(a) < k} for some k. In this case, we
also say that f induces the submodularity of P in L and that f and k induce
the submodularity of P in L.

Similarly, we say that a subsystem S of a universe U is order-induced
submodular in U if there exists a submodular order function f on U (which takes
values in N) and some k ∈ N which induce the submodularity of S in U , i.e.
such that S = Sk .

Given a lattice L and some subset P of L we say that P is submodular in L
if, for all a, b ∈ P , the following holds: the supremum of a and b (taken in L) is
contained in P ′, or1 the infimum of a and b (taken in L) is contained in P ′.

5.1.3 Structural submodularity which is not order-induced
In this section we deal with the question of whether the submodularity of a
submodular subsystem S ⊆ U of a universe U is always induced by some
submodular order function f on U , i.e. that S = Sk for some k. We will
answer this question in the negative, even for distributive U , and thus show
that submodularity in a universe is a proper generalization of order-induced
submodularity.

We consider the question first for partial lattices P ⊆ L which are submodular
in some lattice L. Recall that these are partial lattices P ⊆ L such that for any
two points a, b ∈ P at least one of a ∨ b and a ∧ b (taken in L) is in P .

One way to show that the submodularity of a given partial lattice P inside a
lattice L is not order-induced is to find a sequence a1, a2, . . . an of elements of L
so that every submodular function f on L for which P is the set of all elements of
L of order less than k would need to satisfy f(a1) < f(a2) < . . . f(an) < f(a1).

1Note that this ‘or’ is not exclusive.
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Such a sequence may be found by finding a directed cycle in a digraph D on L
where we draw an edge from a to b whenever every suitable submodular function
on L needs to satisfy f(a) > f(b).

This motivates the following definition: for P ⊆ L we define the dependency
digraph D = (L,E) of P as a directed graph where (a, b) is an edge in E if and
only if one of the following holds:

• a ∈ Lr P and b ∈ P ;

• a, b ∈ P and there is some c ∈ P such that either

– b = a ∨ c and a ∧ c /∈ P , or
– b = a ∧ c and a ∨ c /∈ P ;

• a, b /∈ P and there is some c ∈ P such that either

– b = a ∨ c and a ∧ c /∈ P , or
– b = a ∧ c and a ∨ c /∈ P .

Let us first show that given an order-induced submodular partial lattice
P ⊆ L, the edges in the dependency digraph indeed witness that their start
vertex has higher order than their end vertex.

Lemma 5.1.2. If P ⊆ L is order-induced submodular, witnessed by some f and
k, and (a, b) is an edge in the dependency digraph of P , then f(a) > f(b).

Proof. Let (a, b) be an edge in the dependency digraph. If a ∈ Lr P and b ∈ P
then f(a) > f(b) since f induces the submodularity of P in L.

If a, b ∈ P we may assume without loss of generality that the edge between
a and b exists because of some c ∈ P with b = a ∨ c and a ∧ c /∈ P .

Because f induces the submodularity of P in L we have f(a ∧ c) > f(c).
Moreover, since f is submodular

f(a ∨ c) + f(a ∧ c) 6 f(a) + f(c),

and hence f(b) = f(a ∨ c) < f(a), as required.
Similarly, if a, b /∈ P we may assume without loss of generality that the edge

between a and b exists because of some c ∈ P with b = a ∨ c and a ∧ c /∈ P .
Because f induces the submodularity of P in L we have f(a ∧ c) > f(c).

Again, since f is submodular

f(a ∨ c) + f(a ∧ c) 6 f(a) + f(c),

and hence f(b) = f(a ∨ c) < f(a), as required.

Thus, a directed cycle in the dependency digraph is an obstruction to the
order-induced submodularity of P .

Corollary 5.1.3. If the dependency digraph of P contains a directed cycle, then
P is not order-induced submodular.

Since every cycle in the dependency digraph D of P is completely contained
in either D[P ] or D[Lr P ], we sometimes consider these two subgraphs inde-
pendently of each other, naming them the inner dependency digraph D[P ] and
the outer dependency digraph D[Lr P ]

Each cycle in the dependency digraph has length at least 3:
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Lemma 5.1.4. Let P ⊆ L be submodular in L, then the dependency digraph of
P contains no directed cycle of length two.

Proof. As stated above, a cycle of length 2 cannot contain one vertex in P and
one in L r P . Thus, if the dependency digraph D contains a cycle of length
2 between a and b, then by the definition of the dependency digraph a and b
are comparable in 6, so a 6 b, say. Note that either a, b ∈ P or a, b /∈ P . In
either case, as (a, b) is an edge in D, there exists a c ∈ P such that a ∨ c = b
and a ∧ c 6∈ P . Similarly, there exists a d ∈ P such that b ∧ d = a and b ∨ d /∈ P .

If c 6 d, then d > a and d > c and thus a ∨ c = b 6 d contradicting the
assumption that b∨d /∈ P . Similarly, if d 6 c, then d 6 c 6 b, again contradicting
the assumption. Hence, c and d are incomparable and thus c∨d ∈ P or c∧d ∈ P ,
as c, d ∈ P and P is submodular in L. However, b = a∨ c 6 d∨ c, thus d∨ c > b,
hence d ∨ c > b ∨ d, but also d ∨ c 6 d ∨ b as c 6 b, and thus d ∨ c = d ∨ b /∈ P .
And similarly, a = d ∧ b > d ∧ c, thus d ∧ c 6 a ∧ c but also d ∧ c > a ∧ c and
thus d ∧ c = a ∧ c /∈ P .

Thus, D cannot contain a cycle of length 2.

Using the dependency digraph, we can give an example of a lattice L together
with a partial lattice P ⊆ L which is submodular in L, but where this submodu-
larity is not order-induced. Our example will use a universe of separations as its
lattice, and a submodular separation system for the partial lattice.

In fact, our example consists of oriented bipartitions (equivalently: subsets)
on a set of six elements. The Hasse diagram of this example is displayed in
Fig. 5.1; a formal description follows.

Consider the universe U = B(V ) of bipartitions of V = {a, b, c, d, e, f}. In
there we consider the separation system S consisting of the orientations of the
following unoriented bipartitions:

S = {{∅, V },
{{b}, {a, c, d, e, f}}, {{d}, {a, b, c, e, f}}, {{f}, {a, b, c, d, e}}},
{{a, b}, {c, d, e, f}}, {{c, d}, {a, b, e, f}}, {{e, f}, {a, b, c, d}},
{{a, b, c}, {d, e, f}}, {{a, b, f}, {c, d, e}}, {{a, e, f}, {b, c, d}}}.

It is easy to see that S is submodular in U . However, the dependency digraph
of S in U contains the directed cycle

({a, b, c, d}, {e, f})→ ({a, b}, {c, d, e, f})→ ({a, b, e, f}, {c, d})
→ ({e, f}, {a, b, c, d})→ ({c, d, e, f}, {a, b})
→ ({c, d}, {a, b, e, f})→ ({a, b, c, d}, {e, f}).

For example, there is an arc between ({a, b, c, d}, {e, f}) and ({a, b}, {c, d, e, f})
since

({a, b, c, d}, {e, f}) ∧ ({a, b, f}, {c, d, e}) = ({a, b}, {c, d, e, f})

and
({a, b, c, d}, {e, f}) ∨ ({a, b, f}, {c, d, e}) = ({a, b, c, d, f}, {e}),

but ({a, b, c, d, f}, {e}) is not an element of S . The existence of the remaining
arcs in the cycle can be checked similarly.
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Figure 5.1: The Hasse diagram of U from Theorem 20. For readability, only
points in S are labelled and only one side of each bipartition is denoted.

This example proves the following theorem, as every separation system which
is order-induced submodular in a universe U is also a poset which is order-induced
submodular in the lattice U :

Theorem 20. There exists a separation system S which is submodular in a
universe U of set bipartitions whose submodularity in U is not induced by a
submodular order function on U .

One might wonder if every example of a partial lattice with a cycle in its
dependency digraph actually contains a cycle in the inner dependency digraph.
This is not the case, as an example we show the Hasse digram of such a lattice
in Fig. 5.2 and indicate the partial lattice inside this lattice as well as the cycle
in the dependency digraph.

However, we are not aware of any examples of submodular separation systems
whose submodularity in a universe is not order-induced and whose dependency
digraph is acyclic:

Question 5.1.5. Does there exist a separation system S ⊆ U which is submod-
ular in U , such that the dependency digraph of S does not contain a cycle, but
the submodularity of S in U is not order-induced?
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Figure 5.2: The dark blue elements form a partial lattice, which does not contain
a cycle in the inner dependency digraph, however, the green dashed edges form
a cycle in the outer dependency digraph.

We can ask the same question for a submodular partial lattice:

Question 5.1.6. Does there exist a partial lattice P ⊆ L which is submodular
in the lattice L such that the dependency digraph of P does not contain a cycle,
but the submodularity of P in L is not order-induced?

These two questions are, in fact, equivalent. To see this, observe first that a
positive answer to Question 5.1.5 implies a positive answer to Question 5.1.6:
if there exists a separation system S ⊆ U which is submodular in U , such that
the dependency digraph of S does not contain a cycle, but the submodularity is
not order-induced, then we can consider S as a partial lattice inside the lattice
U which still does not contain a cycle in its dependency digraph. However, if
k ∈ R+

0 and fl : U → R+
0 would be a submodular function witnessing that S

is order-induced submodular as a partial lattice, then we could consider the
function f given by f(s) = fl(s) + fl(s) for every s ∈ S , which would then, after
applying Lemma 2.4.1 result in a submodular order function for U as a universe,
which witness that the submodularity of S in U is order-induced.

On the other hand, if there exists a partial lattice P ⊆ L which is submodular
in the lattice L such that the dependency digraph of P does not contain a cycle,
but the submodularity is not order-induced, we can construct a universe U and
a submodular subsystem S ⊆ U , so that the dependency digraph of S does not
contain a cycle, but the submodularity of S in U is not order-induced, as follows:
let L′ be a copy of L with reversed partial order (i.e. the poset-dual of L). We
let U be the disjoint union L t L′, where we additionally declare r 6 s for all
r ∈ L and s ∈ L′. The involution on U is defined by mapping an element of L to
its respective copy in L′, and vice versa. It is easy to see that this is a universe
of separations and that S = P ∪ P ′ (where P ⊆ L is as above and P ′ ⊆ L′ is
the image of P in L′) is a submodular subsystem of U .2 Moreover, S is not
order-induced submodular, since we can restrict any witnessing submodular

2Note, that in U every separation is either small or co-small, i.e. for every s ∈ U either
s 6 s or s 6 s.
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order function on U to a submodular function on L, which would then witness
that the submodularity of P in L is order-induced.

The dependency digraph of S cannot contain a cycle either, since any such
cycle would result in a cycle in the dependency digraph of L or L′: every edge in
the dependency digraph of U either is also an edge in the dependency digraph
of L or L′, or is an edge between L and L′ which needs to be an edge between
an element of U r S and S . Thus, given any cycle in the dependency digraph of
U which meets both L and L′, we can consider a maximal subpath of this cycle
contained in L; there then needs to be a directed edge in the dependency of L
between the last and the first vertex of this path.

5.1.4 Extending a submodular function
Our aim in this section is to better understand for what kind of submodular
separation systems the submodularity is order-induced. We investigate in how
far the existence of a submodular function depends on the surrounding universe
U , that is, if we have an order function f which induces the submodularity of
some S in a subuniverse U ′ ⊆ U , we ask whether we can extend f to U in such
a way that it induces the submodularity of S in U .

We give partial answers to this question: firstly that submodular functions
can be extended in this way from an interval in a universe and, secondly, that for
every subuniverse U ′ of a universe U there exists a submodular order function f
and some k, such that U ′ = f−1([0, k]).

It suffices to first consider these problems for submodular functions on
lattices, rather than submodular order functions on universes of separations: due
to Lemma 2.4.1 it is enough to find corresponding functions with values in R
instead of N. Now if f ′ : U ′ → R+

0 is a submodular function on U ′ ⊇ U which
agrees on U with some submodular symmetric function f : U → R+

0 , then we
can define a submodular symmetric function f̄ on U ′ which agrees with f by
setting

f̄(s) = f ′(s) + f ′(s)
2 .

We will then easily see that, in both cases, by Lemma 2.4.1, we find a corres-
ponding order function as desired.

For the first theorem, recall that an interval in a lattice L is, for some x, y ∈ L,
the subset [x, y] = {s ∈ L : x 6 s 6 y}. Every such interval forms a sublattice.
The following result shows that we can extend a submodular function defined on
an interval.
Theorem 5.1.7. Let L be a lattice and L′ = [x, y] ⊆ L an interval in L. Suppose
that f : L′ → R+

0 is a submodular function on L′ with maximum value k. Then
there exists a submodular function g : L → R+

0 such that g(z) = f(z) for all
z ∈ L′ and g(z) > k for all z /∈ L′.
Proof. Let us denote as L↓ the set of all z ∈ Lr L′ such that z 6 y, as L↑ the
set of all z ∈ Lr L′ such that z > x and as L↔ the set of all z ∈ Lr L′ such
that neither z 6 y nor z > x. Note that L↓, L↑, L↔ and L′ together form a
partition of L.

For z ∈ L such that z 6 y we define its down-level dl(z) recursively as follows:
assign dl(⊥) = 0 for the bottom element ⊥ of L. Now

dl(z) := max{dl(z′) + 1 : z′ < z}
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for all other z ∈ L. Similarly, for z ∈ L such that z > x we define its up-level
ul(z) recursively: we assign ul(>) = 0 for the top element > of L. Now

ul(z) := max{ul(z′) + 1 : z′ > z}.

Let l be the maximum possible level (up or down) and let M = 2 · 2l · k > k.
We now define g as follows:

g(z) =


f(z) z ∈ L′

M · (2− 2−dl(z)) z ∈ L↓

M · (2− 2−ul(z)) z ∈ L↑

4 ·M z ∈ L↔

To verify that this function is submodular we distinguish the possible cases
which can occur for two incomparable elements a, b ∈ L. Note that in the case
of comparable elements, submodularity is trivially satisfied, so we suppose they
are incomparable.

The case a, b ∈ L↔.
By construction, the maximal value of g is 4 ·M , thus

g(a ∨ b) + g(a ∧ b) 6 4 ·M + 4 ·M = g(a) + g(b).

The case a ∈ L↑, b ∈ L↔.
By the definition of L↑, we have a ∨ b ∈ L↑ and ul(a) > ul(a ∨ b), thus

g(a ∨ b) + g(a ∧ b) 6M · (2− 2−ul(a∨b)) + 4 ·M
< M · (2− 2−ul(a)) + 4 ·M = g(a) + g(b).

The case a ∈ L↓, b ∈ L↔.
Analogous to the above.

The case a ∈ L′, b ∈ L↔.
By the definition of L↑, we have, since a ∨ b > a > x, that a ∨ b ∈ L↑ ∪ L′
and similarly, a ∧ b ∈ L↓ ∪ L′. Thus, we have

g(a ∨ b) + g(a ∧ b) 6 2M + 2M 6 g(b) 6 g(a) + g(b).

The case a, b ∈ L↑.
Suppose without loss of generality that ul(a) 6 ul(b). By the definition
of L↑ and ul, we have a ∨ b ∈ L↑ and ul(a ∨ b) < ul(a). Furthermore,
a ∧ b ∈ L↑ ∪ L′, so in any case g(a ∧ b) < 2M . We calculate

g(a ∨ b) + g(a ∧ b) < M · (2− 2−(ul(a)−1)) + 2M
= 4M −M(2−ul(a) + 2−ul(a))
6 4M −M(2−ul(a) + 2−ul(b)) = g(a) + g(b).

The case a, b ∈ L↓.
Analogous to the above.
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The case a ∈ L↓, b ∈ L↑.
By construction a ∧ b ∈ L↓ and a ∨ b ∈ L↑. Moreover, by the definition of
g we have g(a ∧ b) 6 g(a) and g(a ∨ b) 6 g(b) and thus

g(a ∧ b) + g(a ∨ b) 6 g(a) + g(b).

The case a ∈ L′, b ∈ L↑.
By the definition of L↑, we have a ∨ b ∈ L↑. Moreover, ul(a ∨ b) < ul(b),
by the definition of g and choice of M , we thus have g(a ∨ b) 6 g(b)− k.
Additionally, g(a ∧ b) ∈ L′, since x 6 a ∧ b and a ∧ b 6 a 6 y. Thus, by
the definition of k, we have g(a ∧ b) 6 g(a) + k and thus

g(a ∨ b) + g(a ∧ b) 6 g(b)− k + g(a) + k = g(a) + g(b).

The case a ∈ L′, b ∈ L↓.
Analogous to the above.

The case a, b ∈ L′.
Immediate, by the submodularity of f .

Since furthermore g(z) > k whenever z ∈ L r L′, by the definition of M , the
function g is as claimed.

This theorem will also serve as a tool in proving the second theorem, which
is the following:

Theorem 5.1.8. Let L be a distributive lattice and L′ ⊆ L a sublattice. Then
there exists a submodular function f : L → R+

0 and a k ∈ R+
0 such that

L′ = f−1([0, k]).

Theorem 5.1.7 allows us to first prove Theorem 5.1.8 only for the special case
of sublattices L′ which include the top and bottom element of L, and to then
handle general sublattices by combing that result with Theorem 5.1.7.

Lemma 5.1.9. Let L be a distributive lattice and L′ ⊆ L a sublattice, such that
L and L′ have the same top and the same bottom element. Then there exists a
submodular function f : L→ R+

0 such that L′ = f−1(0).

Proof. By the Birkhoff representation theorem (Theorem 5.1.1) we may suppose
without loss of generality that L = O(P ), for some poset P . We may thus
interpret the elements of L (and thus also those of L′) as subsets of P .

For every element p ∈ P let Ep be the set of elements of L′ which contain
p. In particular, the top element of L lies in Ep, so Ep is non-empty. Thus, we
can consider, for every p ∈ P , the set Xp given by

⋂
X∈Ep X. Note that p is an

element of Xp.
Observe that, since L′ is a sublattice, we have Xp ∈ L′ for every p. Given

some Y ∈ L we define f(Y ) by summing, over all p in Y , the number of elements
of Xp that do not lie in Y . Formally,

f(Y ) =
∑
p∈Y
|Xp r Y |.
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This function is submodular, since for all X,Y ∈ L we can calculate as follows

f(X) + f(Y )

=
∑
p∈Y
|Xp r Y |+

∑
p∈X
|Xp rX|

=
∑

p∈X∩Y
(|Xp r Y |+ |Xp rX|) +

∑
p∈YrX

|Xp r Y |+
∑

p∈XrY
|Xp rX|

=
∑

p∈X∩Y
(|Xp r (X ∩ Y )|+ |Xp r (X ∪ Y )|)

+
∑

p∈YrX
|Xp r Y |+

∑
p∈XrY

|Xp rX|

=f(X ∩ Y ) +
∑

p∈X∩Y
|Xp r (X ∪ Y )|+

∑
p∈YrX

|Xp r Y |+
∑

p∈XrY
|Xp rX|

>f(X ∩ Y ) +
∑

p∈X∩Y
|Xp r (X ∪ Y )|

+
∑

p∈YrX
|Xp r (X ∪ Y )|+

∑
p∈XrY

|Xp r (X ∪ Y )|

=f(X ∩ Y ) +
∑

p∈X∪Y
|Xp r (X ∪ Y )|

=f(X ∩ Y ) + f(X ∪ Y ).

Thus, all that is left to show is that f(Y ) > 0 for every Y ∈ Lr L′. To see
this, we observe that, since the bottom element lies in L′, any such Y needs
to contain some element p. If Xp ⊆ Y for every p ∈ Y , then this would imply
that Y =

⋃
Xp, contradicting the assumption that Y /∈ L′. Thus, there is some

p ∈ Y such that Xp 6⊆ Y . In particular there needs to be some q ∈ Xp such that
q /∈ Y , which witnesses that f(Y ) > 0.

Combining Lemma 5.1.9 and Theorem 5.1.7 results in a proof of The-
orem 5.1.8:

Proof of Theorem 5.1.8. Let ⊥ be the bottom element of L′ and let > be the top
element of L′. By Lemma 5.1.9 there is a submodular function f : L′′ → R+

0 on
L′′ = [⊥,>] ⊇ L′ such that f−1(0) = L′. Using this f as input in Theorem 5.1.7
results in the desired submodular function on L.

From Theorem 5.1.7 and Theorem 5.1.8 we now immediately obtain the same
results for subuniverses, in the way discussed above:

Theorem 5.1.10. Given a distributive universe U of separations and a subuni-
verse U ′ ⊆ U , there is a submodular order function f : U → N and a k ∈ N such
that U ′ = f−1([0, k]).

Proof. We apply Theorem 5.1.8 to U ′ as a sublattice of U to obtain a submodular
function f ′ and k′ ∈ R+

0 with U ′ = f ′−1([0, k′]). We now define a symmetric
order function f on U with f(s) := f ′(s) + f ′(s). Applying Lemma 2.4.1 then
results in the desired function, as can be seen by applying that lemma with
k := 2k′, since U ′ = f−1([0, k]).
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Theorem 5.1.11. Let U be a universe of separations and U ′ = [x, x] ⊆ U a
symmetric interval in U . Suppose that f : U ′ → N is a submodular order function
on U ′ with maximum value k. Then there exists a submodular order function
g : U → N such that g(z) = f(z) for all z ∈ U ′ and g(z) > k for all z /∈ U ′.

Proof. We apply Theorem 5.1.7 to U ′ as an interval in the lattice U , to obtain a
submodular function g′ on U which agrees with f on U ′. We notice from the
proof of Theorem 5.1.7 that g′(z) is an even natural number for every z /∈ U ′.
Now this function g′ need not be symmetric, but we can define g(z) := g′(z)+g′(z)

2 .
Since f is symmetric and g′ agrees with f on U ′, also g agrees with f on U .
Moreover, g is symmetric and takes it values in N. Since g′ takes values larger
than k outside of U ′, so does g.

5.1.5 Submodular decompositions in distributive universes
In this concluding section we consider decompositions of separation systems
which are submodular in some universe, asking how such a separation system
can be written as the union of proper subsystems which are still submodular.
On one hand, we show that each separation systems S which is submodular in
some distributive universe U of separations can be decomposed (although not
necessarily disjoint) into at most three strictly smaller, again submodular in U ,
separation systems. On the other hand, we will be able to deduce that we can
decompose every such separation system into disjoint submodular subsystems,
each of which can be embedded into a universe of bipartitions, in which they are
again submodular.

The former statement also allows us to lower bound the size of a largest
proper submodular subsystem: by the pigeonhole principle, at least one of
these subsystems will have a size of at least |S|3 . This observation vaguely links
the question of submodular decompositions to the unravelling problem (see
Section 5.2): suppose S contains a separation s such that S′ = S r {s, s} is still
submodular – this is the case if S can be unravelled – then we can decompose S
into the two submodular subsystems S′ and {s, s, s ∨ s, s ∧ s}.

However, while this is a decomposition into fewer parts than the ones we
will obtain from our theorems, our decompositions will have the advantage that
their constituent subsystems are not merely submodular in U but ‘spanned’ in
S : Given a universe U of separations and a subsystem S ⊆ U , we say that
S′ ⊆ S is a corner-closed subsystem of S (in U) if for all s, r ∈ S′ we have
s ∨ r ∈ S′ whenever s ∨ r ∈ S . In particular, if S is submodular in U , then any
corner-closed subsystem S′ ⊆ S is submodular in U as well.

We begin by considering the special case of systems of bipartitions. This
will later become a subcase in the proof of our general decomposition theorem.
The idea applied in the general case will also be similar to the one in the
bipartition case. To be able to transfer these techniques we will apply the
Birkhoff representation theorem to universes of separations and investigate how
the involution of the universes interacts with this representation. We will state
this in the form of an extended Birkhoff theorem for universes of separations.
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Decomposition in bipartition universes

Given the universe U of bipartitions of some set V and a separation system
S ⊆ U which is submodular in U , we consider, for some v, w ∈ V , the set

{(A,B) ∈ S : {v, w} ⊆ A or {v, w} ⊆ B}.

This set forms a corner-closed subsystem of S in U . We can utilize this observa-
tion to find a decomposition of S into three proper subsystems.

Theorem 5.1.12. Given a universe U = B(V ) of bipartitions and a separ-
ation system S ⊆ U , such that |S| > 3, there are corner-closed subsystems
S1 , S2 , S3 ( S , such that S1 ∪ S2 ∪ S3 = S .

Proof. Since |S| > 3, there are two distinct separations {A,B}, {C,D} ∈ S such
that A,B,C,D 6= ∅. Moreover, we may assume that, after possibly exchanging
C and D, we have neither C ⊆ A nor C ⊆ B and thus A∩C 6= ∅ and B ∩C 6= ∅.
Additionally, after possibly exchanging A and B, we may assume B ∩D 6= ∅.

Now pick x ∈ A ∩ C, y ∈ B ∩ C and z ∈ B ∩ D. Let S1 be the set of all
separations in S not separating x from y, let S2 be the set of all separations in
S not separating x from z and let S3 consists of all separations not separating
y from z. By construction, these sets form corner-closed subsystems: a corner of
two separations not separating x from y, say, does not separate these two points
either.

Moreover, (A,B) is in neither S1 nor S2 and (C,D) is neither in S2 nor S3 ,
thus Si ( S for all 1 6 i 6 3.

Finally, observe that, given any (E,F ) ∈ S , either E or F contains two of the
points x, y, z, so (E,F ) ∈ S1 ∪S2 ∪S3 . Thus, S1 ∪S2 ∪S3 = S , as claimed.

Birkhoff’s theorem for distributive universes and decompositions in
distributive universes

To lift Theorem 5.1.12 to general distributive universes of separations, we will
represent separations as subsets of some ground set. For this we will once more,
as in Section 5.1.4, use the Birkhoff representation theorem for distributive
lattices:

Theorem 5.1.1 (Birkhoff representation theorem; cf. [16, §5.12]). Let L be a
finite distributive lattice. The map η : L→ O(J (L)) defined by

η(a) = {x ∈ J (L) : x 6 a} = daeJ (L)

is an isomorphism of lattices.

If, in this theorem, the provided distributive lattice L is actually a universe
of separations, we obtain an order-reversing involution on O(J (L)) by concat-
enating η with the involution on the universe. For our version of the Birkhoff
theorem in distributive universes, we examine how this involution behaves with
respect to J (L).

Theorem 5.1.13 (Birkhoff representation of universes of separations).
For every involution poset3 (P,6, ′), the lattice O(P ) becomes a distributive uni-
verse of separations (O(P ), ∗) when equipped with the involution ∗ : X 7→ P rX ′,
where X ′ = {x′ : x ∈ X}.
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Let U be a finite distributive universe of separations and let P = J (U). Then
there exists an order-reversing involution ′ on P , such that the map η : U → O(P )
defined by

η(a) = {x ∈ P : x 6 a} = daeP
is an isomorphism of universes of separations between U and (O(P ), ∗).

Proof of Theorem 5.1.13. The first statement is immediate. For the second part
let us assume we are given a distributive universe U of separations and need to
construct an involution on P := J (U) so that U is isomorphic to O(P ).

Theorem 5.1.1 tells us that the two are isomorphic as lattices, so it remains
to take care of the involution. Concatenating the isomorphism of lattices
η : U → O(J(U)) with the involution on U gives us an involution ∗ on O(P )
which is order-reversing. Take note that ∗ maps down-closed subsets of P to
down-closed subsets of P ; it is not defined on the elements of P .

That ∗ is order-reversing means that X ( Y if, and only if, X∗ ) Y ∗ for
all down-closed subsets X,Y of P . Our aim is to define an order-reversing
involution ′ on P so that for all X ∈ O(P ) we have X∗ = P r {x′ : x ∈ X}.
We begin with the following claim, which is also a necessary condition for this
aim to be achievable:

For all X ∈ O(P ) we have that |X∗| = |P | − |X|. (†)

We prove Eq. (†) by contradiction. So assume that X is an inclusion-wise
minimal down-closed subset of P for which Eq. (†) does not hold. (It clearly
holds for the empty set.) Take a maximal element x of X and consider the
down-closed set X − x. By choice of X, we have |(X − x)∗| = |P | − |(X − x)|.
From X∗ ( (X − x)∗ it thus follows that |X∗| 6 |P | − |X|.

To see that this holds with equality, first observe that there is no down-closed
set Y with (X − x) ( Y ( X and neither is there a down-closed set Y ∗ with
(X − x)∗ ) Y ∗ ) X∗. However, if (X − x)∗ rX∗ had more than one element,
then adding a minimal one among them to X∗ would give such a set Y ∗. Hence,
X∗ must be exactly one element smaller than (X − x)∗, giving equality and
contradicting the choice of X. This proves Eq. (†).

Let us now define the involution ′ on P . The following up- and down-closures
are all to be taken in P . For each x ∈ P we define x′ to be the unique element
of (dxe − x)∗ r dxe∗; this is well-defined by Eq. (†). We will need to show that ′
is an involution, that ′ is order-reversing and that X∗ = P r {x′ : x ∈ X} for
every down-closed set X.

We have dxe∗ ⊆ P r bx′c, and hence (P r bx′c)∗ ⊆ dxe. If we had proper
inclusion, i.e. (P r bx′c)∗ ( dxe, then the down-closedness of (P r bx′c)∗ would
imply that (Prbx′c)∗ ⊆ dxe−x and thus (dxe−x)∗ ⊆ Prbx′c, contradicting the
choice of x′. Thus, the inclusion holds with equality, and we have dxe∗ = Prbx′c.

We are now going to show, given some down-closed set X in which x is
maximal, that (X − x)∗ rX∗ = {x′}. Since dxe ⊆ X, we have that X∗ ⊆ dxe∗
and thus X∗ cannot contain x′. But (X − x)∗ does contain x′, as otherwise, by

3Recall that involution posets are the same as separation systems. However, to emphasize
that the involution on J (U) is different from the involution on U , despite J (U) being a subset
of U , we prefer the term ‘involution poset’ in this context.
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dxe∗ = P r bx′c, we have that (X − x)∗ ⊆ dxe∗ and thus (X − x) ⊇ dxe, which
is absurd.

This observation allows us to infer that ′ is indeed an involution on P : by
the fact that dxe∗ = (dxe − x)∗ − x′ is down-closed, we know that x′ is maximal
in (dxe − x)∗ and x′′ is the unique element of

((dxe − x)∗ − x′)∗ r (dxe − x)∗∗ = dxer (dxe − x),

so x′′ is x.
Let us show that we have X∗ = P r {x′ : x ∈ X} for all X ∈ O(P ). We do

so by induction on the size of X; for the empty set the statement is immediate.
So suppose that the assertion holds for each proper down-closed subset of
some non-empty X ∈ O(P ) and let x be a maximal element of X. Then
(X − x)∗ = P r {y′ : y ∈ (X − x)}. By the earlier observation, the single
element in (X − x)∗ r X∗ is precisely x′, giving X∗ = P r {y′ : y ∈ X} as
claimed.

Finally, we shall check that ′ is order-reversing. For this let some x ∈ P
be given. Since dxe∗ is a down-closed set which does not contain x′ we have
dxe∗ ⊆ P r bx′c. By applying ∗ to both sides and using the above paragraph
we get that dxe ⊇ P r {y′ : y ∈ P r bx′c}. The right-hand side simplifies to
{y′ : y ∈ bx′c}. Since this set is down-closed and contains x′′ = x, the inclusion
is in fact an equality, i.e. dxe = {y : y′ ∈ bx′c}. From this it follows that y 6 x
if and only if y′ > x′.

We are now ready to prove the central decomposition theorem, that every
sufficiently large separation system which is submodular inside a distributive host
universe of separations, can be either decomposed into three disjoint submodular
subsystems, or is isomorphic to a subsystem of a universe of bipartitions while
preserving existing corners (i.e. joins and meets). Such an isomorphism ι : S → S′

between two subsystems S ⊆ U and S′ ⊆ U ′ of universes U and U ′, where
ι(r) ∨ ι(s) = ι(r ∨ s) whenever r ∨ s ∈ S , and conversely ι(r) ∧ ι(s) = ι(r ∧ s)
whenever r ∧ s ∈ S , for all r, s ∈ S , is called a corner-faithful embedding.

Theorem 5.1.14. Let U be a distributive universe of separations and let S ⊆ U ,
|S| > 3, be a separation system which is submodular in U . Then there are
corner-closed subsystems S1 , S2 , S3 ( S which are submodular in U and such
that S1 ∪ S2 ∪ S3 = S .

Moreover, S1 , S2 , S3 can be chosen disjointly unless S can be corner-faithfully
embedded into a universe of bipartitions.

Proof. The proof is by induction on |U |.
By applying Theorem 5.1.13 we may assume, without loss of generality, that

U = (O(P ), ∗) for some involution poset (P,6, ′). For every p ∈ P consider the
sets

Sp :=
{
X ∈ S : p ∈ X, p′ /∈ X

}
,

Sp′ :=
{
X ∈ S : p /∈ X, p′ ∈ X

}
,

Sp,p′ := S r (Sp ∪ Sp′ ).

Note that these are pairwise disjoint, closed under involution, corner-closed and
S = Sp,p′ ∪Sp ∪Sp′ . If for any p these three sets form a non-trivial decomposition,
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we are done. Otherwise, either for every p ∈ P we have S = Sp,p′ or for some p
we have S = Sp .

If for some p we have S = Sp , then we can consider S as a subsystem of
U ′ := O(Pr{p, p′}) under the corner-faithful embedding ι : Sp → U ′, X 7→ X−p.
Since |U ′| < |U | we can then apply the induction hypothesis to get the desired
decomposition.

If S = Sp,p′ for every p ∈ P , then this means that for every p we have
p ∈ X ⇔ p′ ∈ X for all X ∈ S . In particular, for every X, we have
X∗ = X rA′ = X rA. This means that S is a submodular subsystem of
the bipartition universe B(P ), and Theorem 5.1.12 gives the desired decomposi-
tion.

Observe that in (O(P ), ∗) we haveX∧X∗ = {p ∈ P : p ∈ X, p′ /∈ X}. Hence,
by recursively applying the decomposition into Sp , Sp′ and Sp,p′ as above we
never separate any X and Y where X ∧X∗ = Y ∧ Y ∗.

Conversely, given any X ∈ O(P ), the set of all Y ∈ S with Y ∧Y ∗ = X ∧X∗
is a corner-closed subsystem of S . By the last argument of the proof above,
these can be considered as subsystems of bipartition universes. We thus obtain
our second decomposition result, while also explicitly specifying the subsystems
that make up our decomposition:

Theorem 21. Every separation system S which is submodular in some dis-
tributive universe U of separations is a disjoint union of corner-closed subsystems
S1 , . . . , Sn of S (which are thus also submodular in U) each of which can be
corner-faithfully embedded into a universe of bipartitions.

Specifically, these subsystems are the equivalence classes of the relation ∼ on
S where s ∼ t if and only if s ∧ s = t ∧ t in U .
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5.2 The Unravelling Problem
5.2.1 Introduction
Here is an intriguingly simple combinatorial problem – simple enough that you
can explain it to a first-year student of mathematics – but which is challenging
nonetheless:

Problem 22 (Unravelling problem). A finite set X of finite sets is woven if, for
all X,Y ∈ X , at least one of X ∪ Y and X ∩ Y is in X . Let X be a non-empty
woven set. Does there exist an X ∈ X for which X −X is again woven?

Given a set of subsets X which is woven, an unravelling of X shall be a
sequence X = Xn ⊇ · · · ⊇ X0 = ∅ of sets, all woven, such that |Xi r Xi−1| = 1
for all 1 6 i 6 n. If the unravelling problem has a general positive answer, then
every woven set will have an unravelling.

The question of whether every woven set has an unravelling arose naturally
in our study of structurally submodular separation systems, which we will make
precise in Section 5.2.3.

In this section we analyse the unravelling problem. We prove affirmative
versions in two important cases, which come from the original context of sub-
modular separation systems. Our first main result is that unravellings exist for
sets X that consist, for some submodular function f on the subsets of V =

⋃
X ,

precisely of the sets X ⊆ V with f(X) < k for some k. Our second main result
settles the unravelling problem for general finite posets, which we call woven if
they contain, for every two elements, either an infimum or a supremum of these
two elements.

We start in Section 5.2.2 with the additional definitions required for this
section and show that the unravelling problem has an equivalent formulation in
terms of distributive lattices. We also establish a kind of converse of unravelling,
showing that we can find, for every woven set X , some subset of

⋃
X which we

can add to X and remain woven.
In Section 5.2.3 we relate the unravelling problem to abstract separation

systems, and explain how it naturally arises in that context. Throughout the rest
of this section, we will come back to the context of abstract separation systems,
to discuss how our results apply there.

In Section 5.2.4 we give a partial solution to the unravelling problem, by
showing that those woven sets, which arise as an Sk for a submodular order
function, can indeed be unravelled: let X be a collection of subsets of some
finite set V . If X has the form X = {X ∈ 2V : f(X) < k} for some function
f : 2V → R and k ∈ R, let us say that f induces X .

Theorem 5.2.1. If X ⊆ 2V is induced by a submodular function on 2V , then
X can be unravelled.

In Section 5.2.5 we introduce a possible generalization of the unravelling
problem from subsets of some power set to subsets of any lattice. We show
that the lattice analogue of the unravelling problem can be answered in the
negative for non-distributive lattices, constructing an explicit counterexample.
However, if we restrict this generalized formulation of the unravelling problem
to distributive lattices, it becomes equivalent to Problem 22.
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We conclude in Section 5.2.6 with our second main result, a variant of the
unravelling problem for general partially ordered sets. Let us call a finite poset
P woven if there exists, for any p, q ∈ P , either a supremum or an infimum in P .
A sequence P = Pn ⊇ · · · ⊇ P0 = ∅ of subposets is an unravelling of P if Pi is
woven and |Pi r Pi−1| = 1 for every 1 6 i 6 n. Our second main result is that
all woven posets have an unravelling:

Theorem 23. Every woven poset can be unravelled.

Wovenness in posets corresponds to the most general notion of submodularity
for separation systems, which is also discussed in [38].

5.2.2 Preliminaries
Given a poset P and a, b ∈ P we say that a is an upper (lower) cover of b if a > b
(a < b) and there does not exist any c ∈ P such that a > c > b (a < c < b).

Using this, we can formulate a lattice-theoretical variation of the unravelling
problem. If L is a lattice, we say that P ⊆ L is woven in L if for any p, q ∈ P
we have p ∨ q ∈ P or p ∧ q ∈ P .

We can now generalize Problem 22 as follows:

Problem 5.2.2. Let L be a finite lattice and P ⊆ L a non-empty woven subset.
Does there exist p ∈ P for which P − p is again woven?

For distributive lattices, Problem 5.2.2 is equivalent to Problem 22 by Birk-
hoff’s representation Theorem 5.1.1 (see [16]), which says that every finite
distributive lattice is isomorphic to a sublattice of the subset lattice of some
finite set. For general lattices, however, we have a negative solution to Prob-
lem 5.2.2: in Section 5.2.5 we shall construct a (non-distributive) counterexample
for Problem 5.2.2.

Perhaps surprisingly, it is easy to establish a kind of converse to Problem 5.2.2:
given a lattice L and a woven poset P ⊆ L we can always find a p ∈ LrP which
one can add to P while keeping it woven.

Proposition 5.2.3. If L is a lattice and P ( L a proper woven subset of L,
then there is a p ∈ Lr P such that P + p is again woven.

Proof. Let p be a maximal element of Lr P . Then P ′ := P + r is woven: for
each q ∈ P ′ we have (p ∨ q) ∈ P ′ by the maximality of p in Lr P .

In terms of woven sets in the sense of Problem 22, this statement directly
implies the following:

Corollary 5.2.4. If V is a finite set and X ( 2V woven, then there is an
X ⊆ V such that X /∈ X and such that X +X is again woven.

5.2.3 Abstract separation systems and submodularity
Our original motivation for considering the unravelling problem originates in
structural submodular separation systems: given a structural submodular separ-
ation system S inside a universe U of separations, it might be possible that we
find a separation s inside S which we can delete, together with its inverse, and
be left with a separation system S r {s, s} that is again structurally submodular
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in U . Formally, given a structurally submodular separation system S inside a
universe U of separations, we are interested if the following property holds:

Property 5.2.5. There is an s ∈ S such that S r {s, s} is submodular in U .

If this were to hold for all structurally submodular separation systems,
then we could recursively apply this reduction step to unravel such a separation
system, i.e. we would obtain a sequence ∅ = S1 ⊆ S2 · · · ⊆ Sn = S of structurally
submodular separation systems such that, for every i < n, we have that Si+1 rSi
consists of just one separation si together with its inverse. Such an unravelling
sequence would be of particular use for proving theorems about structurally
submodular separation systems via induction. For example, it is possible to
obtain a short proof of a tree-of-tangles theorem for structurally submodular
separation systems via this unravelling sequence [60, Section 4.1.8].

This question, whether Property 5.2.5 holds for every structurally submodular
separation system, is now closely related to Problem 5.2.2. In fact, if we could
unravel every structurally submodular separation system, we could answer
Problem 5.2.2 positively: if there exists a woven poset P inside a lattice L,
such that P − p is not woven, we could construct a structurally submodular
separation system inside a universe U of separations which can not be unravelled.
We use such a construction in Section 5.2.5 to turn our counterexample to
Problem 5.2.2 into an example of a structurally submodular separation system
inside a non-distributive lattice which cannot be unravelled.

Also, the converse of Problem 5.2.2 established in Proposition 5.2.3 directly
translates to a similar statement about structurally submodular separation
systems inside a universe of separations.

Corollary 5.2.6. If U is a universe of separations and S ( U submodular in
U , then so is S + r for some r ∈ U r S.

Proof. Let r be a maximal element of UrS . By Proposition 5.2.3, the separation
system S′ := S + r is again submodular in U .

5.2.4 Unravelling order-induced sets
In this section we show that for a subclass of the woven subsets of a lattice we
indeed have unravellings.

Recall that a subset P of a lattice L is order-induced submodular if there
exists a submodular function f : L → R+

0 and a real number k such that
P = {p ∈ L : f(p) < k}. Here, f being submodular means that

f(p) + f(q) > f(p ∨ q) + f(p ∧ q)

for any p, q ∈ L. Note that every order-induced set P is woven, as the submodu-
larity of f implies that at least one of f(p∨q), f(p∧q) is at most max{f(p), f(q)}
and thus at least one of p ∨ q and p ∧ q lies in P , whenever both p and q lie in
P . However, there do exist woven sets which are not order-induced submodular,
for example given by the structurally submodular separation system constructed
in Section 5.1.3.

We will see in what follows that for order-induced submodular posets P it
is possible to find an unravelling, that is a sequence P = Pn ⊇ · · · ⊃ P0 = ∅ of
posets which are woven in L, so that |Pi r Pi−1| = 1 for every 1 6 i 6 n.
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We say that P can be unravelled if there exists an unravelling for P . In
other words P can be unravelled if we are able to successively delete elements
from P until we reach the empty set and maintain the property of being woven
throughout.

We shall demonstrate that every order-induced submodular subset of a lattice
can be unravelled.

Theorem 5.2.7. Let L be a lattice with a submodular function f and consider
the subset P = {p ∈ L : f(p) < k} for some k. Then P can be unravelled.

For the remainder of this section let L be a lattice with a submodular order
function f and P ⊆ L. It is easy to see that we can perform the first step of an
unravelling sequence:

Lemma 5.2.8. If P = {p ∈ L : f(p) < k} and p ∈ P maximizes f(p) in S,
then P − p is woven in L.

Proof. Given q, r ∈ P − p, since P is woven in L at least one of q ∨ r and q ∧ r
also lies in P . However, by the choice of p we have f(p) > f(q), f(r). Thus, if
one of f(q ∨ r) and f(q ∧ r) equals f(p), the other also needs to lie in P . Thus,
P − p is indeed woven in L.

Unfortunately we cannot rely solely on Lemma 5.2.8 to find an unravelling
of P , since after its first application and the deletion of some p the remaining
poset P − p may no longer be order-induced submodular. This can happen if
P − p contains an r such that f(r) = f(p).

To rectify this, and thereby allow the repeated application of Lemma 5.2.8,
we shall perturb the submodular function f on L to make it injective, whilst
maintaining its submodularity and the assertion that P = {p ∈ L : f(p) < k}
for a suitable k. This approach is similar to – and inspired by – the idea of
tie-breaker functions employed by Robertson and Seymour [68] to construct
certain tree-decompositions. For this we show the following:

Theorem 5.2.9. Let L be a lattice, then there is an injective submodular
function ρ : L→ N. Moreover, we can choose ρ so that, for any p1, p2, q1, q2 ∈ L,
we have that ρ(p1) + ρ(p2) = ρ(q1) + ρ(q2) if and only if {p1, p2} = {q1, q2}.

Proof. Enumerate L as L = {p1, . . . , pn}. For q ∈ L let I(q) be the set of
all i 6 n with pi 6 q. We define ρ : L→ N by letting

ρ(q) = 3n+1 −
∑
i∈I(q)

3i .

To see that this function is submodular note that for q and r in L we have
I(q) ∩ I(r) = I(q ∧ r) and I(q) ∪ I(r) ⊆ I(q ∨ r). Therefore, each i 6 n appears
in I(q) and I(r) at most as often as it does in I(q ∨ r) and I(q ∧ r). This
establishes the submodularity.

It remains to show that ρ(q) 6= ρ(r) for all q 6= r. For this note that by
definition of ρ we have ρ(q) = ρ(r) if and only if I(q) = I(r). But if q 6= r, then
either q /∈ I(r) or r /∈ I(q).

To see the moreover part we note that ρ(p1) + ρ(p2) = ρ(q1) + ρ(q2) if and
only if I(p1) ∪ I(p2) = I(q1) ∪ I(q2) and I(p1) ∩ I(p2) = I(q1) ∩ I(q2). Since
I(p1), I(p2), I(q1), I(q2) correspond to the down-closures of p1, p2, q1, q2 in L, this
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implies that {p1, p2} = {q1, q2}: clearly, if p1 = q1, then we need to have p2 = q2,
so suppose that {p1, p2} and {q1, q2} are disjoint. Since p1 ∈ I(p1) we see that
p1 ∈ I(q1) ∪ I(q2), so suppose without loss of generality that p1 < q1. Since
q1 ∈ I(q1) and q1 /∈ I(p1) we thus conclude that q1 ∈ I(p2), thus q1 < p2. Since
p2 ∈ I(p2) this then implies p2 < q2. Since q2 ∈ I(q2) this is a contradiction as
q2 /∈ I(p1) ∪ I(p2).

We immediately obtain the following corollary about universes of separations:

Corollary 5.2.10. Let U be a universe of separations. Then there is a submod-
ular order function γ : U → N with γ(r) 6= γ(s) for all r 6= s.

Proof. Let ρ be the function obtained from Theorem 5.2.9 applied to U as a
lattice. We set γ(s) = ρ(s) + ρ(s). It is easy to see that this is a submodular
order function. The moreover part of Theorem 5.2.9 guarantees that indeed
γ(r) 6= γ(s) for all r 6= s ∈ U .

We can now establish Theorem 5.2.7.

Proof of Theorem 5.2.7. Let L be a lattice with a submodular function f . Let
P = {p ∈ L : f(p) < k} for some k ∈ R+

0 . Let ρ be the submodular function
on L from Theorem 5.2.9. Let ε be the minimal difference between two distinct
values of f , that is |f(p)− f(q)| > ε or f(p) = f(q) for any two p, q ∈ L. Since L
is finite, ε > 0. Pick a positive constant c ∈ R+ so that c · ρ(p) < ε for all p ∈ L.
We define a new function g : L→ R+

0 on L by setting

g(p) := f(p) + c · ρ(p) .

Then g is submodular and, like ρ, has the property that g(p) 6= g(q) whenever
p 6= q. Enumerate the elements of P as p1, . . . , pn in such a way that
g(p1) < g(p2) < · · · < g(pn). Then Pi := {p1, . . . , pi} ⊆ P is woven in L for
each i 6 n: for i = n it equals P , and for i < n we have that

Pi = {p ∈ L : g(p) < g(pi+1)},

which is woven in L since g is a submodular function on L. Thus an unravelling
for P is given by P = Pn ⊇ · · · ⊇ P0 = ∅.

Theorem 5.2.7 allows us to give a class of sets X ⊆ 2V for which we can
answer Problem 22 positively. We say that a function f : 2V → R is submodular
if f(X)+f(Y ) > f(X∪Y )+f(X∩Y ) for all X,Y ∈ 2V and obtain the following
theorem as a corollary:

Theorem 5.2.1. If X ⊆ 2V is induced by a submodular function on 2V , then
X can be unravelled.

Proof. By adding a large constant to f(X) for every X ⊆ V we may sup-
pose that f(X) > 0 for all X ⊆ V . Applying Theorem 5.2.7 to the subset-
lattice 2X together with its subset X results in the desired unravelling sequence
∅ = X0 ⊆ X1 ⊆ · · · ⊆ Xn = X .

Moreover, Theorem 5.2.7 also allows us to show that separation systems
Sk inside a universe of separations with a submodular order function can be
unravelled.
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Corollary 5.2.11. Let U be a universe of separations with a submodular order
function f and S = Sk for some k. Then S can be unravelled.

Proof. Perform the same argument as in the proof of Theorem 5.2.7, using the
function γ from Corollary 5.2.10 instead of the function ρ from Theorem 5.2.9.

5.2.5 A woven subset of a lattice which cannot be unrav-
elled

In this section we are going to construct a counterexample to Problem 5.2.2 for
non-distributive lattices. So, we construct a lattice L together with a woven
subset P of L so that P − p is not woven in L for any p ∈ P .

This construction needs to be such that for every element p of P there are
elements q and r of P such that either p = q ∨ r and q ∧ r 6∈ P or p = q ∧ r and
q ∨ r 6∈ P .

We will construct our lattice L by building its Hasse diagram. To be able to
prove that our construction results in a lattice we need to start with a graph of
high girth. Specifically we will use a 4-regular graph of high girth as a starting
point. Lazebnik and Ustimenko have constructed such graphs:

Lemma 5.2.12 ([61]). There exists a 4-regular graph G with girth at least 11.

For contradiction arguments we will try to find short closed walks in our
graph. The following simple lemma then tells us that these contradict the high
girth of G:

Lemma 5.2.13. If G is a graph, W = v1v2 . . . vnv1 a closed walk in G such
that there exists a j with vi 6= vj for all i 6= j and vj−1 6= vj+1, then W contains
a cycle. In particular, G contains a cycle of length at most n.

Proof. Since vj 6= vi for all i 6= j, the graph W − vj is connected. Thus, W − vj
contains a path between vj−1 and vj+1 which together with vj forms the desired
cycle.

We are now ready to start the construction of our lattice L together with its
woven subset P .

Let G be a 4-regular graph of girth at least 11. The ground set of our lattice
L consists of a top element >, a bottom element ⊥, and 4 disjoint copies of
V (G) which we call V −, V,W and W+.

We say that v ∈ V − ∪ V ∪W ∪W+ corresponds to w ∈ V − ∪ V ∪W ∪W+

if they are copies of the same vertex in V (G).
We now start with defining our partial order on L. We define, for v ∈ V and

w ∈W , that v 6 w if and only if there is an edge between v and w in G.
Now consider the bipartite graph G′ on V ∪W where v ∈ V is adjacent to

w ∈ W if and only if v 6 w. This bipartite graph is 4-regular graph and has
girth at least 12. Every regular bipartite graph has a 1-factor. Hence, G′ has a
colouring of E[G′] with two colours, red and blue say, such that every vertex in
G′ is adjacent to exactly two red and exactly two blue edges. We fix one such
colouring.

To define our partial order for v− ∈ V − and v ∈ V we define that v− 6 v if
and only if there is a red edge between v and the vertex in W corresponding to
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v−. Thus, every v− in V − lies below exactly two points in V , we call these the
neighbours in V of v−.

Similarly, we let w 6 w+ for w ∈W and w+ ∈W+ if and only if there is a
blue edge between w and the vertex in V corresponding to w+. We call the two
points in W which lie below w+ ∈W+ the neighbours in W of w+.

We finish our definition of 6 by taking the transitive closure and defining
⊥ 6 v and v 6 > for every v ∈ L. It is easy to see that this 6 is indeed a partial
order.

>

⊥

V −

V

W

W+

G′

Figure 5.3: The Hasse diagram of L. The points in P are denoted by black dots,
the points outside of P are white.

We claim that (L,6) is a lattice, that P = V ∪W ∪ {>,⊥} ⊆ L is a woven
subset of L and that P − p is not woven in L for any p ∈ P . To show that L is
a lattice and that P is woven in L we have to show that there is, for every pair
x, y ∈ L, a supremum and an infimum and that at least one of these two lies in
P if x, y ∈ P . We do so via a series of lemmas which distinguish different cases
for x, y.

Let us first consider the case that either both x and y lie in V , or that they
both lie in W :
Lemma 5.2.14. If v1, v2 ∈ V , then there is a supremum and an infimum of
v1, v2 in L. Moreover, if v1 ∧ v2 6= ⊥ then v1 ∨ v2 ∈W .
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Analogously, if w1, w2 ∈ W , then there is a supremum and an infimum of
w1, w2 in L. Moreover, if w1 ∨ w2 6= >, then w1 ∧ w2 ∈ V .

Proof. Let us start by showing that there is a supremum of v1 and v2.
First consider the case that the neighbourhoods of v1 and v2 in G′ intersect,

that is, NG′(v1) ∩ NG′(v2) 6= ∅. In this case, there is only one point in the
intersection, since if there are w1, w2 ∈ NG′(v1) ∩ NG′(v2), w1 6= w2,, then
v1w1v2w2v1 would be a cycle of length 4 in G′, contradicting the fact that G′
has girth at least 12. We claim that the single point in the intersection, which
we call w, is the supremum of v1 and v2.

To see this consider any x ∈ L such that v1 6 x, v2 6 x. We need to show
that w 6 x. If x = >, then this is clear and x ∈ W ∪ V ∪ V − ∪ {⊥} is not
possible, so suppose that x ∈W+. Let w1, w2 be the neighbours in W of x, i.e.
w1, w2 6 x. We show that w1 = w or w2 = w. So suppose that w 6= w1, w2.
Let vx ∈ V be the point corresponding to x. Since v1 6 x we may suppose
without loss of generality that v1 6 w1. Now if v2 6 w2, then wv1w1vsw2v2w
contains a cycle of length at most 6 in G′ by Lemma 5.2.13, as v1 6= v2 and
w 6∈ {v1, w1, vs, w2, v2}. This contradicts the fact that G′ has girth at least 12.
Thus, v2 6 w1 and hence w1 = w as NG′(v1) ∩ NG′(v2) = {w}, contradicting
the assumption that w 6= w1 and thus proving w 6 x.

Now suppose that NG′(v1) ∩NG′(v2) = ∅.
Then every candidate for a supremum of v1 and v2 is either >, or lies in W+,

hence it is enough to show that there cannot be two elements w+
1 , w

+
2 ∈ W+

both satisfying v1, v2 6 w
+
1 , w

+
2 . So suppose that there are two such points and

denote the neighbours of w+
1 and w+

2 in W as w11, w12 and w21, w22 respectively,
i.e. w11, w12 6 w

+
1 and w21, w22 6 w

+
2 .

Since v1 6 w+
1 , w

+
2 , we may also suppose without loss of generality that

v1 6 w11, w21. Since NG′(v1) ∩ NG′(v2) = ∅, we thus have v2 6 w12, w22 and
w12, w22 6∈ {w11, w21}. Let us denote the corresponding points of w+

1 and w+
2 in

V as vw+
1
and vw+

2
. Since w+

1 6= w+
2 either w12 6= w22 or w11 6= w21, as otherwise

G′ would contain a cycle of length 4. In any case, we consider the closed walk
v1w11vw+

1
w12v2w22vw+

2
w21v1. Since vw+

1
6= vw+

2
, we have v1 6= vw+

1
or v1 6= vw+

2
and v2 6= vw+

1
or v2 6= vw+

2
. Furthermore, either w11 /∈ {w12, w21, w22} and

w21 /∈ {w11, w12, w22} or w12 /∈ {w11, w21, w22} and w22 /∈ {w11, w12, w21} This
allows the application of Lemma 5.2.13 to our walk, yielding a cycle of length
at most 8, which contradicts the fact that G′ has girth at least 12. Thus, there
exists a supremum v1 ∨ v2 in L.

One candidate for the infimum v1 ∧ v2 is ⊥. Every other candidate needs to
lie in V −. However, there can be at most one such candidate in V −, otherwise,
these candidates together with v1, v2 would correspond to a cycle of length 4 in
G′ contradicting the fact that G′ has girth at least 12. Thus, there is indeed an
infimum v1 ∧ v2.

Moreover, if v1 ∧ v2 6= ⊥, then there is a point w ∈W such that both, v1w
and v2w are red edges in G′, hence NG′(v1) ∩ NG′(v2) 6= ∅, which shows the
moreover part of the claim.

The statement for w1, w2 ∈W follows by a symmetric argument.

We can now apply Lemma 5.2.14 to show the existence of suprema and infima
between v ∈ V and w ∈W :
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Lemma 5.2.15. If v ∈ V and w ∈ W , then there is a supremum and an
infimum of v and w in L. Moreover, if v ∧ w 6= ⊥, then v ∨ w = > or v 6 w.

Proof. If v 6 w, then the statement is obvious, so suppose that v 66 w.
By Lemma 5.2.14, every point wi ∈ NG′(v) has a supremum with w which is

either > or lies in W+. Moreover, there can be at most one point wi ∈ NG′(v)
such that the supremum wi ∨w is in W+, since if there are two, w1, w2 ∈ NG′(v)
say, then, by Lemma 5.2.14, w1 ∧ w and w2 ∧ w ∈ both lie in V and thus
wv1w1vw2v2w is a cycle of length 6 in G′. Hence, v ∨ w is well-defined.

A symmetric argument shows that also v ∧ w is well-defined, so all that is
left to show is that v ∨w ∈W+ and v ∧w ∈ V − cannot occur at the same time.

However, if this were the case, say w+ = v ∨w ∈W+ and v− = v ∧w ∈ V −,
we can consider the corresponding vertex vw+ of w+ in V and the corresponding
vertex wv− of v− in W . By definition, there is a vertex w1 ∈ W such that
vw1 ∈ E(G′) and both w1vw+ and wvw+ are blue edges. Similarly, there is a
vertex v1 ∈ V such that v1w ∈ E(G′) and both v1wv− and vwv− are red edges.
Consider the closed walk vw1vw+wv1wv−v. We have v /∈ {vw+ , v1} as v 66 w
and similarly w /∈ {w1, wv−}. Moreover, since every edge in G′ has precisely one
colour we have v1wv− 6= vw+w1 and thus either wv− 6= w1 or v1 6= vw+ . We can
thus apply Lemma 5.2.13 to our walk to show the existence of a cycle of length
at most 6 in G′, which is a contradiction.

Finally it remains to consider suprema x∨ y and infima x∧ y where one of x
and y lies in V − or W+:

Lemma 5.2.16. If v− ∈ V − and x ∈ L, then there exists a supremum and an
infimum of v and x in L.

Similarly, if w+ ∈ W+ and x ∈ L, then there exists a supremum and an
infimum of v and x in L.

Proof. If v− and x are comparable, the statement is obvious, so suppose that
this is not the case. It is then immediate that v− ∧ x = ⊥.

Let v1, v2 be the two points in V such that v− = v1 ∧ v2 and let wv− be the
point in W corresponding to v−. We note that any l ∈ L satisfies v− < l if and
only if v1 6 l or v2 6 l. We distinguish multiple cases, depending on whether x
lies in W+,W, V or V −.

If x ∈W+, then x ∨ v− = >.
If x ∈ W , then x ∨ v1 and x ∨ v2 exist by Lemma 5.2.15 and it is enough

to show that x ∨ v1 and x ∨ v2 are comparable. If they are incomparable, then
x ∨ v1 ∈W+ and x ∨ v2 ∈W+ and moreover x ∨ v1 6= x ∨ v2 and v1 66 x ∨ v2 as
well as v2 66 x ∨ v1. Let v3 ∈ V be the point corresponding to x ∨ v1, let v4 ∈ V
be the point corresponding to x ∨ v2, let w3 ∈ W such that w3 ∨ x = x ∨ v1
and let w4 ∈ W such that w4 ∨ x = x ∨ v2. Note that both v1, v2, v3, v4 and
x,wv− , w3, w4 consist of pairwise distinct points as v1 66 x and v2 66 x and
wv− /∈ {x,w3, w4}, thus w3v3wv4w4v2wv−v1w3 needs to be a cycle of length 8
in G′ contradicting the fact that G′ has girth at least 12.

If x ∈ V , then again x ∨ v1 and x ∨ v2 exist by Lemma 5.2.15, and if they
are incomparable we may suppose that x∨ v1 ∈W+ ∪W and x∨ v2 ∈W+ ∪W
and moreover x ∨ v1 6= x ∨ v2.

If x ∨ v1 ∈W and x ∨ v2 ∈W , then v1wv−v2(x ∨ v2)x(x ∨ v1)v1 would be a
cycle of length 6 in G′ as x ∨ v1 6= x ∨ v2.
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Now suppose that x ∨ v1 ∈W and x ∨ v2 ∈W+. Let vx2 be the point in V
corresponding to x∨ v2 and let w1, w2 ∈W such that w1 ∨w2 = x∨ v2. We may
suppose that w1, w2 6= x ∨ v1 and that v2 6 w1 and x 6 w2. Note that vx2 6= x
as otherwise x ∨ vx = w2. Now xw2vx2w1v2wv−v1(x ∨ v1)x contains a cycle of
length at most 8 in G′ by Lemma 5.2.13, as s /∈ {v1, v2, vx2} and x ∨ v1 6= w2.

So we may suppose that x ∨ v1 ∈W+ and x ∨ v2 ∈W+.
Let vx1 be the point in V corresponding to x∨v1 and let vx2 be the point in V

corresponding to x∨v2. Further, let w1, w2, w3, w4 ∈W such that w1∨w2 = x∨v1
and w3 ∨ w4 = x ∨ v2. We may suppose that v1 6 w1, v2 6 w3 and x 6 w2, w4.
Note that x /∈ {v1, v2, vx1 , vx2} and that w4 6= w2 as otherwise w4 6 x ∨ v1 and
thus x ∨ v2 = x ∨ w4 6 x ∨ v1. Thus, xw2vx1w1v1wv−v2w3vx2w4x contains a
cycle in G′ of length at most 10 by Lemma 5.2.13.

So the remaining case is x ∈ V −. Let us denote the vertex inW corresponding
to x as wx and let v3, v4 ∈ V such that v3 ∧ v4 = x. Since every candidate for a
supremum of v− and x lies above one of v1 ∨ v3, v1 ∨ v4, v2 ∨ v3 and v2 ∨ v4, all
of which exist by Lemma 5.2.15, it is enough to show that all these points are
comparable, since then the smallest of them needs to be the supremum of v−
and x.

However, we know by the previous argument that v− ∨ v3 exists, which needs
to be equal to v1 ∨ v3 or v2 ∨ v3. Hence, v1 ∨ v3 and v2 ∨ v3 are comparable.

Similarly, if we consider v−∨v4 we see that v1∨v4 and v2∨v4 are comparable.
If we consider x ∨ v1, we observe that v1 ∨ v3 and v1 ∨ v4 are comparable.
And finally, if we consider x∨v2, we see that v2∨v3 and v2∨v4 are comparable

as well and therefore there indeed exists a supremum of v− and x.

We have now seen that L is indeed a lattice and that P is woven in L. This
allows us to state and prove the main result of this section:

Theorem 5.2.17. L is a lattice and P = V ∪W ∪ {>,⊥} ⊆ L is woven in L
such that P − p is not woven in L for any p ∈ P .

Proof. By the Lemmas 5.2.14 to 5.2.16 L is indeed a lattice. To see that P is
woven in L observe that by Lemma 5.2.14, Lemma 5.2.15 and the fact that >
and ⊥ are comparable with every element in P it follows that at most one of
x ∨ y and x ∧ y lie outside of P , for any x, y ∈ P .

For any p ∈ V there are w1, w2 ∈ W such that pw1 and pw2 are both blue
edges in G′, thus both w1 ∨ w2 and w1 ∧ w2 lie outside of P − p. Similarly,
P − p is not woven in L for any p ∈W . Finally, if p = ⊥ we note that there are
v1, v2 ∈ V such that v1 ∨ v2 ∈ W+ which implies that v1 ∧ v2 = ⊥ and shows
that P −⊥ is not woven in L. Similarly, P −> is not woven in L.

As before, this result about woven subsets of lattices allows us to directly
obtain a result about structurally submodular separation systems, as we can use
this lattice L to construct a universe U of separations together with a structurally
submodular separation system S ⊆ U which cannot be unravelled:

Theorem 5.2.18. There exists a universe U of separations and a submodular
subsystem S ⊆ U such that S − {s, s} is not submodular in U for any s ∈ S .

Proof. Let L′ be a copy of L with reversed partial order, i.e. the poset-dual of L.
In the disjoint union L t L′ we now identify the copy of > in L (the top of L)
with the copy of ⊥ in L′ (the top of L′) and the copy of ⊥ in L with the copy of
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> in L′, to obtain U . It is easy to see that this forms a universe of separations
and that S = P ∪ P ′ (where P ⊆ L is as above and P ′ ⊆ L′ is the image of P
in L′) is a separation system which is submodular in U . Moreover, there is no
separation s ∈ S such that S − {s, s} is again submodular in U .

Note that neither our lattice L nor the constructed universe U of separations
are distributive.

5.2.6 Woven posets
Instead of asking in Problem 5.2.2 for a woven subset P inside a lattice L, we
might as well directly ask for a partially ordered set P which is woven in itself.
More precisely let us say that a partially ordered set P is woven if we have, for
any two elements p, q of P a supremum or an infimum in P , i.e. there exists an
r ∈ P such that p 6 r, q 6 r and r 6 s whenever s ∈ P such that q 6 s and
p 6 s, or there exists an r ∈ P such that p > r, q > r and r > s whenever s ∈ P
such that q > s and p > s.

The Dedekind-MacNeille-completion [64] from lattice theory implies that we
can find, for each poset P , a lattice L in which P can be embedded in such a
way that existing joins and meets in P are preserved. Hence, if P is a finite
woven set there exists a lattice L in which P can be embedded so that the image
of P in L is woven in L.

Using this notion of wovenness inside the poset itself, we can now weaken
the concept of unravelling, by considering a woven poset P instead of a woven
subset of a lattice. We will be able to show that, given a woven poset P , we can
always remove a point so that the remainder is again a woven poset.

Even though every woven poset can be embedded into a lattice, this still is
a proper weakening of the unravelling conjecture. The key difference here lies
in the different perspective we take on P − p, given a poset P and some p ∈ P :
if we consider P as a woven poset and P − p is again woven, then there are
lattices L and L′ in which P and P − p, respectively, can be embedded so that
the images are woven as subset of these lattices. However, these two lattices are
different, and in general it is not possible to find one lattice in which both P and
P − p can be embedded so that their images are woven in that lattice. In this
sense, having an unravelling for the wovenness of a poset is a weaker property
than having an unravelling as a woven subset of a lattice.

To prove this weaker unravelling property for woven posets we will show that
every woven poset contains a point p with precisely one lower (or one upper)
cover, i.e. there exists precisely one q such that p > q (p < q) and there does not
exist any c ∈ P such that p > c > q (p < c < q). Deleting such a point does not
destroy the wovenness, as shown by the following lemma:

Lemma 5.2.19. Let P be a woven poset and p ∈ P a point with precisely one
lower (upper) cover p′, then P ′ = P − p is a woven poset.

Proof. Let x, y ∈ P ′. We need to show that x, y have a supremum or an infimum
in P ′. If they have a supremum s in P , then s 6= p: as p′ is the only lower cover
of p we have x, y 6 p′ as soon as x, y 6 p. Thus, s ∈ P ′ is also the supremum of
x and y in P ′.

219



If x, y have an infimum z in P , then either z 6= p and z is also the infimum
in P ′ or z = p, in which case p′ is the infimum of x and y in P ′, as p′ is the only
lower cover of p.

The upper cover case is dual.

Thus, what is left to show is that there always exists a point p ∈ P with
precisely one upper or precisely one lower cover. To see this, we consider the
maximal elements of P , since any subset of them needs to have an infimum by
the following lemma:

Lemma 5.2.20. Let P be a woven poset and M its set of maximal elements.
Then every non-empty subset M ′ ⊆M has an infimum inf M ′ in P .

Proof. We proceed by induction on |M ′|. For the induction start |M ′| = 1
this is trivial. For the induction step consider |M ′| > 2 and let m ∈ M ′ and
M ′′ := M ′ −m. By the inductive hypothesis M ′′ has an infimum p. Since m is
maximal there can only be a supremum of m and p if m and p are comparable.
However, then there also exists an infimum of m and p in P . Thus, as P is
woven, in any case P needs to contain an infimum q of m and p. This q lies
below all of M ′ and, conversely, every point which lies below all of M ′ lies below
both p and m and hence below q. Thus, q is the infimum of M ′ in P .

Given a woven poset P , let M be the set of maximal elements of P . Given
some subset M ′ ⊆M we are interested in those points x ∈ P where, for every
maximal element m ∈M , we have x 6 m precisely if m ∈M ′. Let us denote as
d(M ′) the set of all these points in P .

Either each such set d(M ′) just consist of at most one point, or there is some
M ′ such that d(M ′) has size more than one. In the latter case, the following
lemma guarantees that we find a point p ∈ P with only one upper cover:

Lemma 5.2.21. Let P be a woven poset and M the set of maximal elements of
P . If M ′ ⊆M is subset-minimal with the property that d(M ′) contains at least
two points, then there is an x ∈ d(M ′) for which inf M ′ is the only upper cover.

Proof. Observe that, if d(M) 6= ∅, then inf M ′ ∈ d(M). Let x be a maximal
element of d(M ′)− inf M ′. Since x is a candidate for inf M ′, we have that inf M ′
is an upper cover of x. If y is any point other than inf M ′ such that x < y, then
y lies in d(M ′′) for some proper subset M ′′ of M . Thus, by our assumption, y is
the only element of d(M ′′) and therefore y = inf M ′′. However, inf M ′ 6 inf M ′′
and y 6= inf M ′, thus y is not an upper cover of x.

It remains to consider the case where every d(M ′) has size one. However,
in that case we can find an element with only one lower cover, as shown in the
following lemma:

Lemma 5.2.22. Let P be a woven poset. Then P has an element which has
precisely one lower or one upper cover.

Proof. Suppose the converse is true. Let M be the set of maximal elements of
P . Note that every element of P lies in d(M ′) for exactly one set M ′ ⊆M . By
Lemma 5.2.21, given any M ′ ⊆M , there exists at most one element in d(M ′).
Moreover, by Lemma 5.2.20 we know that inf M ′ exists for every M ′ ⊆M .
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Now if |d(M ′)| = 1 for some M ′ ⊆ M , then inf M ′ ∈ d(M ′): we know
that inf M ′ is in d(M ′′) for some M ′′ ⊆ M and clearly M ′ ⊆ M ′′, however, if
d(M ′) = {v}, say, then clearly v 6 inf M ′ which implies that M ′′ ⊆ M ′ and
thus M ′ = M ′′.

However, since every element of P lies in some d(M ′) and inf M ′ 6 inf M ′′
wheneverM ′′ ⊆M ′ this implies that inf M is the smallest element of P . However,
any upper cover of this smallest element inf M has precisely one lower cover,
which is a contradiction.

Thus, if we consider woven posets instead of woven subsets of a fixed lattice
(as in Section 5.2.5) we can indeed unravel every such poset: given some woven
poset P , by Lemma 5.2.22, P contains an element p which has only one upper
or lower cover, and, by Lemma 5.2.19, P − p is again woven. Thus, we obtain
the following theorem:

Theorem 23. Every woven poset can be unravelled.

Again we can translate this result to abstract separation systems.
We say that a separation system S , on its own, not in the context of a

surrounding universe U of separations, is submodular if there exists, for any two
separations s, t ∈ S a supremum or an infimum in S , i.e. – as for woven posets
– we require that there either is a smallest separation r such that s, t 6 r or
there is a largest separation r such that s, t > r. These submodular separation
systems are also considered in [38], where it was shown that one can find, for
each such system S , a universe U of separations in which we can embed S so
that the joins and meets in S are preserved.

We now obtain the following corollary for this type of separation system:

Theorem 5.2.23. Let S be a submodular separation system. Then there exists
an s ∈ S such that S r {s, s} is again submodular.

Proof. Observe that S considered as a poset is woven. Let M be the set of
maximal elements of S . We note that s > t for all s, t ∈ M . Therefore,
inf M > t for all t ∈ M and thus inf M > supM∗ = (inf M)∗. Suppose
that there is a proper subset M ′ of M such that |d(M ′)| > 2 and let M ′ be
chosen subset-minimal with that property. Let x ∈ d(M ′) be as guaranteed by
Lemma 5.2.21.

We note that x 6= (inf M ′)∗ as otherwise x 6 (inf M)∗ 6 inf M , contradicting
the fact that x ∈ d(M ′). But this implies that S − x is a woven poset by
Lemma 5.2.19. However, x has only one lower cover in S and, since this cover
is not x, also exactly one lower cover in S − x. Thus, again by Lemma 5.2.19,
also ((S − x)− x) is a woven poset and thus S − x is a submodular separation
system.

Hence, we may suppose that |d(M ′)| 6 1 for all proper subsets M ′ of M .
This implies that every element s ∈ S is nested with inf M : if s ∈ d(M), then
s 6 inf M and if s ∈ d(M ′) for a proper subsetM ′ ofM , then s = inf M ′ > inf M .
Now suppose that |M | > 2. Then there is an m ∈ M such that m 6= inf M .
We claim that S r {m,m} is again submodular. To see this suppose that, for
some x, y ∈ S , we have that x ∨ y = m (the case x ∧ y = m is dual). Since x
and y are nested with inf M this implies that x, y > inf M as x 6 inf M would
imply that x ∨ y = y or x ∨ y 6 inf M . Thus, x = inf M ′ and y = inf M ′′ for
subsets M ′,M ′′ of M , say. Thus, inf(M ′ ∪M ′′), which exists by Lemma 5.2.20,
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is also the infimum of x and y . Moreover, since m 6= inf M and m is a minimal
element of S and inf(M ′ ∪M ′′) > inf M we have that inf(M ′ ∪M ′′) 6= m and
thus there is a corner of x and y in S r {m,m}.

It remains the case that |M | = 1, say M = {m}. In this case however, we
have that s 6 m for every s ∈ S . If S = {m,m} the statement is trivial, so
let s ∈ S − m be 6-maximal such that s 6= m. Such an s exists as m is a
6-minimal element of S . Then m is the unique upper cover of s. Thus, S − s is
a woven poset by Lemma 5.2.19. Moreover, m is the unique lower cover of s and,
since m 6= s, it is also the unique lower cover of s in S − s. Thus, (S − s)− s
is a woven poset by Lemma 5.2.19, and thus S − s is a submodular separation
system.

The Dedekind-MacNeille completion of posets [16] allows us to embed every
woven poset into a lattice so that the poset is woven in this lattice. It is shown in
[38] that this technique can also be applied to submodular separation systems to
obtain a universe of separations in which the separation system is submodular.

In particular, if P is a woven poset and p ∈ P such that P ′ = P − p is
again woven, there are lattices L and L′ such that P is woven in L and P ′ is
woven in L′. If we could arrange for these two lattices to be sublattices of one
another, L′ ⊆ L, in such a way that every element of P ′ ⊆ L′ is mapped to
the corresponding element of P ⊆ L, then this would imply that P could be
unravelled as a woven subset of L in the sense of Problem 5.2.2.

The way in which we constructed P ′, however, makes this almost impossible.
We choose p as an element with a unique upper, or a unique lower cover. Now
if p ∈ P has a unique upper cover q, say, and is also the supremum of some
two points r, s ∈ P r {p}, then the Dedekind-MacNeille completion L′ of P ′
cannot be embedded in the way outlined above into the Dedekind-MacNeille
completion L of P : in L′, the images of r and s have the image of q as supremum
and an embedding as a sublattice would need to preserve this property, but the
images of r and s in L have the image of p as their supremum. (However, L′ is
order-isomorphic to a subposet of L.)
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Appendix A

Summary

This dissertation is concerned with the theory of tangles in abstract separation
systems, which is part of the general field of structural graph theory. Tangles
are a novel, universal tool to describe clusters in various structures, such as
graphs, matroids or arbitrary data sets. They do so in an indirect way, built on
the concept of separations of the given structure. They describe a cluster by
deciding, for every possible way to ‘sensibly’ divide the structure into two parts,
on which of the two sides the cluster is suspected to be located. I.e., they orient
the separation given by the two parts towards the side containing the cluster.
Certain consistency axioms on these orientations of separations ensure that the
tangle indeed needs to point towards a cohesive region of the structure at hand.

The broad application of tangles to a variety of contexts was made possible
by the general framework of abstract separation systems, in which tangles can
be formulated in an abstract way. As such, results about tangles in this abstract
framework can then directly be applied in the various contexts mentioned above.
Consequently, also most parts of this thesis are formulated in the context of
these abstract separation systems.

The results of this thesis are spread across three chapters. First, in Chapter 3,
we are dealing with the task of finding concrete witnesses for the existence of
a cluster described by a tangle. We provide a partial solution to a question
by Diestel by showing that, given a tangle of a graph, we can always find a
weight function on the vertices of the graph so that the given tangle chooses, for
every separation of the graph, the side containing a higher total weight. We also
analyse variations and generalizations of this question and consider the general
question of how to witness the existence of a tangle via another structure in
contexts other than graphs.

Moreover, we also provide a quantitative characterization of another type of
highly connected structures in graphs, called agile sets, via specific minors.

In Chapter 4 we present results concerning the question of how to split up
a structure according to their tangles. One of the two types of classic results
about tangles, the tree-of-tangles theorem, states that, under certain conditions,
a structure, such as a graph, can be split up in a tree-like way according to its
tangles. We improve the two previously most general forms of this tree-of-tangles
theorem significantly in multiple ways.

For example, we identify the key property needed for the various tree-of-tangle
theorems to hold and thereby provide two simple, elementary lemmas which
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allow to obtain the most relevant previously known tree-of-tangles theorems
as corollaries. Moreover, the requirements of these lemmas are easy to check,
and they allow us to obtain tree-of-tangles theorems for contexts where such
theorems were previously not known. Additionally, we show that these lemmas
even allow applications in contexts not covered by the framework of abstract
separation systems, such as directed graphs, by also deducing a state-of-the-art
tree-of-tangles theorem for tangles in directed graphs from one of the two lemmas.

We also show that trees of tangles can be constructed canonical, that is
invariant under isomorphisms, in a more general context than previously known.
While previously, a canonical tree-of-tangles theorem was only proven in the
context of a submodular universe of separations, we prove such a theorem for
submodular separation systems, a setup in which previously only the existence of
a non-canonical tree-of-tangles theorem was known.

We additionally show the existence of tree-of-tangles theorems in infinite
contexts, by providing, in the infinite context, a lemma analogue to the two
simple lemmas mentioned above. This lemma can, as a side effect, be applied to
the separators of an infinite graph instead of the separations. We show that the
application to these separators gives us a canonical tree-like structure dividing
up the graph according to its tangles which is of particular interest since both, a
previously known non-canonical tree-of-tangles theorem for infinite graphs, and
a previously known canonical theorem, which provides a structure called a tree
of tree-decompositions, can be deduced from our theorem.

Moreover, our lemma about trees of tangles in infinite structures can also
be used to obtain a tree-of-tangles theorem for the edge-blocks of a graph: the
maximal subgraphs of an infinite graph which can not be separated by the
deletion of some fixed number of edges.

We close Chapter 4 with showing that the other type of classic result from
tangle theory, the tangle-tree-duality theorem, can in fact be used to prove a
tree-of-tangles theorem. Thus, these two different classic types of theorems from
tangle theory are not as independent as previously thought, since one of the two
types of results can be used to obtain a result of the other type.

Finally, in Chapter 5, we investigate abstract separation systems as an
object of its own interest. We not only provide examples of such systems which
show that some of the previously defined notions on these systems, namely the
notions of a submodular universe of separations and of a submodular separation
systems mentioned above, indeed describe different objects, we also analyse
their difference. This on the one hand leads to a decomposition theorem for
submodular separation systems inside distributive universes, on the other hand
we end up with a general question about certain families of finite sets, which we
call woven. Our unravelling problem, which we state at the end of Chapter 5, is a
simple to state problem about these woven sets. We analyse this problem, solve
it in certain cases and provide solutions for some variations of that problem.
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Appendix B

Deutsche Zusammenfassung

Diese Dissertation beschäftigt sich mit der Theorie von Tangles in abstrakten
Teilungssystemen, einem Teilgebiet der strukturellen Graphentheorie. Tangles
sind ein neues, universelles Werkzeug, um Cluster in verschiedenen Strukturen
wie Graphen, Matroiden oder beliebigen Datenmengen zu beschreiben. Sie
ermöglichen es, ein Cluster indirekt mit Hilfe des Konzepts der Teilungen einer
Struktur zu beschreiben, indem ein Tangle für jede mögliche Art und Weise,
die Struktur „sinnvoll“ in zwei Teile zu zerteilen, entscheidet, in welchem der
beiden Teile das Cluster vermutet wird. Mit anderen Worten, das Tangle
„orientiert“ die Teilung, die durch die zwei Teile gegeben ist, in Richtung der
Seite, die das Cluster enthält. Bestimmte Konsistenz-Bedingungen an diese
Orientierungen von Teilungen stellen sicher, dass das Tangle auch wirklich auf
eine hoch-zusammenhängende Region der Struktur zeigt.

Das Konzept von Tangles kann abstrakt im Framework der abstrakten
Teilungssysteme formuliert werden. Dies ermöglicht eine vereinheitlichte An-
wendung von Tangles in einer Reihe von verschiedenen Bereichen, wie zum
Beispiel den oben erwähnten. Dadurch können Erkenntnisse über Tangles in
diesem abstrakten Framework direkt auf die verschiedenen Kontexte angewendet
werden. Aus diesem Grund sind auch die meisten Teile dieser Arbeit im Kontext
dieser abstrakten Teilungssysteme formuliert.

Die Ergebnisse dieser Arbeit werden in drei Kapiteln dargestellt. Zunächst
beschäftigen wir uns in Kapitel 3 mit der Suche nach konkreten Strukturen, die
die Existenz eines indirekt durch Tangles beschriebene Clusters garantieren. So
präsentieren wir eine Teillösung zu einer Frage von Diestel, indem wir zeigen, dass
man für ein gegebenes Tangle in einem Graphen immer eine Gewichtsfunktion
auf den Ecken des Graphens finden kann, sodass das gegebene Tangle für jede
Teilung des Graphens die Seite auswählt, die in Summe ein höheres Gewicht
enthält. Zudem beschäftigen wir uns mit Variationen und Verallgemeinerungen
dieser Frage, nämlich ganz generell damit, wie die Existenz eines Tangles auch
außerhalb des spezifischen Kontextes von Graphen durch andere Strukturen
bezeugt werden kann.

Außerdem charakterisieren wir über spezifische Minoren quantitativ die
Existenz eines anderen Typen von hoch zusammenhängenden Strukturen in
Graphen, sogenannten agilen Mengen.

In Kapitel 4 präsentieren wir mögliche Antworten auf die Frage, wie man
eine gegeben Struktur entlang ihrer Tangles aufsplitten kann. Einer der zwei

229



klassischen Sätze über Tangles ist der sogenannte „Tree-of-Tangles-Satz“, der
besagt, dass man unter gewissen Bedingungen eine Struktur wie zum Beispiel
einen Graphen baumartig entsprechend der Tangles zerlegen kann. Wir beweisen
stärkere und allgemeinere Versionen der beiden bisher allgemeinsten Formen
dieser Tree-of-Tangles-Sätze.

So identifizieren wir zum Beispiel eine zentrale Eingenschaft, die für die
Gültigkeit solcher Tree-of-Tangles-Sätze notwendig ist, und verwenden diese,
um zwei einfache, elementare Lemmata zu beweisen, die es ermöglichen, die
relevantesten bisher bekannten Tree-of-Tangles-Sätze als Korollare zu folgern. Die
Voraussetzungen dieser Lemmata sind zudem leicht nachprüfbar und erlauben es,
Tree-of-Tangles-Sätze für bestimmte Typen von abstrakten Teilungssystemen zu
beweisen, für die solche Sätze bisher nicht bekannt waren. Sogar eine Anwendung
außerhalb des Frameworks der abstrakten Teilungssysteme ist möglich: Wir
folgern einen Tree-of-Tangles-Satz für Tangles von gerichteten Graphen aus
einem der beiden Lemmata.

Zudem zeigen wir, dass die Konstruktion eines Tree-of-Tangles in einer
größeren Allgemeinheit als bisher bekannt kanonisch, also invariant unter Iso-
morphismen durchgeführt werden kann. Bisher war so eine kanonische Konstruk-
tion nur für submodulare Universen von Teilungen bekannt, wir zeigen, dass eine
solche kanonische Konstruktion auch in strukturell submodularen Teilungssyste-
men möglich ist. In diesen Systemen war bisher nur ein nicht-kanonischer
Tree-of-Tangles-Satz bekannt.

Zudem entwickeln wir eine Variante der oben angesprochenen Lemmata für
unendliche Strukturen, welche es uns ermöglicht, Tree-of-Tangles-Sätze auch für
solche unendlichen Strukturen zu beweisen. Dieses Lemma können wir zudem
auf die Trenner eines unendlichen Graphen anstelle seiner Teilungen anwenden,
was es uns ermöglicht zu zeigen, dass man diese Trenner verwenden kann, um
einen unendlichen Graphen kanonisch, baumartig, entsprechend seiner Tangles
zu zerlegen. Diese Zerlegung ist insbesondere deswegen interessant, weil wir
sie sowohl verwenden können, um einen bekannten, nicht kanonischen Tree-of-
Tangles-Satz zu beweisen, als auch, um die Existenz eines kanonischen „Baums
von Baumzerlegungen“ – ein anderes bekanntes Resultat über die Zerlegung
unendlicher Graphen – zu folgern.

Zudem können wir unser Lemma über Trees-of-Tangles in unendlichen Struk-
turen verwenden, um einen unendlichen Graphen entsprechend seiner Kanten-
blöcke zu zerlegen. Ein Kantenblock ist hierbei ein maximaler Teilgraph, der
nicht durch eine fixe Anzahl von Kanten getrennt werden kann.

Wir beenden Kapitel 4, indem wir zeigen, dass das andere klassische Resultat
der Tangletheorie, der sogenannte Tangle-Tree-Dualitätssatz, dazu verwendet
werden kann, einen Tree-of-Tangles-Satz zu beweisen. Dies zeigt, dass die bisher
als unabhängig geltenden zwei zentralen Säulen der Tangletheorie – die Tree-of-
Tangles-Sätze auf der einen und die Tangle-Tree-Dualitätssätze auf der anderen
Seite – nicht so unabhängig voneinander sind wie man bisher dachte – schließlich
kann man ein Resultat des einen Typs verwenden, um ein Resultat des anderen
Typs zu folgern.

Im letzten Kapitel, Kapitel 5, dieser Dissertation untersuchen wir abstrakte
Teilungssysteme als eigenständige Struktur. Zum einen zeigen wir, dass einige
der existierenden verschiedenen Definitionen im Kontext dieser Systeme, nämlich
zum Beispiel die oben erwähnten submodularen Universen von Teilungen und
submodularen Teilungssysteme, in der Tat unterschiedliche Objekte beschreiben,
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indem wir entsprechende Beispiele konstruieren. Nachdem wir festgestellt haben,
dass diese verschiedenen Definitionen in der Tat verschiedene Objekte beschreiben,
untersuchen wir im nächsten Schritt, wie groß der Unterschied tatsächlich ist:
verhalten sich die strukturell submodularen Teilungssysteme in gewissem Sinne
„ähnlich“ wie die submodularen Universen? Diese Analyse führt zum einen
zu einem Zerlegungssatz für strukturell submodulare Teilungssysteme in dis-
tributiven Universen, zum anderen zu einer allgemeinen Frage über bestimmte
Familien endlicher Mengen, die wir verwoben nennen. Unser Entwirrungsprob-
lem, mit dem wir uns am Ende von Kapitel 5 beschäftigen, ist eine einfach zu
formulierende Frage über diese verwobenen Mengen. Wir analysieren dieses
Problem und lösen einige Varianten und Spezialfälle.
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Appendix C

Publications related to this
thesis

The following (pre-)publications are related to this dissertation:

Chapter 3
Section 3.1 is based on [37]. Section 3.2 is based on parts of [25]. Section 3.3 is
based on parts of [24].

Chapter 4
Section 4.1 is based on [39]. Section 4.3 is based on [36]. Section 4.4 is based on
parts of [42]. Section 4.5 is based on [43]. Section 4.6 is based on parts of [41].

Chapter 5
Section 5.1 is based on parts of [38]. Section 5.2 is based on [40].
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Appendix D

Declaration of my
contributions

The research in this thesis is based on work I performed with various co-authors,
as can also be seen in Appendix C. In general, we performed the work in close
collaboration and thus share an equal amount of work on both the research and
the writing. I will now explain this in more detail, explaining which sections
were developed with which co-authors, emphasizing where we do not share an
equal amount of work as well as some highlights developed by me.

The results from Chapter 2 which are not taken from the existing literature
are my own work.

Chapter 3
Section 3.1 covers joint work with Jakob Kneip and Maximilian Teegen. After
having tried to find a decider for a tangle for over a year, Teegen came up with the
idea to formulate the question in terms of linear programming. This led us three,
in close cooperation, to an iterative and much more involved proof of Theorem 1
using Farkas’ Lemma. This proof was simplified a lot by my finding of Tuckers
Theorem in the literature and noticing that we can apply it. I also was the first
to construct a version of the example in Example 3.1.7 and Theorem 3.1.8. The
first two chapters of [37], on which the first two subsections of Section 3.1 are
based, were drafted by us three together in close cooperation and then finalized
by Jakob Kneip. The last subsection of Section 3.1 was drafted mostly by me,
and then finalized mostly by Maximilian Teegen.

The paper [25] on parts of which Section 3.2 is based is joint work with
Reinhard Diestel and Raphael Jacobs. Diestel set up the general questions
answered in that paper and also came up with the notion of the resilience of a
tangle and the question of whether tangles with higher resilience are more likely
to have a decider. The results of [25] included in Section 3.2 have then been
developed by me. Jacobs not only performed most of the writing of those results,
but also developed additional characterizations of tangles with a decider in terms
of local deciders and a duality of separations systems, which the interested reader
can find in [25].

Section 3.3 is based on [24], which is joint work with Reinhard Diestel, Joshua
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Erde, and Maximilian Teegen. Of the results of [24] presented in Section 3.3, I
share no contribution on the original idea of shifting tangles and the other results
presented prior to Theorem 6. However, both the proof of Theorem 6 as well as
the idea of considering the underlying edge-tangles presented in Section 3.3.2
were developed just by Teegen and myself in close cooperation.

Section 3.4 is based on joint work with Jakob Kneip and Maximilian Teegen.
We three started to look at Weißauer’s Question 3.4.1 and developed the first
results in Section 3.4, already including the generalizations. However, we were
not able to come up with a quantitative characterization of graphs containing
large agile sets, until I, revisiting the problem, found the paper [32] which allowed
Maximilian Teegen and myself to prove Theorem 7. The first set of notes on
which Section 3.4 is based was then also written together, however the final
version as presented here is my own work.

Chapter 4
Section 4.1 is joint work again with Jakob Kneip and Maximilian Teegen. Teegen
and myself started to work together on the question of whether there exists a
theorem unifying both Theorem 1.1.3 and Theorem 1.1.2. We then developed
a first version of Lemma 10, still formulated in terms of profiles, and with a
more complex proof. That theorem already allowed us to establish Theorem 9.
However, after presenting that proof to Kneip, he observed that both the
statement and the proof of that theorem can be shortened to obtain Lemma 10
as presented in this thesis. The canonical version Lemma 11 was developed in
close cooperation just by Teegen and myself. We two also drafted most of [39] on
which Section 4.1 is based, whereas Kneip then wrote most of the final version.

The ideas in Section 4.2 were developed in joint work with Maximilian Teegen,
with us two sharing roughly an equal amount of work. In particular, I came up
with the idea to consider the relation of being weakly P-nested.

Based on some rough notes of that work, I wrote Section 4.2 myself.
Lemma 12 was developed by Jakob Kneip, Maximilian Teegen and myself

during the writing of [39].
Section 4.3 is joint work with Jakob Kneip. We share an equal amount of

work on both the research and the writing. For example, while he came up with
the question of whether a canonical version of Theorem 1.1.3 exists, I came up
with the main ideas leading to our proof of Theorem 4.3.1. The paper [36] on
which Section 4.3 is based, is in turn based on a corresponding section Jakob
Kneip wrote for his dissertation.

The paper [42] on which Section 4.4 is based is joint work with Jakob Kneip
and Maximilian Teegen. The results from [42] presented in Section 4.4 of this
thesis were developed by Teegen and myself in close cooperation. In particular,
I came up with both the definition of ‘thinly splinters’ and with the idea to
consider the separators of the separations, which led to Theorem 16. Also, most
of the drafting was performed by me, whereas the final version was written
mostly by Teegen and myself in close collaboration. Kneip proved a version of
our splinter lemma for profinite separation systems, which the interested reader
can find in [42].

Section 4.5 is joint work with Jan Kurkofka and Maximilian Teegen. Kurkofka
asked Teegen and myself, whether we know anything about a tree-of-tangles
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theorem for edge-blocks. In response to this, we applied Lemma 15 to develop
Theorem 17, and also wrote a first draft of the proof. The relation to tree-cut
decompositions was then observed by Kurkofka, who also wrote most of the final
version of [43] on which Section 4.5 is based. Finally, we three together showed
that Theorem 17 is equivalent to one important result from [17] by proving
Theorem 18 in close cooperation.

Section 4.6 is again joint work with Jakob Kneip and Maximilian Teegen.
The original question was set by Nathan Bowler and Joshua Erde, who asked
whether it is possible to obtain a tree of tangles from the general tangle-tree
duality Theorem 4.6.1. In response to this, Teegen and myself developed a first
such proof, which runs along the lines of the proof without using Lemma 4.6.10
presented in Section 4.6.3. Kneip then observed that Lemma 4.6.10 can not only
be used to simplify that proof, but also to obtain a condition on the degrees
of the resulting tangles, as shown in Section 4.6.4. He also wrote most of the
sections of [41] on which Sections 4.6.3 and 4.6.4 are based. The generalization
to trees of tangles distinguishing the profiles efficiently (Sections 4.6.5 and 4.6.6),
as well as to tangles of different orders (Section 4.6.7), was developed just by
Teegen and myself, including the writing of the corresponding sections of the
paper [41], on which the corresponding sections of this thesis are based.

Chapter 5
Section 5.1 is based on [38], which is joint work with Jakob Kneip and Maximilian
Teegen. However, the parts from that paper presented in this thesis are joint
work with Maximilian Teegen only, which we performed in close cooperation. In
particular, I came up with the idea of dependency digraphs, as well as the proof
of Theorem 5.1.7. We also wrote the corresponding sections of the paper [38],
on which Section 5.1 is based, together. The paper [38] includes an additional
section developed just by Kneip and Teegen about a version of the Dedekind-
MacNeille completion for separation systems which are submodular in the sense
of Section 5.2.6, which is not part of this thesis.

[40] on which Section 5.2 is based is also joint work with Jakob Kneip and
Maximilian Teegen. Our research started with Teegen and myself showing
Lemma 5.2.8. This then resulted in Kneip developing the other results in
Section 5.2.4 by showing that we may always assume our order-function to
have distinct values. He also wrote the corresponding section of [40] on which
Section 5.2.4 is based. The research that led to Sections 5.2.5 and 5.2.6 was
performed just by Teegen and myself, and the corresponding sections of [40], on
which these sections are based, were also written by us two together. The final
construction of Section 5.2.5 is mine, including the idea of considering a regular
graph with high girth.
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