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1 Introduction

In their famous proof of the graph minor theorem [7] Robertson and Seymour defined tangles as
a new tool. These tangles turned out to be a great way to find regions of high cohesion in a
graph. The idea was to no longer identify a region of high cohesion by looking at vertices which
are contained inside it but by considering the separations of low order which point towards most
of it. This allows these tangles to describe regions which have a certain fuzziness: Where it is
possible to cut out small parts and hence difficult to describe a precise boundary. An example
for this is a large square grid: If we want to separate a single vertex from the rest of the grid it
suffices to delete the four neighboring vertices but if we wanted to separate a grid into large parts
then we would need to delete many vertices. Since then, the idea of tangles was generalized many
times and in this thesis we are going to use the, as of today, most generalized version of tangles,
as described by R. Diestel in [2]. In this generalization we now longer care what elements these
separations separate but instead consider just the separations. This generalization allows us to
apply the idea of tangles not just to graphs but to everything which can be separated in some
sense, since the theory works just with the separations.
Suppose we have a shape in the plane which is homeomorphic to the closed unit disk. In this
thesis we will try to split apart this shape, from this point on simply called a disk, into highly
connected regions. For an example, consider the union of two large circles which slightly overlap.
Intuitively one would see two highly connected regions, namely these two circles. What we will
do in this thesis is to apply the tangles framework on this disk in the hopes of finding these same
highly connected regions which we intuitively indentified.
This would be very interesting for multiple reasons. First of all we would be able to analyze these
shapes in a new way where we are even able to identify the number of highly cohesive regions the
disk contains. Secondly seeing tangles work in this relatively simple context could valdiate the use
of tangles in more complicated situations.
To define tangles we are going to approximate them using tangles on graphs. Specifically we
are going to use increasingly fine triangulations, which we define in section 2, to approximate the
shape of the disk. Then we can define tangles in section 3 on these triangulations, which are simple
going to be plane graphs. This has the advantage that tangles on graphs are well understood and
furthermore that there are only finitely many separations, which makes many arguments simpler.
One of the strengths of the tangle framework from [2] are two fundamental theorems about tangles.
These theorems are the cornerstone for working with tangles as they describe a very interesting
structure about tangles. The first of these is the tangle-tree theorem which states that tangles form
a tree structure which is further witnessed by nested separations. This is very important as this
theorem gives us nested cuts along the disk which separate all of the regions of high cohesion from
each other. The other fundamental theorem is the tangle-tree duality theorem. It is not obvious
that tangles actually exist in many setups since they are defined using large sets of separations,
but using the tangle-tree duality theorem one is able to prove that a tangle exists in a given set of
separations. The tangle-tree duality theorem states that either a tangle exists or a tree of forbidden
stars exist which means that either there obviously can not exist a tangle or if we can show that
no such tree of forbidden stars exist we have already shown that there must be a tangle.
We will first prove these theorems for the tangles on graphs in section 4. Afterwards we are going to
use an inverse limit construction to define tangles for the entire disk. This inverse limit construction
has the benefit of allowing us to answer questions about tangle of the disk by considering these
questions on all of the triangulations. This will allow us to prove the tree-of-tangles theorem and
the tangle-tree duality on the tangles of the disk. The inverse limit will avoid many problems which
could arise due to infinity. In the case of the tree-of-tangles theorem we will prove a theorem that
tangles of the disk form a tree structure which is witnessed in a triangulation by a set of nested
separations. In the tangle-tree duality theorem we will show that if we do not have a tangle this
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is in fact witnessed by a tree of forbidden stars in one of the triangulations.
In section 7 after we have laid the groundwork for using tangles to find structures of high cohesion
in disks we will revisit the question from the beginning. We will show that if we have a shape
which contains an arbitrary number of overlapping circles which can pairwise be separated from
each other then each of these circles corresponds to a distinct tangle. To do this we will need some
geometric consideration which we will do in section 6. The geometric considerations will show that
circles have to much cohesion to be cut apart in the context of tangles.
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2 Triangulations

This section will assume familiarity with basic concepts of topology and the chapter about plane
graphs in [1].

Definition 2.1. A disk D is a bounded subset of R2 that is topologically homeomorphic to the
closed unit disk.

The goal in this thesis will be to look at the structure of D, to do this we will not be looking
at D itself but instead at triangulations of D that we hope will capture the structure of D. We
will model these triangulations by using plane graphs. For plane graphs we will use the following
definition taken from [1].

Definition 2.2. A plane graph G is a pair (V,E) of vertices V and edges E such that:

(i) V ⊆ R2

(ii) every edge is an arc between two vertices, where an arc is a finite union of straight line
segments that are topologically homeomorphic to the unit interval [0, 1]

(iii) different edges have different sets of endpoints

(iv) the interior of an edge contains no vertex and no point of any other edge

A concept we need to introduce to define triangulations is the concept of regions and faces.

Definition 2.3. A region is an arc-connected component of a subset of R2. The frontier of a
region X is every point for which every neighbourhood meets both X and R2 \X. In a plane graph
G = (V,E) we call the regions of (R2 \ V ) \

⋃
E the faces of G. Since G is bounded there exists

one unbounded face which we call the outer face and every other face we call inner faces.

Definition 2.4. A triangulation G of a disk D is a connected plane graph G = (V,E) with vertices
V ⊆ D and edges E ⊆ D where each of its inner faces is bounded by a triangle and its outer face
by a cycle. Furthermore if v lies on the boundary of the outer face then v lies in the topological
boundary of D. The inner faces of G excluding the unbounded outer face are noted as F (G).

We will later use bipartitions of the faces to define separations so we’ll go over some more basic
terminology.

Definition 2.5. If we have a set A ⊂ F (G) then let ∂A ⊂ E(G) be the set of all edges that are
contained in the frontier of a face from A and a face from F (G) \A. We call ∂A the boundary of
A.

Important to note is that edges that lie on the frontier of the outer face are not part of ∂A.
This makes sense as we will use ∂A to define the order of separations and we only care about the
inner faces, as they are the ones that describe D.

Definition 2.6. A set A ⊂ F (G) is called connected if for every two faces a, b ∈ A there exists a
sequence of faces f1, ..., fn ∈ A such that a = f1, b = fn and the faces fi and fi+1 have a common
edge on their frontier.

So in other words: A is connected if it is connected in the dual graph. Importantly a set
A ⊂ F (G) being connected topologically in the sense of

⋃
A being connected does not imply A

being connected as we do not count connections that consist of a single vertex.
A problem we might run into when we look at a triangulation is that it might not cover the entire
detail of the shape and so we want to look at a more detailed triangulation.
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Definition 2.7. A triangulation G1 is finer than a trianglulation G2 if V (G2) ⊂ V (G1) and⋃
E(G2) ⊂

⋃
E(G1). In that case we say that G2 is coarser than G1.

In order to work with triangulations we might run into a situation where we have two triangu-
lations, that each cover different parts of D well, where we wish to have one triangulation which is
finer than both of them and thus captures the detail of both triangulations. Luckily this is indeed
possible to find by combining the points of both triangulations, adding points at the intersections
and adding some edges.

Lemma 2.1. If we have two triangulations G1 and G2 we can find a triangulation G which is
finer than both G1 and G2.

Proof. We construct G in the following way: First we define a plane multigraph H where not every
face is a triangle but which we will then use to define G. We start by defining V (e1, e2) for e1 ∈ G1

and e2 ∈ G2 as the set of points which lie on the topological boundary of e1 ∩ e2 in the topology
of E(G1) ∪ E(G2). With that we can define the vertex set of H as

V (H) := V (G1) ∪ V (G2) ∪ (
⋃

e1∈G1,e2∈G2

V (e1, e2))

The set V (H) is finite, since V (G1) and V (G2) are finite and since e1 and e2 are finite unions of
straight line segments the set V (e1, e2) is also finite. For the edges E(H) of H we take the closure
of the connected components of (

⋃
E(G1) ∪

⋃
E(G2)) \ V (H).

We now show that H is in fact a plane graph. Since V (G1), V (G2) ⊆ R2 and
⋃
E(G1),

⋃
E(G2) ⊆

R2 this also means that V (H) ⊆ R2.
Next we need to show that every edge in E(H) is an arc between two vertices. The set

⋃
E(G1)∪⋃

E(G2) is a finite union of straight line segments since every edge is a finite union of straight
line segments. If we delete a point of a straight line segment and then look at the closure of the
connected components we have a (finite) union of two straight line segments. This means that
every element of E(H) is also a finite union of straight line segments. Now we need to show that
every element of E(H) is also topologically homeomorphic to the closed unit inverval [0, 1]. This
follows from the fact that every element of E(H) is contained either in an edge from E(G1) or
E(G2). Every closed connected subset of a set that is topologically homeomorphic to [0, 1] that is
not a set containing just one point is also topologically homeomorphic to [0, 1]. The elements of
E(H) have a non empty interior and thus contain more than one point. Every element of E(H)
is also bound by two vertices of V (H) by definition and thus we know that every edge in E(H) is
an arc between two vertices.
Finally we show that the interior of an edge in E(H) contains no vertex from V (H) and no point
of any other edge. Because of the definition of E(H) we can see that the interior of an edge can
not contain any point from another edge since the interior of an edge is one of the components of
(
⋃
E(G1) ∪

⋃
E(G2)) \ V (H). Hence the components also can not contain a vertex from V (H).

Thus we have shown that H is in fact a plane multigraph and by definition we have V (G1) ⊆ V (H),
V (G2) ⊆ V (H),

⋃
E(G1) ⊆

⋃
E(H) and

⋃
E(G2) ⊆

⋃
E(H).

Now we construct G in three steps. First we subdivide every edge in H by adding one vertex and
thus splitting the edge into two edges, so that we get a graph H ′ since this removes all multiple
edges. Next if there is a vertex v in H ′ which lies on the boundary of H ′ but not on the boundary
of the outer face C then there exists a path v0v1...vn containing v in one of the inner vertices, where
vi for i ∈ {0, ..., n} all lie on the boundary of H ′ and where only v0 and vn lie on the boundary of
C. Then we add an edge connecting v0 to vn and thus v no longer lies on the boundary of H ′, we
repeat until all vertices which lie on the boundary of H ′ also lie on the boundary of C . Finally
we add edges to the bounded faces of H until we cannot add any more edges. Adding edges can
only be done finitely many times as plane graphs with a fixed number of vertices can only have a
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bounded number of edges. After this process every inner face is a triangle (see Proposition 4.2.8
in [1]) and thus G is a triangulation with V (H) ⊆ V (G) and

⋃
E(H) ⊆ E(G). Hence we know

that V (G1) ⊆ V (G), V (G2) ⊆ V (G),
⋃
E(G1) ⊆ E(G) and

⋃
E(G2) ⊆ E(G). This means that G

is finer than both G1 and G2.

Definition 2.8. A weight function of a triangulation G is a function w : E(G) → R>0 which
maps every edge to its weight.

In this thesis we will always use w(E) where E is a set of edges to note the sum of the weights
of all the edges contained in E.
We will later need a way to measure the area of subsets of D, hence we will define a measure now.

Definition 2.9. Let ∆ be a measure that is finite on every bounded measurable subset of R2.
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3 Separations and Tangles

We will now look at the basic terminology of separations and tangles that will be used in this
thesis. For the readability of this thesis, we collect most of the important definitions from [2] in
this section.

Definition 3.1. A separation system (
−→
S ,≤,∗ ) is partially ordered set

−→
S with an order-reversing

involution ∗. Its elements are called oriented separations.

We will write an oriented separation as −→s and its inverse −→s ∗ we will write as ←−s . Separations
themselves will be noted by s = {←−s ,−→s }. In this thesis the separations we look at are bipartitions
that divide some set into two parts and the oriented separations orient the separation towards one
of the sides.

Definition 3.2. A universe is a separation system with two binary operators ∨ and ∧ that make
it into a lattice. A universe is submodular if it has a submodular order function, a function

| · | :
−→
S → R≥0 that satisfies |−→s | = |←−s | and |−→r ∨ −→s |+ |−→r ∧ −→s | ≤ |−→r |+ |−→s |.

We call two separations s, r ∈ S nested if each has an orientation −→s ∈ s and −→r ∈ r so that
−→s and −→r are comparable. If two separations are not nested we call them crossing. Separations
themselves are sets {←−s ,−→s } and the set of all separations is called S, without the arrow. A sep-

aration −→r ∈
−→
S is trivial if there exists a separation −→s ∈

−→
S such that −→r < −→s and −→r < ←−s . A

separation −→r such that −→r < ←−r is called small. Every trivial separation is small but not every
small separation is trivial. If −→r is trivial then ←−r is called co-trivial.

We define the separations as bipartitions of the faces of our triangulation.

Definition 3.3. An ordered separation of a triangulation G is an ordered pair (A,B) with A∪B =

F (G) and A∩B = ∅. We denote the set of all ordered seperations as
−→
S (G) or

−→
S if the triangulation

is clear from the context.

Note that for some later theorems we will still use
−→
S to mean a general system of separations

and not necessarily the separations of a triangulation.
The ordered separations of a set together with the partial-order (A,B) ≤ (C,D) :⇔ A ⊆ C ⇔

B ≥ D form a partially-ordered set. We also have an order-reversing involution ∗ by defining
(A,B)∗ = (B,A). With this partial order there can only exist one trivial element, that being
(∅, F (G))1, hence the only co-trivial element is (F (G), ∅). Next we define the supremum and
infimum of the separations in the way it is normally defined for bipartitions of sets.

Definition 3.4. The supremum of two separations (A,B) and (C,D) is defined as (A,B) ∨
(C,D) := (A ∪ C,B ∩ D). The infimum of two separations (A,B) and (C,D) is defined as
(A,B) ∧ (C,D) := (A ∩ C,B ∪D).

We can see that the supremum and infimum are indeed contained in the set of separations and

that this makes
−→
S a lattice.

Now that we have defined supremum and infimum we can define an order function for
−→
S .

Definition 3.5. The order of a separation (A,B) of a triangulation G with weight function w is
|(A,B)| = w(∂A).

This makes our set of separations into a submodular universe.

1assuming the separation system is not empty, as every separation (A,B) witnesses (∅, F (G)) being trivial.
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Lemma 3.1. The above order function is well-defined and submodular.

Proof. To show that the order function is well-defined we need to prove that |(A,B)| = |(B,A)|
since |(A,B)| = w(∂A) and |(B,A)| = w(∂B) it suffices to prove that ∂A = ∂B. If e ∈ ∂A this
means that e is contained in the frontier of a face from A as well as a face from F (G)\A = B. This
is equivalent to e being contained in the frontier of a face from B and a face from F (G) \B = A.
Hence we know that ∂A = ∂B.
Now we just need to show that | · | is submodular for that we look at two separations (A,B) and
(C,D). We need to show that

|(A,B) ∨ (C,D)|+ |(A,B) ∧ (C,D)| ≤ |(A,B)|+ |(C,D)|.

By the definition of the infimum and supremum this means that

|(A ∪ C,B ∩D)|+ |(A ∩ C,B ∪D)| ≤ |(A,B)|+ |(C,D)|.

We can prove this by showing that ∂(A ∪ C) ∪ ∂(A ∩ C) ⊆ ∂A ∪ ∂C and ∂(A ∪ C) ∩ ∂(A ∩ C) =
∂(A)∩ ∂(C). We start by showing ∂(A∪C) ⊆ ∂A∪ ∂C. If e ∈ ∂(A∪C) then e lies on the frontier
of A or C and on the frontier of F (G) \ (A ∪ C). This means that e ∈ ∂A or e ∈ ∂C. If on the
other hand e ∈ ∂(A ∩ C) then e lies on the frontier of both A and C but it is also on the frontier
of a face that is not in A or not in C. This means that again e ∈ ∂A or e ∈ ∂C.
All that is left to show is that ∂(A∪C)∩∂(A∩C) = ∂(A)∩∂(C). Let e ∈ ∂(A∪C)∩∂(A∩C), that
means that e is on the frontier of a face of A ∩ C and on the frontier of a face of F (G) \ (A ∪ C).
Since any edge can only be on the frontier of two faces we know that e lies on the frontier of a face
of A, on the frontier of a face of C as well as the frontier of a face of F (G) \ (A∪C). That is now
equivalent to being in the boundary of A and in the boundary of C which shows c ∈ ∂(A)∩ ∂(C).
Hence we have shown the order function to be submodular.

We now define what it means for all of the separations of a set S′ ⊂ S(G) to be oriented towards
some region.

Definition 3.6. An orientation is a subset O ⊂
−→
S′ so that for each s ∈ S′ the set O contains

either −→s or ←−s . An orientation is consistent if there are no distinct r, s ∈ S′ with −→r < −→s such
that ←−r ,−→s ∈ O.

For an orientation to make sense when thinking about the separations as pointing at some
region we need to avoid one case - where one separation points at one region of the triangulation
and the other in a completely different direction. That motivates the definition of consistency. A
consistent orientation is simply an orientation which does not have separations pointing away from
each other.
We are now at the point where we wonder what the consistent orientations of the entire set S(G)
look like, sadly there is not much structure there. The problem is that the set of consistent
orientations of S(G) just depend on the number of elements in F (G) and not on the structure of
G. To deal with this we make the following two changes. We do not look at every separation but
only at a certain subset of separations that respect the shape of D.

Definition 3.7. For every k ∈ R+ let
−→
Sk := {−→s ∈

−→
S : |−→s | < k}

There is one more problem though. We could have an orientation which only points towards
one small triangle and thus does not point towards a region of high cohesion as we would like. To
deal with this we require an orientation to avoid certain forbidden structures. These forbidden
structures should witness our orientation not pointing towards a region of high cohesion. The
standard approach is to use stars.
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Definition 3.8. A star is a set σ of oriented separations whose elements point towards each other:
−→r ≤ ←−s for all distinct −→r ,−→s ∈ σ.

If we have a structure with high cohesion then we expect this structure to stay intact, that is
to say we expect there not to be any small stars with small area contained in an orientation that
orients the separations towards such a structure. More formally if σ = {(Ai, Bi)}i∈I then the area
of the intersection of the right sides of σ denoted as ∩σ :=

⋂
i∈I Bi should be larger than some

small number, ε say. This motivates the following definition.

Definition 3.9. For every k ∈ R+ and ε > 0 let

Fεk := {σstar : |σ| ≤ 3 ∧∆(∩σ) < ε} ∩ 2
−→
Sk

This finally allows us to define tangles of triangulations.

Definition 3.10. Let G be a triangulation of a disk D then an Fεk-tangle or simply a tangle of G

is a consistent orientation of
−→
S k(G) that does not have a subset in Fεk .

3.1 Simple separations

One kind of separation that we wish to look at more is one that is generated by the cut of a path
P . To generate a separation we need this path to cut the graph into two components so we expect
this path to either be a path with ends contained in the outer cycle C or a closed path, that is a
cycle, specifically a cycle that does not meet C in more than one vertex. We call paths that fall
into one of these categories a cutting path. Our intuition is that a separation (A,B) is simple if it
is in some sense generated by a single cutting path P . What we mean by that is that the boundary
∂A is equal to the edge set of P . Simple separations (A,B) have the property that both sides A
and B are connected so let us take this as the definition as it is easier to work with. We will later
see that our first intuition already follows from that definition.

Definition 3.11. A simple separation (A,B) is a separation where A and B are connected.

Note that in general simple separations do not form a lattice, hence why we chose all bipartitions
for our separation system.
To show that in general every simple separation is generated by a cutting path we first need to
make precise what it means for a path to generate a separation.

Lemma 3.2. A separation (A,B) is simple if and only if there exists a cutting path P such that
E(P ) = ∂A.

Proof. Let us say that P is a good cycle if it intersects the boundary of the outer cycle C in at
most one vertex, or is a path that connects to C only with both ends. We start by showing that
if P is a good cycle that there is a simple separation with P as a boundary. If P is a cycle this
can be done by letting A be the inner faces and B the outer faces. If P is instead a C path then
P together with one of the two parts of the outer cycle it encloses gives us a cycle and we get the
simple separation in the same way.
For the other direction we start by showing that if a separation (A,B) is simple then there exists
such a cutting path P with E(P ) = ∂A.
Fist we show that the graph P := ∂A does not have a vertex v of degree greater than two. Suppose
there was a vertex v ∈ V (P ) with d(v) > 2 then we consider a neighbourhood N of v where the
only vertex of V (P ) contained within it is v. This neighbourhood N is divided into d(v) parts
N1, ..., Nd(v) by P . Without loss of generality these parts are ordered in a clockwise fashion and
N1 ⊆

⋃
A. We know that N2 ⊆

⋃
B as the edge separating N1 from N2 in the neighbourhood of
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v has to lie on both the boundary of
⋃
A and

⋃
B, analogously we can show that N3 ⊆

⋃
A. In

that case B is not connected as a path from N1 to N3 separates N2 from the rest of the parts.
Now we need to show that if P has vertices of degree 1 then these vertices lie in C. This can be
easily seen from the fact that otherwise these leaves would not lie on a boundary of ∂A since they
would not be separating (Lemma 4.1.3 from [1]).
Since P is a graph where every vertex has degree at most 2 every component of P has to be a
cutting path or a cycle intersecting C in more than one vertex or a path which intersects C in at
least 3 vertices, but the last two can not happen since that would mean that either A or B are not
connected since no edge of C can lie in ∂A and a cycle intersecting C would thus generate three
components.
The last thing we need to prove is that P only contains one component. We prove this by con-
sidering, that if we had multiple components P1, ..., Pn of P then each of these components would
be a cutting path and thus by the other direction of this theorem each would generate a simple
separation. Since these cutting paths Pi do not intersect either A or B contains more than one
component which is a contradiction to the connectedness of A and B.

This is where we use that a disk is homeomorphic to the unit circle. If our disk has a hole then
this lemma does not hold. The problem arises in the part where we show that a vertex of degree
1 has to lie on C, if we had a hole in D then v could also lie on the boundary of this hole.

Lemma 3.3. |(A,B)| =
∑n
i=1 |(Ai, F (G) \Ai)| if A1, ..., An are the components of A.

Proof. To prove this we look at the set ∂A. It follows instantly that ∂A ⊆ ∂A1 ∪ ...∂An, since
every edge that lies on ∂A also has to lie on the boundary of one of the components ∂Ai. To
show ∂Ai ⊆ A we look at the definition of Ai. If there is an edge e on the boundary of Ai then
it also has to be on the boundary of another face. This face has to be a face in B as the Ai are
components of A and as such are not connected to other components. Since e is on the boundary
of Ai and B it is also on the boundary of B and thus we have shown ∂Ai ⊆ A.
The last thing we need to show to prove this lemma is that the union ∂A1 ∪ ...∂An is disjoint.
This can again be seen from the fact that if there is an edge e that is e ∈ ∂Ai and e ∈ ∂Aj . Then
∂Ai ∪ ∂Aj are connected and thus Ai and Aj would not be components. Hence we have shown
this lemma.

Every tangle of all of the separations Sk induces a tangle on only the simple separations in Sk
but is the converse also true? Does every tangle of the simple separations also extend to a tangle
on all of Sk? For that to be the case it has to be the case that if we have a forbidden star σ in a
tangle there must also be a forbidden star made of simple elements contained inside of the same
tangle. This is not generally the case as the following diagram shows.

A1 A3

A2

A4

B

Let |(Ai, F (G) \ Ai)| < k
2 for i ∈ {1, 2, 3, 4} then if

∆B < ε we can get a forbidden star made out of two sep-
arations (A1 ∪ A3, B ∪ A2 ∪ A4) and (A2 ∪ A4, B ∪ A1 ∪
A3). But to make a forbidden star out of simple separations
we would need the four separations (Ai, F (G) \ Ai) for i ∈
{1, 2, 3, 4}.
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4 Tree-of-tangles and Duality

There are two fundamental theorems about tangles. The first one is the tree of tangles theorem
and the other one is tangle-tree duality. The former gives us a tree structure on all of the tangles,
even with different order k, while the latter gives us a criterium with which we can find out if we
have tangles or find a certificate that proves it does not.

4.1 Tree-of-tangles Theorem

Let us first start with the tree-of-tangles theorem. To formulate the theorem we first need some
more definitions as the theorem does not look at tangles but instead at profiles. The definitions of
this section and the main theorem are taken from [3].

Definition 4.1. A profile P of S is a consistent orientation of S that satisfies the profile-property:
For all −→r ,−→s ∈ P the separation ←−r ∧←−s is not in P.

To use the tree-of-tangles theorem for the Fεk -tangles we have to show that they already fulfill
the profile-property.

Lemma 4.1. An Fεk-tangle is a profile.

Proof. Suppose there is an Fεk -tangle τ that is not a profile. In that case there are separations
−→r ,−→s ∈ τ and

←−
t =←−r ∧←−s = (−→r ∨ −→s )∗ ∈ τ . But that would mean that

−→
t ≤ −→r while

←−
t ,−→r ∈ τ

which is a contradiction to the consistency of τ .

Sets of profiles do not always form a tree structure but robust profiles do.

Definition 4.2. A profile P of S is robust if it is n-robust for every n, and it is n-robust if for
every −→r ∈ P and every s ∈ Sn the following holds: If ←−r ∧ −→s and ←−r ∧←−s both have order < |r|,
they do not both lie in P .

This is to exclude one special case which does not allow the tree structure we want. In our case
this again cannot happen.

Lemma 4.2. An Fεk-tangle is a robust profile.

Proof. Suppose there is an Fεk -tangle τ that is not a robust profile. Then there exists an n so that
τ is not n-robust. This means that there exists an −→r ∈ τ and an s ∈ Sn where ←−r ∧−→s and ←−r ∧←−s
both have order < |r| but they both lie in τ . We now define σ = {−→r ,←−r ∧ −→s } ⊆ τ . Since σ is a
star and ∩σ = ∅ and thus ∆(∩σ) = 0 we have σ ∈ Fεk which is a contradiction.

We say that two profiles P, P ′ are distinguished by a separation s ∈ S if −→s ∈ P and ←−s ∈ P ′,
in that case we call them distinguishable. If the separation s that separates them has order |s| < k
we say that they are k-distinguishable. The smallest k for which P and P ′ are k-distinguishable
is called κ(P, P ′) and if s distinguishes P and P ′ and |s| = κ(P, P ′) we say that s distinguishes P
and P ′ efficiently. A set T ⊆ U distinguishes a set P of profiles efficiently if for any two profiles
in P there is an element of T which distinguishes them efficiently. If a set of profiles P is pairwise
distinguishable and every element is robust we call P robust. After this preparation we can now
formulate the tangle-tree theorem for separation universes (taken from [3]).
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Theorem 4.1. Let
−→
U = (

−→
U ,≤,∗ ,∨,∧, ||) be a submodular universe of separations. Then for every

robust set P of profiles in
−→
U there is a nested set SP ⊆ U of separations such that:

(i) every two profiles in P are efficiently distinguished by some separation in SP ;

(ii) every separation in SP efficiently distinguishes a pair of profiles in P;

This theorem tells us a lot about the structure of the Fεk -tangles. First of all we can use it to
find a tree structure for a set of Fεk -tangles T .

Corollary 4.1. There is a nested set ST ⊆
−→
S k of separations such that:

(i) every two Fεk-tangles are efficiently distinguished by some separation in ST ;

(ii) every separation in ST efficiently distinguishes a pair of Fεk-tangles;

But we can also find a tree-structure for bigger sets of tangles containing tangles with different
orders. For that we first have to show that tangles of higher order can also be seen as tangles of
lower order. More precisely

Lemma 4.3. Let k > ` then every Fεk-tangle τk induces an Fε` -tangle τ` := τk ∩ 2
−→
S ` that can not

be distinguished from τk.

Proof. The Fε` -tangle τ` is a consistent orientation since τk already had to consistently orient
−→
S `

to consistently orient
−→
S k. If there is a star σ ∈ Fε` in τ` then this star must have also been in τk

since Fε` ⊆ Fεk . This proves that τ` is indeed an Fε` -tangle. The only thing left to show is that τ`
can not be distinguished from τk. This can easily be seen from the fact that if ←−s ∈ τ` and −→s ∈ τk
then −→s must also be in τ` since |s| < ` which is a contradiction.

Now we can define the tangles that are pairwise distinguishable which we need for the tree-of-
tangles theorem.

Definition 4.3. Let τ be an Fεk-tangle that is not induced by an Fε` -tangle for an ` > k then we
call τ maximal.

These tangles are indeed distinguishable.

Lemma 4.4. Maximal tangles are pairwise distinguishable.

Proof. Let τ1 and τ2 be two distinct maximal tangles. If the order of τ1 and τ2 is equal then since
they are distinct there must be a separation s ∈ S so that −→s ∈ τ1 and ←−s ∈ τ2. If the order of τ1
and τ2 is not equal then without loss of generality we can assume the order ` of τ1 to be smaller

than the order k of τ2. Since τ1 is not induced by τ2 there must be an oriented separation −→s ∈
−→
S `

so that −→s ∈ τ1 but −→s /∈ τ2. Since s ∈ S` this also means that s ∈ Sk but that means that τ2 also
has to orient s. That implies ←−s ∈ τ2 and so τ1 and τ2 are distinguished by s.

Finally we get a tree structure for all of our maximal tangles.

Corollary 4.2. For a set of maximal tangles T there exists a nested set ST ⊆
−→
S of separations

such that:

(i) every two maximal tangles of T are efficiently distinguished by some separation in ST ;

(ii) every separation in ST efficiently distinguishes a pair of maximal tangles of T ;
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We can even make this theorem a little stronger by only including simple separations. For that
it suffices to show that the separations we get from the tree-of-tangles theorem are simple due to
efficiently distinguishing the tangles.

Lemma 4.5. If two tangles τ1, τ2 ∈ T are efficiently distinguished by a separation r then r is a
simple separation.

Proof. Let −→r = (A,B) and −→r ∈ τ1,
←−r ∈ τ2. The set A has components A1, ..., An and B has

components B1, ..., Bm.
We want to show that there is an i and a j such that −→s1 := (F (G) \ Bj , Bj) ∈ τ1 and ←−s2 :=

(F (G)\Ai, Ai) ∈ τ2. For that let us look at a sequence of separations −→ri := (A∪B1∪ ...∪Bi, Bi+1∪
... ∪ Bm). If −→rm ∈ τ1 then −→s1 = −→rm otherwise there is a smallest i such that ←−ri ∈ τ1 but −−→ri−1 ∈ τ1
if we can show that |ri| ≤ |r|. This can be seen by calculating

|ri| =
m∑

j=i+1

|(F (G) \Bj , Bj)| ≤
m∑
j=1

|(F (G) \Bj , Bj)| = |r|.

Now that we have shown that there is a smallest i such that ←−ri ∈ τ1 but −−→ri−1 ∈ τ1, suppose
−→s1 := (F (G)\Bi, Bi) /∈ τ1 then (Bi, F (G)\Bi) ∈ τ1. This would mean that σ := {←−s1 ,

←−ri ,−−→ri−1} ⊆ τ1.
Now we can calculate that

∩σ = (Bi ∪ ... ∪Bm) ∩ (A ∪B1 ∪ ... ∪Bi) ∩ (F (G) \Bi) = ∅.

Since that would mean that σ is a forbidden star it must follow that −→s1 ∈ τ1. Showing ←−s2 ∈ τ2
works analogously.
Both s1 and s2 distinguish τ1 and τ2 and hence since r distinguished τ1 and τ2 efficiently it must
follow that |s1| = |s2| = |r|. Since |r| =

∑n
i=1 |(F (G) \Ai, Ai)| =

∑m
j=1 |(F (G) \Bj , Bj)|, this can

only be the case if B = Bj and A = Ai as the order of every nontrivial separation is greater than
zero and thus we know that r is in fact simple.

Corollary 4.3. There is a nested set ST ⊆
−→
S of simple separations such that:

(i) every two maximal tangles are efficiently distinguished by some simple separation in ST ;

(ii) every separation in ST efficiently distinguishes a pair of maximal tangles;

4.2 ST -trees

Let us look some more at these nested sets of separations and what these have to do with trees.
This will help us further understand the tree-of-tangles theorem. So suppose we have been given
a nested set of separations ST as in the tree-of-tangles theorem. The definition of an ST -tree is
taken from [6].

Definition 4.4. An ST -tree is a pair (H,α) of a tree H and a bijective map α :
−−−→
E(H)→

−→
ST such

that

� α is order-preserving, where the edges of the tree are ordered such that (e1, v1, w1) ≤ (e2, v2, w2)
if the unique path in H connecting v1 to w2 passes through w1 and v2,

� α(e, v, w)∗ = α(e, w, v).

We are now going to define such a tree H and a map α for the ST we got from the tree-of-tangles
theorem.
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Definition 4.5. For the nested set ST let H have vertex set V (H) defined as the consistent
orientations of ST and let the edge set E(H) be sets consistent orientations which only differ in

one separation. Let α :
−→
E →

−→
ST map (e, τ1, τ2) to the distinguishing separation −→s if −→s ∈ τ1 and

otherwise to ←−s .

Lemma 4.6. (H,α) is an ST -tree.

Proof. We first need to show that H is a tree. By definition H is a graph. What we need to show is
that H is connected and circle free. We first show that we are circle free, for that consider a circle
made of the edges e1, ..., en. Then let us consider the edge e1 = v1v2 and the path P = v2e2v3...env1

connecting v2 to v1 in the circle avoiding e1. Since v1 and v2 differ in the separation s. There must
exist vi and vi+1 which only differ in s, since otherwise the orientation of s would not be changed
in any edge. This is not possible since −→s forces every separation smaller than −→s to be in v1 and
←−s forces every separation smaller than←−s , hence greater than −→s to lie in v2 hence also in v1. This
means that s already completely determines v1 and v2.
Now we need to show that H is connected. For that let us consider orientations τ1 and τ2 which
differ in a minimal number of separation while still not being connected. Then we choose the largest
separation −→s in τ1 which distinguishes τ1 and τ2. We define τ3 := τ1 ∪ {←−s } \−→s . Since ←−s ∈ τ2 we
know that ←−s is consistent in τ3 with all of the separations which do not differ between τ1 and τ2
and since we chose −→s maximal, we are also consistent with the separations which distinguish τ1
and τ2. Hence τ3 is consistent and we have a contradiction.
Next we need to show that α is bijective. First we show that α is injective. This can be easily
seen from the fact that α maps different orientations of the same edge to different separations and
α must map different edges to different separations since we have already shown that each edge
has a unique separation distinguishing the two orientations in the proof that H is a tree. Next we
need to show that α is also surjective. For that suppose we want to find an edge which is mapped
by α to a separation s. Then s must distinguish two orientations τ1, τ2 of ST by definition of ST
but since H is a tree τ1 and τ2 are connected. Hence since τ1 and τ2 disagree on s at some edge
in the path connecting τ1 and τ2 there must exist two orientations which disagree only on s. The
edge between them is mapped to s and so we have shown that α is bijective.
Next we need to show that α is order-preserving. For that it suffices to show that given vertices
u, v, w with uv ∈ E(H) an vw ∈ E(H) it follows that −→s := α(uv, u, v) ≤ α(vw, v, w) =: −→r . We
know that −→s ∈ v and ←−r ∈ v, ←−s ∈ u and ←−r ∈ u and finally −→s ∈ w and −→r ∈ w. We also know
that s and r are nested this just leaves the option that −→s ≤ −→r since otherwise r and s would be
pointing away from each other in one of the orientations.
Finally α(e, v, w)∗ = α(e, w, v) can be seen from the definition of α.

With this tree in mind we can see that every tangle τ can be identified with a vertex vτ of H.
This is because a tangle τ ∈ T orients every separation in S it also orients every separation in ST .
Since every orientation of edges of a tree has a sink, a vertex which every edge points to, we define

vτ as this sink. The edges
−→
E (V (H), vτ ) are mapped by α to a set of separations which we define

as στ .

Lemma 4.7. For every τ ∈ T the set στ is a star of cardinality d(v) that is contained in τ .

Proof. The only thing we have to show is that στ is a star. For that let us consider two separations
−→r ,−→s ∈ στ . Then there exist oriented edges with α(er, vr, vτ ) = −→r and α(es, vs, vτ ) = −→s . But
since (er, vr, vτ ) ≤ (es, vτ , vs) it follows that α(er, vr, vτ ) ≤ α(es, vτ , vs) hence −→r ≤ ←−s .

Note that στ cannot be contained in Fεk since τ is a tangle.
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Lemma 4.8. For two non-equal tangles τ, ρ ∈ T the sets ∩στ and ∩σρ are disjoint.

Proof. Since τ and ρ are distinct there exists a separation s ∈ ST which distinguishes them,
without loss of generality let −→s ∈ τ and ←−s ∈ ρ. Then, by definition of στ there exists an −→sτ ∈ στ
with −→sτ ≥ −→s . Similarly there exists an −→sρ ∈ σρ with −→sρ ≥ ←−s . Suppose −→s = (A,B), then by the
previous argument we know that ∩στ ⊆ B and ∩σρ ⊆ A. Since A and B are disjoint the sets ∩στ
and ∩σρ are also disjoint.

We will use these lemmas later to look more at the structure of the tangles.
We have seen that every tangle can be mapped to a vertex in H but is the other direction also
true? Can every vertex in H be mapped to a tangle in ST ? In general this is not true, but if we
assume our nested set from the tree-of-tangle theorem to be of minimal cardinality, then it does
become true.

Lemma 4.9. Let ST ⊆ S be a smallest nested set of separation such that every pair of tangles in
T is efficiently distinguished by some separation in ST and each separation efficiently distinguishes
a pair of tangles of T . If (H,α) is an ST -tree then for every vertex v of H there exists a tangle
τ ∈ T with v = vτ .

Proof. Suppose there is a vertex v ∈ V (H) such that there is no tangle τ for which v = vτ . If we
delete the vertex v then H is separated into d(v) many components H1, ...,Hd(v). Each component
Hi is connected with v by an edge ei that is mapped by α to a separation si. Let j ∈ {1, ..., d(v)}
be a natural number such that |α(ej)| ≥ |α(ei)| for all i ∈ {1, ..., d(v)}. We hope to prove that
sj can in fact be removed. This can be shown in the following way: Let τ, ρ ∈ T be two tangles
that were efficiently distinguished by sj . Without loss of generality vτ ∈ Hj as otherwise sj would
not be distinguishing τ and ρ and vρ ∈ Hk with k 6= j as vρ can not be v. This now shows that
sk also distinguishes τ and ρ and since |sk| ≤ |sj | it also does so efficiently. This proves that
after deleting sj we can still distinguish every pair of tangles efficiently and every separation still
efficiently distinguishes two tangles. This is a contradiction to the minimality of the nested set.

4.3 Tangle-tree Duality

In this section we will find a way to determine whether we find a tangle and if we do not find any
tangles in a triangulation we will find a tree structure which witnesses this. Most of the definitions
and the main theorem of this section are taken from [6].

Definition 4.6. Let
−→
S be a separation system, −→r ∈

−→
S nontrivial and −→s0 ∈

−→
S with −→r ≤ −→s0.

S≥−→r := {s ∈ S|−→s ≥ −→r or←−s ≥ −→r }

Then if −→s ∈
−→
S ≥−→r and −→s ≥ −→r we define f

−→r−→s0 :
−→
S ≥−→r →

−→
U as f

−→r−→s0 (−→s ) := −→s ∨ −→s0 and f
−→r−→s0 (←−s ) :=

(−→s ∨ −→s0)∗

We call f
−→r−→s0 the shifting map. We imagine it to shift the separations over to −→s0 .

Definition 4.7. Let F be a set of stars then −→s0 ∈
−→
S emulates −→r ∈

−→
U in

−→
S for F if

�
−→s0 ≥ −→r ;

� every −→s ∈
−→
S with −→s ≥ −→r satisfies −→s ∨ −→s0 ∈

−→
S ;

� every star in F that has an element −→s ≥ −→r satisfies f
−→r−→s0 (σ) ∈ F .

A separation −→r ∈
−→
S is said to be forced by F if {←−r } ∈ F .
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Definition 4.8. A separation system
−→
S is F-separable if for every two nontrivial −→r ,

←−
r′ ∈

−→
S that

are not forced by F and satisfy −→r ≤
−→
r′ there exists an s0 ∈ S with an orientation −→s0 that emulates

−→r in
−→
S for F and such that ←−s0 emulates

←−
r′ in

−→
S for F .

Lemma 4.10. For a triangulation G the separation system
−→
Sk(G) is Fεk-separable.

Proof. Let −→r ,
←−
r′ ∈

−→
Sk with −→r ≤

−→
r′ . We now define s0 ∈ Sk as a separation which fulfills −→s0 ≥ −→r

and ←−s0 ≥
←−
r′ , we say a good separation, with minimal order. Such a good separation exists since

−→s0 = −→r is good. Now we want to show that for all −→s ∈
−→
Sk with −→s ≥ −→r it follows that −→s ∨−→s0 ∈

−→
Sk.

Suppose −→s ∨ −→s0 /∈
−→
Sk, in that case we define

−→
t := −→s ∧ −→s0 . Since −→r ≤ −→s and −→r ≤ −→s0 it follows

that −→r ≤ −→t . It also follows from −→s0 ≤
−→
r′ that

−→
t ≤

−→
r′ . Hence

−→
t is a good separation. Since

−→s ∨ −→s0 /∈
−→
Sk it follows that |−→s ∨ −→s0 | ≥ k.

|−→t |+ |−→s ∨ −→s0 | = |−→s ∧ −→s0 |+ |−→s ∨ −→s0 | ≤ |−→s |+ |−→s0 | < k + |−→s0 |

This gives us the inequality |−→t | < k + |−→s0 | − |−→s ∨ −→s0 | ≤ |−→s0 |. This is a contradiction as we chose
−→s0 with minimal order.

Now we show that −→s0 emulates −→r in
−→
Sk for Fεk . By definition −→s0 ≥ −→r and every −→s ∈

−→
Sk with

−→s ≥ −→r satisfies −→s ∨ −→s0 ∈
−→
Sk. Now let σ ∈ Fεk be a star that has an element −→s ≥ −→r . We want

to show f
−→r−→s0 (σ) ∈ Fεk . Let us first look at the case where |σ| = 1. In that case σ = {−→u }. Since

−→
r′

is not forced by Fεk we know that −→u ≥ −→s0 and so f
−→r−→s0 (σ) = σ ∈ Fεk . Now we will look at the case

|σ| ∈ {2, 3}. In this case there is an element
−→
t1 ∈ σ with

−→
t1 ≥ −→r and elements

−→
t2 ,
−→
t3 ∈ σ with

←−
t2 ≥ −→r and

←−
t3 ≥ −→r such that σ = {−→t1 ,

−→
t2 ,
−→
t3}. Let

−→
tj = (Aj , Bj) and −→s0 = (C,D).

f
−→r−→s0 (
−→
t1 ) = (

−→
t1 ∨ −→s0) = (A1 ∪ C,B1 ∩D) :=

−→
t′1

f
−→r−→s0 (
−→
t2 ) = (

←−
t2 ∨ −→s0)∗ = (A2 ∩D,B2 ∪ C) :=

−→
t′2

f
−→r−→s0 (
−→
t3 ) = (

←−
t3 ∨ −→s0)∗ = (A3 ∩D,B3 ∪ C) :=

−→
t′3

σ′ := {
−→
t′1 ,
−→
t′2 ,
−→
t′3} is still a star and ∩σ′ = (B1 ∩D) ∩ (B2 ∪ C) ∩ (B3 ∪ C) ⊆ B1 ∩ B2 ∩ B3 = ∩σ.

Hence we know that σ′ ∈ Fεk . With that we have shown that −→s0 emulates −→r in
−→
Sk for Fεk .

The proof that ←−s0 emulates
←−
r′ in

−→
Sk for Fεk follows in the same way.

Definition 4.9. The set of stars F is standard for
−→
S if it contains the stars {←−r } for all trivial

−→r ∈
−→
S .

Lemma 4.11. Fεk is standard for
−→
Sk(G).

Proof. Let −→r = (A,B) be a trivial element of
−→
Sk(G). Then there must be a (C,D) ∈

−→
Sk such

that (A,B) < (C,D) and (A,B) < (D,C), this implies A = ∅ and B = F (G). That means that
∩{←−r } = ∩{(B,A)} = ∅ and thus {←−r } ∈ Fεk .

This allows us to show the following tangle-tree duality theorem, proven in [6], for our setup.

17



Theorem 4.2. Let (
−→
U ,≤,∗ ,∨,∧) be a universe of separations containing a finite separation system

(
−→
S ,≤,∗ ). Let F ⊆ 2

−→
U be a set of stars, standard for

−→
S . If

−→
S is F-separable, exactly one of the

following assertions holds:

(i) There exists an F-tangle of S.

(ii) There exists an S-tree over F .

We can now use this theorem for the Fεk -tangles.

Corollary 4.4. For k ∈ N either there exists an Fεk-tangle or there exists an
−→
Sk-tree over Fεk .

This tells us that if we do not have a tangle in G for a certain k it is because of this
−→
Sk-tree

and if we can show that we can not have this
−→
Sk-tree, we know that there must be a tangle.
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5 Tangles of the disk

We will now use the definition of tangles on triangulations to define tangles on the disk D. The
intuition behind this is that a tangle of the disk D would orient any separation of low order. We
will not use every separation of the disk though as there could be infinitely many, instead for an
arbitrary triangulation G of D every separation of Sk(G) would be oriented by one of those tangles.
This motivates us to define a tangle as a map τ that maps every triangulation G of D to a tangle
on G. First we need to look at the set of triangulations of G. For that we define

Definition 5.1. ε(G) := ε−∆(D \G).

Definition 5.2. A system of triangulations D∆ is a set of pairs (G,wG), sometimes abbreviated
as G, of a triangulation G and a weight function wG such that

� For two triangulations G and G′ where G′ is finer than G the weight function have to fulfill
for every e ∈ E(G) that wG(e) = wG′(E′) where E′ := {e′ ∈ E(G′)|e′ ⊆ e}. We call this
property consistency.

� For two pairs (G1, wG1
), (G2, wG2

) ∈ D∆ there exists a pair (G′, wG′) ∈ D∆ with G′ being
finer than both G1 and G2.

� For any ε′ > 0 there exists a (G,wG) ∈ D∆ such that ∆(D \G) < ε′.

� ε(G) > 0 for all G ∈ D∆.

We say that for G1, G2 ∈ D∆ if G2 is finer than G1, that G1 ≤ G2.

Lemma 5.1. A system of triangulations D∆ is a directed partially ordered set, ordered by ≤.

Proof. The set being directed can instantly be seen from the definition hence it suffices to show
that ≤ is a partial order. First we show that ≤ is reflexive. Let (G,wG) ∈ G∆, since V (G) = V (G)
and E(G) = E(G) we know that G is finer than G and since the edges of E(G) are disjoint
we know that E′ = {e′ ∈ E(G)|e′ ⊆ e} = {e} and thus wG(e) = wG(E′). Next we show that
≤ is antisymmetric. So let (G1, wG1), (G2, wG2) ∈ D∆ be two triangulations and G1 ≤ G2 and
G2 ≤ G1. This means that V (G1) = V (G2) and

⋃
(E(G1)) =

⋃
(E(G2)). If E(G1) and E(G2) were

not equal, that would mean that the end of one edge would lie inside the interior of another edge
which is forbidden since edges only intersect the vertex set at their ends. As before we see that
wG1

(e) = wG2
(E′) = wG2

(e) and thus the weight functions are equal. Now we just need to show the
transitivity. Let (G1, wG1), (G2, wG2), (G3, wG3),∈ D∆ and G1 ≤ G2 as well as G2 ≤ G3. It follows
from V (G1) ⊆ V (G2), V (G2) ⊆ V (G3),

⋃
(E(G1)) ⊆

⋃
(E(G2)) and

⋃
(E(G2)) ⊆

⋃
(E(G3)) that

V (G1) ⊆ V (G3) and
⋃

(E(G1)) ⊆
⋃

(E(G3)). Hence G3 is finer than G1. Thus we have shown
that ≤ is indeed a partial order.

What we need to do is given two triangulations G,G′ ∈ D∆ where G′ is finer than G and given

a separation (A,B) of
−→
S (G) we want to find a separation (X,Y ) of

−→
S (G′) which in some way has

the same properties. For that we need to assign a side for every face of G′. Some faces of G′ are
contained inside of a face of G so we can simply use the side assigned to that face in G but some
faces of G′ lie outside of G. To deal with this case we first consider a face f of G which is bounded
by an edge ef which lies on the boundary of G. Then there exists a component, which we will
from now on call C(f), of D \G which also contains ef in its boundary. If a face f does not have
an edge which lies on the boundary then we define C(f) := ∅. It is not hard to see that the C(f)
are pairwise disjoint for f ∈ F (G) and that every interior point of D is contained in either a face
of G or a C(f) for a face f ∈ F (G). This means that every face of G′ lies completely in one of the
generalized faces f ∪ C(f) for an f ∈ F (G).
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Definition 5.3. For triangulations G,G′ ∈ D∆ of a system of triangulations with G′ finer than

G we define ιG
′

G :
−→
S (G)→

−→
S (G′) which maps a separation (A,B) to the separation (X,Y ) where

X := {f ∈ F (G′)|∃a ∈ A : f ⊆ a ∪ C(a)} and Y := {f ∈ F (G′)|∃b ∈ B : f ⊆ b ∪ C(b)}.

Lemma 5.2. ιG
′

G fulfills the following properties:

(i) ιG
′

G is well defined.

(ii) ιG
′

G (←−s ) = ιG
′

G (−→s )∗. Implying that if s ∈ S(G) then ιG
′

G (s) ∈ S(G′).

(iii) |ιG′

G (s)| = |s| .

(iv) ιG
′

G (−→s ) ≤ ιG′

G (
−→
t )⇔ −→s ≤ −→t .

(v) ιG
′

G is injective.

(vi) If we have G′′ with G′′ ≥ G′ then we have ιG
′′

G = ιG
′′

G′ ◦ ιG
′

G .

Proof. The points (ii), (iv), (v) and (vi) can be easily seen from the definition.

(i) We have to show, that (X,Y ) is indeed a separation. For that we first need to show that
X ∩ Y = ∅. If that were not the case there would be a f ∈ F (G′) such that there is an
a ∈ A with f ⊆ a ∪ C(a) and b ∈ B with f ⊆ b ∪ C(b). That would mean that a ∩ b 6= ∅
since b ∩C(a), a ∩C(b) and C(a) ∩C(b) are empty by definition and since a and b are faces
in F (G) this means that a = b contradicting A ∩ B = ∅. To show that X ∪ Y = F (G′) it
suffices to see that every face of F (G′) is a subset of a generalized face f ∪ C(f) of F (G).

(iii) We have to show that wG′(∂X) = wG(∂A). For that if suffices by the definition of systems of
triangulations to show that

⋃
∂X =

⋃
∂A. This can be seen since a point p ∈ R2 lies on the

boundary of A and B if it contains a point of a face in A and a point of a face of B in every
neighbourhood, but that means that it also contains points of faces of X and Y in every
neighbourhood. For the other direction, if we have a point p on an edge which lies both on
the boundary of X and Y then there must be faces x ∈ X and y ∈ Y on whose boundary
p lies but x and y both must lie in faces of G. This can be seen from the fact that if y lied
in C(b) for a b ∈ B then x would need to lie in b since that is the only face which shares an
edge on its boundary with C(b) but then x would already be in b. Similarly we can see that
x also cannot lie inside of a C(a) for an a ∈ A. This shows that p already lies in

⋃
∂A.

Definition 5.4. Let G and G′ be triangulations of D with G′ finer than G then an Fεk-tangle τ ′

of G′ induces an Fεk-tangle τ of G if for every separation −→s ∈ τ the separation ιG
′

G (−→s ) ∈ τ ′.

Lemma 5.3. Let (G,wG), (H,wH) ∈ D∆ be two triangulations with G ≤ H then every Fε(H)
k -

tangle τ of H induces a Fε(G)
k -tangle on G.

Proof. We prove this by defining the tangle ρ of G in the following way. If we have a separation
s ∈ Sk(G) then we have a separation s′ := ιHG (s) ∈ S(H). This separation s′ has the same order

as s and thus s′ is oriented by the Fεk -tangle τ towards the orientation
−→
s′ . Now this means that

there is a separation −→s ∈ s such that ιHG (−→s ) =
−→
s′ . We define −→s ∈ ρ. Now we need to show that

ρ is indeed a Fεk -tangle. First we show that ρ is an orientation. This can be seen from the fact
that from every separation we have chosen one orientation to put into ρ. Next we show that ρ
is consistent. Suppose ρ were not consistent. Then there are distinct r, s ∈ ρ with −→r < −→s such
that ←−r ,−→s ∈ ρ. But that would mean that ιHG (−→r ) < ιHG (−→s ) while ιHG (−→r )∗, ιHG (−→s ) ∈ τ . That is a
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contradiction as this would mean that τ is not consistent. Now we just need to show, that there
is no forbidden star in ρ. For that is suffices to show, that if we had a forbidden star σ′ ⊆ ρ we
have a star σ ⊆ τ such that ∩σ′ \ (H \G) ⊆ ∩σ as this implies

∆(∩σ′) ≤ ∆(∩σ)− (∆(H)−∆(G)) ≤ ε−∆(D \G)− (∆(H)−∆(G))

≤ ε−∆(D \H) = ε(H)

which would be a contradiction. We define σ := ιHG (σ′). Since if ιHG (A,B) = (X,Y ) if follows that⋃
X ∩G =

⋃
A and

⋃
Y ∩G =

⋃
B we get that ∩σ′ \ (H \G) ⊆ ∩σ.

Now we have everything that we need to define tangles on D given a system of triangulations
D∆.

Definition 5.5. Let D be a disk then an Fεk-tangle on D is a map τ from the triangulations

G ∈ D∆ of D to a tangle τ(G) = τG where τG is a Fε(G)
k -tangle on G. Where if G1 and G2 are

triangulations of D where G1 is coarser than G2 then τ(G2) must induce τ(G1).

What follows from this is that if we have two triangulations G1 and G2 then there is a trian-
gulation G3 that is finer than both G1 and G2 so that τ(G3) induces both τ(G1) and τ(G2). This
is in line with the intuition that this is supposed to be one tangle that orients the separations of
every triangulation.

5.1 Tree-of-tangles Theorem

We now apply the tree of tangle theorem to tangles of D and use the insights from that to find
out more about the structure of the tangles.
We can easily see that a Fεk -tangle of D induces a Fε` -tangle of D for k ≥ ` as they are induced in
every triangulation. This allows us to define a set of maximal tangles T as a set of tangles which
are maximal in T which means that each tangle in T is not induced by a different tangle in T .

Theorem 5.1. Let T be a finite set of maximal tangles of D then there is a nested set ST of
separations of a triangulation G such that

(i) any two tangles in T are distinguished by some separation in ST ;

(ii) every separation in ST distinguishes a pair of tangles in T .

We say that G witnesses the tangles T . Two tangles τ1 and τ2 in T are distinguished by a
separation s ∈ ST if s distinguishes τ1(G) and τ2(G).

Proof. We start by constructing the triangulation G that contains enough separations to allow us
to apply the tree of tangle theorem. For the theorem to work we need to be able to distinguish
any two tangles in T with separations in G. We start by noting that for any two distinct tangles
τ1, τ2 ∈ T there exists a triangulation Gτ1,τ2 such that τ1(Gτ1,τ2) and τ2(Gτ1,τ2) are different. In
that triangulation Gτ1,τ2 there must be a separation s ∈ S(Gτ1,τ2) that distinguishes τ1(Gτ1,τ2)
and τ2(Gτ1,τ2). There must a triangulation G that is finer than all of these finitely many Gτ1,τ2
and since there exists a separation s ∈ S(Gτ1,τ2) that separates τ1(Gτ1,τ2) from τ2(Gτ1,τ2) in S(G)
the separation ιGGτ1,τ2

(s) distinguishes τ1(G) from τ2(G).

Now the rest of the proof follows instantly. The tangles T (G) are pairwise distinct Fε(G)
k -tangles

of G. Thus there exists a nested set ST of separations such that every two tangles of T (G) are effi-
ciently distinguished by some separation in ST and every separation in ST efficiently distinguishes
a pair of tangles in T (G). This is exactly what we wanted to show.
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Note that from the proof follows that the separations that distinguish the tangles in G are in
fact efficient in S(G).

Our next goal is to show that there can only be finitely many tangles. This is important to
show as it would be very counterintuitive if in a finite space there would be infinitely many regions
of high cohesion which each are not contained within a small area in some sense since they do not
contain a forbidden star. That would in fact lead us to question the definitions we have made in
this thesis. For that goal let us first proof a basic result about trees to later apply it to the tree of
tangles.

Lemma 5.4. In a tree H with k edges there are at least 1
2k vertices with degree at most 2.

Proof. We know that the sum of all edge degrees is∑
v∈V (H)

d(v) = 2k.

Now let m be the number of vertices with degree ≤ 2 then

2k =
∑

v∈V (H)

d(v) ≥ m · 1 + (k + 1−m) · 3 = 3k + 3− 2m⇔

2k ≥ 3k + 3− 2m⇔ 2m ≥ k + 2⇔ m ≥ 1

2
k.

With this preparation we can prove that there can only be a finite number Fεk -tangles of D, in
fact we can prove an upper bound for the number of tangles.

Lemma 5.5. For every finite set T of maximal tangles of D it is valid that |T | ≤ 4∆D
ε .

Proof. Let G witness the tangles of T . Without loss of generality we can assume that ε(G) > ε
2

since otherwise we could find a triangulation G′ with ε(G′) > ε
2 and thus find a triangulation G′′

which is both finer than G and G′ which means that it both witnesses the tangles T as well as
having ε(G′′) > ε

2 .
Let ST be the nested set of separation from Sk(G) that we get from the tree-of-tangle theorem
and let (H,α) be the ST -tree. Now let us look at all of the vertices V ′ ⊆ V (H) of H that have
degree ≤ 2. For each of these vertices v ∈ V ′ there exists a tangle τ ∈ T such that v = vτ . Let us
call the set of these tangles T ′ ⊆ T . Since d(v) ≤ 2 we know that |στ | ≤ 2 and thus since στ ⊆ τ
we know that ∆(∩στ ) ≥ ε(G) ≥ ε

2 . Since the sets ∩στ are disjoint for all τ ∈ T ′ we know by

∆F (G) ≥
∑
τ∈T ′

∆(∩στ ) ≥ |T ′|ε
2
⇔ |T ′| ≤ 2∆F (G)

ε
.

and |T ′| ≤ |T | ≤ |V (H)| ≤ 2|T ′| that |T | ≤ 4∆F (G)
ε . Hence since F (G) ⊆ D it follows that

∆F (G) ≤ ∆D. Thus |T | ≤ 4∆D
ε .

This allows us to formulate the tree-of-tangles theorem for tangles of D.

Theorem 5.2. Let T be a set of maximal tangles of a system of triangulations D∆ then there is
a nested set ST of simple separations of a triangulation G ∈ D∆ such that

(i) any two tangles in T are distinguished by some separation in ST ;

(ii) every separation in ST distinguishes a pair of tangles in T .

Proof. We just need to show that T is finite. Suppose T was infinite then we can find an arbitrarily
large finite subset of T . Suppose we chose a subset Tfin of size |Tfin| ≥ 4∆D

ε . Then this set Tfin
would contradict Lemma 5.5. Hence we have proven this theorem.
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5.2 Tangle-tree Duality

In this section we find a result similar to the tangle-tree duality for the tangles of D. To understand
the consequences of an Fεk -tangle not existing for a certain k we instead first look at what is
necessary for it to exist.

Lemma 5.6. If we have a system of triangulations D∆ and for every triangulation G ∈ D∆ there

exists an Fε(G)
k -tangle then there exists an Fεk-tangle of D∆.

Proof. We use the generalized infinity-lemma to show this lemma. Let XG be the set of all Fε(G)
k -

tangles on G ∈ D∆ then we have a family of non-empty finite sets (XG)G∈D∆ . The system of
triangulations is a directed poset. Now we define maps fGH : XG → XH for all G ≥ H where we
map a tangle of XG to its induced tangle in XH . This map is compatible as fGH ◦fHI = fGI . Then
we get from the generalized infinity-lemma a tangle TG for every G ∈ D∆ such that fGH(TG) = TH
for G ≥ H, or in other words: TH is induced by TG.

This means that if we do not have an Fεk -tangle of D∆ that there exists a triangulation G ∈ D∆

that does not have a tangle. By tangle-tree duality this means that there is an
−→
Sk(G)-tree over

Fε(G)
k .

Theorem 5.3. Let D∆ be a system of triangulations then for every ε > 0 and k ∈ N exactly one
of the following assertions holds:

(i) There exists an Fεk-tangle of D∆.

(ii) There exists a triangulation G ∈ D∆ with an
−→
Sk(G)-tree over Fε(G)

k .
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6 Geometry of a circle

In this section we prepare for an important theorem in the next section. What we will want to
show is that a circle is difficult to cut apart in some sense. More specifically we want to show
that given a length k > 0 and a circle of radius R := k

2 + δ with δ > 0 then this circle can not
be ”covered easily”. What we mean by this is that for every δ > 0 there exists a ε > 0 such that
the left sides of three separations of arbitrary triangulations are not able to cover the entire area
of the circle of radius R except for an area of size ε, instead they cover too little. To show this we
will instead show a similar but slightly stronger geometric result. To do this we will reimagine the
components of the left sides of separations as mere sets of points with geometric boundaries and
prove the result in this more general framework. In this section let X := {x ∈ R2|||x|| ≤ R} be a
closed ball, centered in the origin of R2, of radius R > k

2 and let CX be the boundary of X in R2.

Definition 6.1. δ := R− k
2 .

Definition 6.2. Let ψ : [0,∞) × R → R2, (r, ϕ) 7→ reiϕ be the parametrisation of the plane in
polar coordinates.

Definition 6.3. Two sets of points A and B are close if there exist a ∈ A and b ∈ B such that
d(a, b) < δ

4 . We then also say that A is close to B or B is close to A.

Definition 6.4. For a set A ⊆ X we define the boundary ∂A as the set of all of the points x ∈ X
which contain in every neighbourhood an element of A as well as an element of X \A.

Definition 6.5. A path P is a function P : [0, 1] → X whose image is a one-dimensional mea-
surable manifold. A point a is said to be the starting point of P if a = P (0) and b is said to be
the end point of P if b = P (1). P is then also said to connect a to b. A path with a starting point
in a set A and an end point in a set B but which is otherwise disjoint with A and B is called an
A-B-path or if A = B simply an A-path. If a path connects one point to the same point we call it
a cycle-path. A path with starting point a and end point b is said to connect a to b and such a path
can also be written as aPb. If Q is another path connecting a point b to c then the path aPbQc is
defined as the concatenation of P and Q. The image of P will be written as P := Im(P ).

Definition 6.6. Let K be an open connected subset of X not close to CX and for which there
exists a cycle-path P such that ∂K = P , then we call K an inner component of X.

Definition 6.7. Let K be an open connected subset of X close to CX , for which there exists a
CX-path or cycle-path P such that ∂K = P , we then call K an outer component of X. If the
distance between K and CX is zero then we call K a strong outer component. Any inner or outer
component which is not a strong outer component is called a weak inner component.

The order or length of a component K, written as |K|, is defined as the lebesgue measure λ1

of the boundary. Let L be a set of components then |L| =
∑
K∈L |K|.

Lemma 6.1. If we have a weak inner component K with order |K| then its area is λ2(K) ≤ |K|
2

4π .
Hence if we have a set L of weak inner components each of length smaller than k then

λ2(L) ≤ k

4π
|L| and λ2(L) ≤ |L|

2

4π

Proof. The first equation is simply the isoperimetric inequality [8].
For the other inequalities we calculate∑

K∈L
λ2(K) ≤

∑
K∈L

|K|2

4π
≤
∑
K∈L

k|K|
4π

=
k

4π

∑
K∈L
|K| and
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∑
K∈L

λ2(K) ≤
∑
K∈L

|K|2

4π
≤

(
∑
K∈L |K|)2

4π
=
|L|2

4π
.

Definition 6.8. Let A ⊆ X be a set of points then r(A) := infa∈A ||a|| is the radius of A.

Definition 6.9. Let L be a set of inner and outer components, then we call L a cut of length k
and margin ε or simply a cut for short if,

i) The components in L are disjoint and cover X except for a set of size less than ε, more
formally λ2(X \

⋃
L) < ε,

ii)
∑
K∈L |K| ≤ 3k and |K| < k for all K ∈ L.

iii) λ2(K) < πR2

2 for every K ∈ L.

Definition 6.10. Let KA be the union of a set of outer components C := {K1
A, ...,K

n
A} ⊆ L of a

cut L such that

i) for every outer component K ∈ L which is not contained in C it follows that r(K) ≥ r(K ′)
for every K ′ ∈ C

ii) for every i ∈ {1, ..., n} the set Ki
A is close to an Kj

A for a j < i

iii) if two points A1 and A2 lie in KA ∪ ∂KA then they do not lie opposite each other, which
means that there does not exist a λ < 0 such that A1 = λA2.

If a set KA fulfills these properties then we call KA a cluster.

Lemma 6.2. Let KA be a cluster then there exists a straight line going trough the origin t = Rv
for a vector v ∈ R2 such that KA lies completely in one of the components of X \ t.

Proof. If KA is empty this is trivially true. Hence assume that KA is not empty and let A ∈ KA be
an arbitrary point of KA. A may not lie in the origin as it would otherwise be opposite itself which
contradicts property iii). Now let us rotate X such that A = (−a, 0) for an a > 0. This implies that
there is no element of KA which lies close to the positive section of the x-axis {(x, 0) ∈ D|x > 0}.
Let

ϕ1 := inf{ϕ′ ∈ (0, 2π) : ∃r ∈ R+, ψ(r, ϕ′) ∈ KA}
Then there exists an r1 ∈ R+ such that ψ(r1, ϕ1) ∈ ∂KA. Since A = (−a, 0) ∈ KA we know
that ϕ1 < π. Let ϕ2 := ϕ1 + π ∈ (π, 2π) then we know that there is no element of KA close to
t+ := ψ(R+ × {ϕ2}). Let us define t− := ψ(R+ × {ϕ1}) and t = t− ∪ t+. Then t is a straight
line going through the origin. The only thing left to show is that KA lies completely in one of
the components of X \ t, note that in particular this means that KA and t are disjoint. Let
T1 := ϕ(R+ × (ϕ1, ϕ2)) ∩ (X \ t) and T2 := X \ t \ T1. Since there is an element of KA in T1 we
have to show that KA ∩ T2 = ∅. Suppose there exists an element in KA ∩ T2, then there must
also exist an element B ∈ KA ∩ T2 which is close to an element from KA ∩ T1 since KA ∩ t = ∅.
This further implies that B must be close to t. But by definition B cannot be close to t+, hence
B must be close to t− but not close to the origin. Furthermore by definition of ϕ1 the point B
must thus lie in the sector T ′2 := ψ(( δ4 , R)× (ϕ2, 2π)). Let B = (bx, by) then it suffices to show that

by ≤ − δ4 as this is a contradiction to B being close to t− since every element of t− has a positive

y-coordinate. If bx > 0 and by > − δ4 then B is close with the positive section of the x-axis. If

bx < 0 and by > − δ4 , then ϕ2 <
3π
2 and thus ϕ1 <

π
2 which means that (bx, tan(ϕ1)bx) ∈ t+ and

tan(ϕ1)bx < 0. This means that the distance d between t+ and B is d < |by − tan(ϕ1)bx| < δ
4

because of − δ4 < by < tan(ϕ1)bx < 0 where the second inequality follows from B ∈ T ′2.
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Lemma 6.3. Let L be a cut and KA a cluster with radius a′ and let b′ > a′ such that there exists
an outer component KB ∈ L with r(KB) = b′ and every outer component of L not contained in

KA has radius ≥ b′ . Then for ε < δk
4π the length |L| > 2k − 2a′ − 2b′ + 2π2

k a′2 + 2π2

k b′2.

Proof. Let t be the straight line going through the origin such that KA lies completely in one of the
components of X \t. Let CA be this component and let CB be the other component. Let MA ⊂ CA
be every element not contained in an outer component and let MB ⊂ CB be defined the same way.
Then BA := Ba′ ∩ CA ⊂ MA and BB := Bb′ ∩ CB ⊂ MB , where Br := {x ∈ R2 : ||x||2 < r},
since in CA every outer separation has radius greater than a′ and in CB every outer separation has
radius greater than b′. Then the area of BA ∪BB must, except for an area of size ε, be contained
in inner components. Let L′ be the set of all inner components of L which intersect BA ∪ BB .
Then λ2(L′) > λ2(BA ∪ BB) − ε = π

2 a
′2 + π

2 b
′2 − ε. Since by Lemma 6.1 λ2(L′) ≤ k

4π |L
′| this

means that |L′| > 2π2

k a′2 + 2π2

k b′2 − 4π
k ε. Since ε < δk

4π this means that |L′| > 2π2

k a′2 + 2π2

k b′2 − δ.
We now also need to consider the length of outer components. The length |KA| > k + δ

2 − 2a′

and |KB | > k+ δ
2 − 2b′. This is because the boundary of the component KA contains two disjoint

paths connecting a point with distance a′ to the origin to a point with distance k + δ
2 from the

origin, for KB we can argue analogously. Adding both of these together we get

|L| > 2k − 2a′ − 2b′ + 2π2

k a′2 + 2π2

k b′2.

Lemma 6.4. Let L be a cut, KA a cluster and ε < δk
4π , then there exists an outer component KB

which is disjoint from KA.

Proof. Suppose not, then we can do the same calculation of the previous lemma, but without KB

and with BB = Bk
2

and we get

|L| > k − 2a′ +
2π2

k
a′2 +

2π2

k

(
k

2

)2

>
2π2

k

(
k

2

)2

=
2π2

k

k2

4
> 3k

which is a contradiction.

This means that suppose we have been given a cut L containing a cluster KA with radius a′

then there exists another disjoint outer component KB with minimal radius b′.

Lemma 6.5. Let ε < δk
4π , KA be a cluster and KB be the outer component of smallest radius

which is disjoint with KA and a′ := r(KA), b′ := r(KB) then 2a′ + 2b′ ≤ k.

Proof. Suppose 2a′ + 2b′ > k hence 2b′ > k − 2a′. This means that

|L| > 2k − 2a′ − 2b′ +
2π2

k
a′2 +

2π2

k
(k − 2a′)2 > 2π2k − (2 + 8π2)a′ +

10π2

k
a′2

For the second inequality we used that 2k−2b′ > 0. This is a parabola with respect to a′ and thus
we can calculate the lowest value this parabola takes.

2π2k − (2 + 8π2)a′ +
10π2

k
a′2 > 2π2k − (2 + 8π2)2

4 10π2

k

= (
2

5
π2 − 1

10π2
− 4

5
)k

One can calculate that

(
2

5
π2 − 1

10π2
− 4

5
)k > 3k

which is a contradiction since 3k > |L|.
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Definition 6.11. Given an outer component K let SL(K) be the supremum of all y ∈ [−R,R]
such that (x, y) ∈ K for an x ∈ [−R, 0] and let IL(K) be the infimum of the same set. Analogously
let SR(K) and IR(K) be defined but with x ∈ [0, R] instead.

Definition 6.12. An upper-component K ∈ L is an outer component for which there exists a
y > 0 such that (0, y) ∈ ∂K. A lower-component K ∈ L is an outer component for which there
exists a y < 0 such that (0, y) ∈ ∂K.

Lemma 6.6. We prove a few simple properties about upper- and lower components. Let K be an
outer component of a cut L.

i) Two points close to ∂K cannot lie opposite each other hence a component can not be an
upper- and a lower component.

ii) Let K be a lower component, then |K| > k+ 3
2δ+2 min(SL(K), SR(K)). If K is also a strong

outer component then |K| > 2R + 2 min(SL(K), SR(K)). Let K ′ be an upper component,
then |K ′| > k + 3

2δ − 2 max(IL(K ′), IR(K ′)). If K ′ is also a strong outer component then
|K ′| > 2R− 2 max(IL(K ′), IR(K ′)).

iii) Any outer component KB is an upper component or it is disjoint to one of the two upper
quadrants X1 := ψ([0, R]× (0, π2 ]) and X2 := ψ([0, R]× [π2 , π).

Proof. i) Suppose there are A1 and A2 close to ∂K with λ < 0 such that A2 = λA1. Then
there exists a path P which lies in the boundary of K and which starts at a point C1 close to
the boundary of X, goes through A1, then A2 and then goes close to C2 which is again close
to the boundary of X. If we replace P with a (shorter) path P ′ which follows P but connects
A1 to A2 in a straight line then P ′ is a path which starts close to the boundary of X goes
close to the origin and then goes back to a point close to the boundary of X. This path P ′

would then have a length longer then k which is a contradiction since k > |∂K| > |P | > |P ′|.

ii) We will just show the first inequality as the second can be generated from the first by
reflecting X along the x-axis. Since K is a lower component there exist points C1, C2 close
to the boundary of X and A = (−xa, SL(K)) ∈ ∂K, B = (xb, SR(K)) ∈ ∂K with xa, xb > 0
such that there exists a C1ABC2-path P . Let us now replace the AB-section of P with a
straight line and name the new path P ′. This path P ′ is shorter than P and since K is a lower
component it may not go above the origin as can be seen from i). Hence SL(K) or SR(K)
must be smaller than zero. This path P ′ thus has distance less than −min(SL(K), SR(K))
to the origin. Which means that its length |P ′| > 2((k2 + 3δ

4 − (−min(SL(K), SR(K)))) =
k + 3

2δ + 2 min(SL(K), SR(K)). In the case that K is a strong outer component we can do
the same argument but the path P now connects two points on CX which means that the
length of the path is 2R+ 2 min(SL(K), SR(K)).

iii) If an outer component is not an upper component but still intersects both X1 and X2 then
there must be a path P with P ⊂ ∂KB connecting X1 to X2, this path must contain a point
(0,−p) with p > 0 which means that KB is a lower component. Since SL(KB) > 0 and
SR(KB) > 0 this means by ii) that |KB | > k which is a contradiction.

Now that we have done some preparation let us sketch the rest of the section. We will want
to show that for small ε no cuts of X exist (Theorem 6.1), to do this we will do a proof by
contradiction. We will consider two cases which are sketched blow. We have the cluster KA and
the outer component KB . Either KA and KB are close or they are not. In both cases we are going
to approximate the length of KA and KB as well as the length of boundaries of components which
lie close to KA and KB . But this is not enough to prove the theorem, so we also have to look at
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the length of paths contained inside of the rectangle Q which is not close to KA or KB hence these
lengths were not yet counted. The lemmas we have just shown will help us prove that such a Q
indeed exists.

KB

KA

Q

KB

KA

Q

Let us now do this formally.

Lemma 6.7. Let S be an open set, let L be a set of components and let M ⊆ [0, R] be a mea-
surable where for every element m ∈ M there exist n distinct values ϕ1, ..., ϕn ∈ [0, 2π) such that
ψ(m,ϕi) ∈ S ∩ ∂L for all i ∈ {1, ..., n}.Then |L ∩ S| ≥ nλ1(M).

Proof. We first recognize that for every p ∈ S ∩∂L there exists a w(p) > 0 such that for every ball
Bw(p) of radius w < w(p) it holds that |B∩S∩∂L| ≥ 2w. This can be seen from S being open as well
as the definition of the boundary of components. Next we can define for every m ∈M a d(m) :=
mini6=j |ϕi − ϕj | and a w(m) which is defined as w(m) := min(d(m),mini∈{1,...,n}(w(ψ(m,ϕi)))).
This means that for every w < w(m) it follows that

|ψ((m− w,m+ w, [0, 2π)) ∩ S ∩ ∂L| ≥∑
i∈{1,...,n}

|Bw(ψ(m,ϕi)) ∩ S ∩ ∂L| ≥ n · 2w

Where the first inequality follows from the fact that the balls Bw(ψ(m,ϕi)) do not intersect.
Let us now define a sequence M1,M2, ... of closed subsets of M for which λ1(Mi) → λ1(M) for
i → ∞. We now want to show that the theorem holds for Mi. Since |L ∩ S| ≥ λ1(Mi) for every
i ∈ N we have |L ∩ S| ≥ λ1(M).
Since Mi is bounded by [0, R] and closed it is also compact. This means that there exists a
wi > 0 such that w(m) > wi for all m ∈ Mi. Now we can define for every m ∈ Mi an interval
Im := (m − wi,m + wi). These sets Im cover the entirety of Mi hence there is a finite subset of
these intervals which also cover Mi. Let I ′ be the finite subset of these intervals. We now wish
to construct a set I of disjoint intervals with centers in Mi and length less than 2wi that still
cover Mi except for finitely many points. To do that it suffices to check that we can untangle two
intersecting intervals. Since I ′ only contains finitely many intervals we then can construct I in
finitely many steps. Suppose now that there exist two intervals I1 = (a, b) and I2 = (c, d) without
loss of generality fulfilling d > b > c > a. Then let d′ be the maximal element of Mi contained in
(b, b+d2 ) then I ′1 = (a, b), I ′2 = (b, b + 2(d′ − b)) are disjoint, their centers are contained in Mi and
they just cover one point less than I1 and I2.
Now we can finish the proof by showing that |L ∩ S| ≥ λ1(Mi). For that we consider

|L ∩ S| ≥ |ψ(M, [0, 2π)) ∩ L ∩ S| ≥∑
i∈I
|ψ(i, [0, 2π)]) ∩ L ∩ S| ≥

∑
i∈I

n|i| ≥ nλ1(Mi).
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Lemma 6.8. Let S be an open set with two orthogonal and normalized vectors v, w ∈ R2 such that
there exists a measurable set M ⊆ R where for every element m ∈M there exist n distinct values
λ1, ..., λn ∈ R such that mv + λiw ∈ S ∩ ∂L for all i ∈ {1, ..., n}. Let L be a set of components.
Then |L ∩ S| > nλ1(M).

Proof. The proof of this lemma follows analogously to the proof of the previous lemma.

Lemma 6.9. If outer components KA and KB are not close and ε ≤ δ3

16R then if S is the set of

points which are close to KA ∪KB we have |L ∩ S| ≥ 2k − 2a′ − 2b′ + |KA|+ |KB |+ δ.

Proof. Let S1 ⊂ X be the set of all points which have a distance of (0, δ8 ) to KA and let S2 ⊂ X

be the set of all points which have distance (0, δ8 ) to KB . These sets have the property that

S1 ∩S2 = ∅ as well as S1 ∪S2 ⊆ S. To show the lemma it suffices to prove |∂L∩S1| ≥ k− 2a′+ δ
2

and |∂L∩ S2| ≥ k− 2b′ + δ
2 . To prove |∂L∩ S1| ≥ k− 2a′ + δ

2 we start by looking at the structure
of S1. Let without loss of generality X be rotated such that every element of KA has a negative
y-coordinate. Then for every r ∈ (a′, R − δ

4 ) let Φr ⊂ (π, 2π) be the set of all angles ϕ such that

ψ(r, ϕ) ∈ KA. Let ϕ+
r := sup Φr and ϕ−r = inf Φr then we can define I+

r := ψ(r, [ϕ+
r , ϕ

+
r + δ

8R ))

and I−r := (r, (ϕ−r − δ
8R , ϕ

−
r ]), these intervals have the property that I+

r ⊂ S1 and I−r ⊂ S1 as well

as I−r ∩ I+
r = ∅ since δ

8R < 1
8 <

π
2 . Let us now define M+ as the set of all r ∈ (a′, R− δ

4 ) such that

there exists a ϕ1 with ψ(r, ϕ1) ∈ ∂L ∩ I+
r and let us define M− as the set of all r ∈ (a′, R − δ

4 )

such that there exists a ϕ2 with ψ(r, ϕ2) ∈ ∂L ∩ I−r . Both sets M+ and M− are measurable. This
can be seen by considering I+ :=

⋃
r∈(a′,R− δ4 )

I+
r and I− :=

⋃
r∈(a′,R− δ4 )

I−r . Since I+,I− and

∂L are measurable and we can view M+ and M− as projections of ∂L ∩ I+ and ∂L ∩ I− by the
measurable map πr : R2 → R+, x 7→ ||x|| onto the radial component, this means that M+ and
M− are also measurable. Hence M := M+ ∩M− is also measurable. For every value r ∈M there
exist distinct angles ϕ1, ϕ2 ∈ [0, 2π) such that ψ(r, ϕ1) ∈ ∂L ∩ S1 and ψ(r, ϕ2) ∈ ∂L ∩ S1. This
means that |∂L ∩ S| ≥ 2λ1(M). To prove |∂L ∩ S1| ≥ k − 2a′ + δ

2 it thus suffices to show that

λ1(M) ≥ k
2 − a

′ + δ
4 . Suppose λ1(M) < k

2 − a
′ + δ

4 then there exists a set N := (a′, R − δ
4 ) \M

of length λ1(N) = (R − δ
4 − a

′) − (k2 − a
′ + δ

4 ) > δ
2 . For every r ∈ N there exists an interval

Ir ∈ {I+
r , I

−
r } such that ψ(r, Ir) does not contain an element of ∂L. This would mean that ψ(r, Ir)

also does not contain an element of L since ψ(r, Ir) is connected to KA and thus if ψ(r, Ir) contained
an element x of K ′ ∈ L there would then exist an x-KA-path P inside of ψ(r, Ir) which means
that there must exist a y ∈ P such that y ∈ ∂K ′ since K ′ ∩ KA = ∅. This means that we can
define N ′ :=

⋃
n∈N ψ(n, In). We know that L ∩N ′ = ∅. Now we just need to estimate the area of

N ′ and show that it is larger than ε.

λ2N ′ =

∫
N

λ1(Ir)dr ≥
∫
N

r
δ

8R
dr ≥ a′ δ

8R

∫
N

1dr ≥ δ2

8R
λ1(N) ≥ δ3

16R
≥ ε

This proves |∂L ∩ S1| ≥ k − 2a′. The proof of |∂L ∩ S2| ≥ k − 2b′ follows in the same way.

Lemma 6.10. Let Q := ( δ4 , R]× (−a+ δ
4 , b−

δ
4 ) be a rectangle where a < b′ and b < b′ then if Q

is not close to KA ∪KB and ε ≤ δ2

8 then |∂L ∩Q| > 2(a+ b)− 2δ.

Proof. Let us start by defining I−y := ( δ4 ,
δ
2 ) × {y}, I+

y := (
√
R2 − y2 − δ

4 ,
√
R2 − y2) × {y},

I+ :=
⋃
y∈(−a+

δ
4 ,b−

δ
4 )
I+
y and I− :=

⋃
y∈(−a+

δ
4 ,b−

δ
4 )

= [ δ4 ,
δ
2 ] × [−a + δ

4 , b −
δ
4 ] ⊂ Bb′ . To show

I− ⊂ Bb′ let (x, y) ∈ I− be an arbitrary point, then

|(x, y)| =
√
x2 + y2 ≤

√
δ2

4 + (b′ − δ
4 )2 =

√
b′2 − bδ

2 + δ2

2 ≤
√
b′2 = b′,
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since δ < b′. This proves I− ⊂ Bb′ .
Let π : R2 → R, (x, y) 7→ y be the projection onto the y-coordinate. Let us now define M1 := π(L∩
I−) and M2 := π(L ∩ I+). Then by definition M1 and M2 are measurable. Hence M := M1 ∩M2

is also measurable.
We now show that λ1(M) > a + b − δ, to do this suppose that λ1(M) < a + b − δ and let
N := (−a+ δ

4 , b−
δ
4 ) \M then λ1(N) > (b− δ

4 )− (−a+ δ
4 )− (a+ b− δ) = δ

2 . But for every n ∈ N
there exists an In ∈ {I+

n , I
−
n } such that In ∩L = ∅. Let us now define the set N ′ :=

⋃
n∈N In. For

N ′ it also follows that N ′ ∩ L = ∅. Let us now show that λ2N ′ > ε to get to a contradiction.

λ2N ′ =

∫
N

λ1(Iy)dy ≥
∫
N

δ

4
dy = λ1(N)

δ

4
≥ δ2

8
≥ ε

This means that λ1(M) ≥ a + b − δ. Next we want to show that for every m ∈ M there exist
x1, x2 ∈ ( δ4 , R] such that (x1,m) ∈ ∂L and (x2,m) ∈ ∂L. For that let us consider z1, z2 ∈ ( δ4 , R]

with (z1,m) ∈ L ∩ I−m and (z2,m) ∈ L ∩ I+
m. These must exist by definition. Let K1 ∈ L be

the component containing (z1,m) and let K2 ∈ L be the component containing (z2,m). Then
K1 6= K2 since K1 must be an inner component since |(z1,m)| < b′ and every outer component
with radius ≤ b′ is accounted for in KA and KB which are both not close to Q. On the other
hand K2 must be an outer component since (z2,m) is close to ∂X. Now we can consider the path
P which is a straight line connecting (z1,m) and (z2,m). On this path there must be x1, x2 such
that (x1,m) ∈ ∂K1 and (x2,m) ∈ ∂K2.
Now we can apply Lemma 6.8. Let S be the set of inner points of Q then we have vectors v = (0, 1)
and w = (1, 0) which are orthogonal and normalized. Let L1 ⊂ L be the set of all inner components
and let L2 ⊂ L be the set of all outer components. Then for every m ∈ M we have values x1, x2

such that mv + xiw ∈ S ∩ ∂Li for i ∈ {1, 2}. Hence Li ∩ Q > λ1(M) = (a + b) − δ. Since
L ∩Q = (L1 ∩Q) ∪ (L2 ∩Q) and L1 and L2 are disjoint this means L ∩Q > 2(a+ b)− 2δ.

Lemma 6.11. Let KA be a cluster and KB a different outer component not contained in KA, let
KA and KB be close and let KA ∪KB not be a cluster, then inside of the set S of points which

are close to KA ∪KB there are paths in L of length l ≥ k + |KA|+ |KB | if ε < δ2

8 .

Proof. Let S′ be the set of all points which have a distance to KA ∪KB contained in (0, δ4 ), that
is to say all of the points which are close to KA ∪KB but not contained within KA, KB or their
boundary. We want to show |L ∩ S′| ≥ k which suffices to prove this lemma.
Since KA ∪KB is not a cluster this means that there exist points A, B such that A ∈ KA ∪ ∂KA

and B ∈ KB ∪ ∂KB and such that A and B lie opposite each other. This means that we can
rotate X such that A = (0,−a′) and B = (0, b′) for a, b > 0. We now choose a, b minimal with the
property that (0,−a) ∈ KA ∪ ∂KA and (0, b) ∈ KB ∪ ∂KB . These a, b must exist since KA ∪ ∂KA

and KB∪∂KB are closed. By definition (0,−a) ∈ ∂KA and (0, b) ∈ ∂KB . Let C further be a point
which is close to both KA and KB then let us reflect X such that C has negative x-coordinate.
This means that there exists an r′ ∈ (0, R) and an α′ ∈ (π2 ,

3π
2 ) such that C = ψ(r′, α′). Then for

α := α′ − π we know that ψ((0, R)× {α}) is not close to KA ∪KB .
We now consider the intervals Y1 := (−k2 −

δ
2 ,−a), Y2 := (−a, b) and Y3 := (b, k2 + δ

2 ). For y ∈ Y1

let I1
y := ψ([−y]× (ϕ1

y, ϕ
1
y + δ

8y )) where

ϕ1
y := sup{ϕ′ ∈ [α, α+ 2π) : ψ(−y, ϕ′) ∈ KA ∪KB}.

For y ∈ Y2 let I2
y := (xy, xy + δ

8 )× [y] where

xy := sup{x ∈ [−R, 0] : (x, y) ∈ KA ∪KB}.
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For y ∈ Y3 let I3
y := ψ([y]× (ϕ3

y − δ
8y , ϕ

+
y )) where

ϕ3
y := inf{ϕ′ ∈ [α, α+ 2π) : ψ(y, ϕ′) ∈ KA ∪KB}.

And finally let I1 :=
⋃
y∈Y1

I1
y , I2 :=

⋃
y∈Y2

I2
y and I3 :=

⋃
y∈Y3

I3
y .

Let U j(γ) :=
⋃
i∈Ij Bγ(i)∩S′ for j ∈ {1, 2, 3}. Since Ij ⊆ S′ this implies that Ij ⊆ U j . Let us now

show that there exists a γ > 0 such that the U j(γ) are disjoint subsets of S′. Suppose there is not

such a γ then this would mean that there exist distinct j1, j2 ∈ {1, 2, 3} such that U j1 ∩ U j2 6= ∅.
We first look at the case j1 ∈ {1, 3} and j2 ∈ {1, 3}. In this case there exists a y1 ∈ Y1 and a y3 ∈ Y3

such that I1
y1
∩ I3

y3
6= ∅. This implies y3 = −y1. Let ψ(y3, ϕ) ∈ I1

y1
∩ I3

y3
. Since ψ(y3, ϕ) ∈ I1

y1
this

means by definition that ψ({y3} × (ϕ, α+ 2π]) ∩ (KA ∪KB) = ∅. Since ψ(y3, ϕ) ∈ I3
y3

this on the
other hand means that ψ({y3}× [α,ϕ))∩ (KA∪KB) = ∅. This means that if we consider the circle
C = ∂By3 then for every y ∈ C \ {ψ(y3, ϕ)} it follows that y /∈ KA ∪KB . But since C \ {ψ(y3, ϕ)}
intersects every neighbourhood of ψ(y3, ϕ) and since KA ∪KB is open, this means that ψ(y3, ϕ)
is also not contained in KA ∪KB which means that C ∩ (KA ∪KB) = ∅. Which is a contradiction
since there exists a point A1 ∈ KA which has radius less than y3 which then must be connected
by a path P in KA to a point A2 ∈ KA close to the boundary of X, since KA is connected and
an outer component. Because r(A1) < y3 and r(A2) > y3 the path P must intersect C which is a
contradiction.
Without loss of generality we can thus assume that j1 = 2 and j2 = 3 since the case j1 = 2 and
j2 = 1 can be proven analogously. Now there exists a y2 ∈ Y2 and a y3 ∈ Y3 such that I2

y2
∩I3

y3
6= ∅.

Let Z = (zx, y2) = ψ(y3, ϕz) be an element of the intersection. By definition of I2
y2

and I3
y3

it
follows that C1 := ((zx, 0]×{y2})∩ (KA ∪KB) = ∅ and C2 := ψ({y3}× [α,ϕz))∩ (KA ∪KB) = ∅.
With the same argument as before we can see that Z /∈ (KA ∪KB). Additionally we know that
C3 := {0}×[min(0, y2),max(0, y2)]∩(KA∪KB) = ∅ and also that C4 := ψ([0, y3]×{α})∩(KA∪KB).
But now this topological cycle C1 ∪ C2 ∪ C3 ∪ C4 ∪ Z separates small neighbourhoods of (0,−b)
from the boundary of X similarly to the previous section. Contradiction.
Let us now define L′ which is L where we delete every component of KA and KB and we define

Mj := {y ∈ Yj : Ijy ∩ L′ 6= ∅} for j ∈ {1, 2, 3}. Then for every y ∈Mj it follows that Ijy ∩ ∂L′ 6= ∅.
This means using the lemmas 6.7 and 6.8 that |L′ ∩ S| ≥

∑
j∈{1,2,3} λ

1(Mj). Let us define N :=⋃
j∈{1,2,3} Yj \Mj then

λ1(N) =
∑

j∈{1,2,3}

λ1(Yj)− λ1(Mj) = k + δ −
∑

j∈{1,2,3}

λ1(Mj)

⇔ |L′ ∩ S| ≥
∑

j∈{1,2,3}

λ1(Mj) = k + δ − λ1(N)

Which means that showing λ1(N) < δ finishes the proof. For that let us considerN ′ =
⋃
j∈{1,2,3}

⋃
y∈Yj\Mj

Ijy .

We know that N ′ ∩ L = ∅ and hence λ2N ′ < ε. But since λ2N ′ ≥ δ
8λ

1(N), see proof of Lemma

6.9 and 6.10, this means that λ1(N) ≤ δ
8λ

2N ′ ≤ 8
δ ε < δ.

Lemma 6.12. Let KA be a cluster and let KB be an outer component of L disjoint from KA with

minimal radius. If KA and KB are not close then for ε < min( δk4π ,
δ3

16R ) the set L is not a cut.

Proof. First of all we show that we can apply all of the previous lemmas by showing that δ3

16R < δ2

8 .

This inequality is equivalent to the inequality δ
R < 2 which is true since δ < R.

For this proof we need to consider two cases: The first being that KA is a cluster which is the
union of more than one element and the other is KA being a cluster containing exactly one outer
component.
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Let us first consider the case that KA is the union of more than one outer component. For
that let us first rotate X such that the line t restricting KA lies on the x-axis and KA lies in
the lower component. Let a := 0 and let KA be the union of {K1

A, ...,K
n
A} then if we consider

K ′A :=
⋃
{K1

A, ...,K
n−1
A } and K ′B = Kn

A then from Lemma 6.5 it follows that 2r(K ′A)+2r(K ′B) ≤ k
which means that

|KA| = |K ′A|+ |K ′B | ≥ k + 2δ − 2r(K ′A) + k + 2δ − 2r(K ′B) ≥ k − 2a+ δ
2

Let us now consider the case of KA itself being an outer component.
Let A1 and A2 be two non linear dependent points of KA, which exist since KA is open. Now let
us show that it is possible for X to be transformed by an orthogonal matrix such that in the image
we have SL(KA) = SR(KA) and also such that the images of A1 and A2 lie below the x-axis. For
that let us rotate X such that A1 lies on the left side of the x-axis then either A2 lies below the
x-axis or we can reflect X along the x-axis and afterwards A2 lies below the x-axis. This means
that there exist r1, r2 ∈ (R− δ

4 , R) and 0 < α < π such that A1 = ψ(r1, π) and A2 = ψ(r2, 2π−α).
Let Rϕ be the map rotating R2 by the angle ϕ, then we can see that in Rϕ(X) for ϕ ∈ (0, α) both
A1 and A2 lie below the x-axis while in R0(X) the point A1 lies on the x-axis on the left side
and A2 lies below the x-axis and in Rα(X) the point A1 lies below the x-axis and A2 lies on the
x-axis on the right side. Let SL(ϕ) be the value of SL(KA) in Rϕ(X) and let SR(ϕ) be the value
of SR(KA) in Rϕ(X). Then we know that SL(0) ≥ 0 since the y-coordinate of A1 is 0 but since
k > |K| > k+ δ

2 + 2 min(SL(0), SR(0), 0) this implies SR(0) < − δ2 . Analogously we can show that

SR(α) ≥ 0 and SL(α) < δ
2 . Since SR(ϕ) and SL(ϕ) are continuous this means that there must

exist an angle ϕ′ ∈ (0, α) such that SL(ϕ′) = SR(ϕ′) =: −a. Since k > |K| > k+ δ
2 + 2 min(−a, 0)

this implies a > δ
2 .

After having defined a, in both cases, such that SL(KA) ≤ −a and SR(KA) ≤ −a while still
|KA| ≥ k − 2a+ δ

2 , we now consider the component KB .
If KB is a lower-component or neither a lower- nor an upper-component then KB is disjoint with
one of the two upper quadrants of X. Without loss of generality we can assume that it is disjoint
from X1 := ψ((0, R) × (0, π2 )) and then we can define b := b′ which implies |KB | > k − 2b + δ

2

as well as Q := [ δ4 , R] × [−a + δ
4 , b −

δ
4 ] not being close to KA or KB . On the other hand if KB

is an upper-component then we define b > δ
2 such that without loss of generality, after possibly

reflecting X along the y-axis, b = IR(KB) > IL(KB). This again implies |KB | > k − 2b + δ
2 as

well as Q := [ δ4 , R]× [−a+ δ
4 , b−

δ
4 ] not being close to KA or KB .

After having defined a and b we can now show that |KA| > k − 2a + δ
2 and |KB | > k − 2b + δ

2
which follows directly from the definition of a and b.
We can now use the Q defined above to finish this lemma. Using Lemma 6.9 and 6.10 we can find
a lower bound for the length of the entire cut L.

|L| > |KA|+ |KB |+ |∂L ∩Q|+ 2k − 2a′ − 2b′ > 4k − 2a′ − 2b′

Since 3k > L this implies 2a′ + 2b′ > k which is a contradiction hence we have proven this
lemma.

Lemma 6.13. Let KA be a cluster and let KB be an outer component of L disjoint from KA with

minimal radius. If KA and KB are close then for ε < min( δk4π ,
δ2

8 ) L is not a cut.

Proof. In this proof we will apply the Lemmas 6.5, 6.10 and 6.11 which explains the bound for ε.
Let n be the number of components contained in KA then |KA| ≥ n|KB | which means that
|L| ≥ (n+ 1)|KB |. Since 2r(KA) + 2r(KB) < k this means that r(KB) < k

4 , hence |KB | > k
2 . This

implies together with 3k > L that 3k > (n+ 1)k2 which implies n < 5.
Now since KA and KB are close and KA cannot consist of arbitrarily many components we can
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see that we can choose the cluster KA maximal (by inclusion) such that KB , the outer component
of L with the smallest radius which is not contained in KA, is not close to KA.
We now need to consider two possible cases: Either KA ∪KB is a cluster, or KA ∪KB is not a
cluster. Let us first consider the case that KA∪KB is a cluster. In this case define K ′A := KA∪KB

and K ′B as the outer component of L which has the smallest radius while being disjoint with K ′A.
Then we can see that K ′A and K ′B must be close since we have chosen KA maximal, which means
that Lemma 6.12 implies that L is not a cut.
Let us now look at the case that KA ∪ KB is not a cluster which means that there exist points
A′ close to KA and B′ close to KB such that A′ = −λB′ for λ > 0. Let C be the closest point
to the origin such that C is close to both KA as well as KB . Let X be rotated such C = (−c, 0)
for c > 0. Then both KA and KB can not be close to the right side of the x-axis, if either one
of them are close to a point C ′ on the right side of the x-axis then C ′ is opposite to C. Let us
define two quadrants X1 := ψ((0, R)× (0, π2 )) and X2 := ψ((0, R)× ( 3π

2 , 2π)). If KA or KB lie in
Xi then they can not lie in X2−i. Since K ∈ {KA,KB} intersected X1 and X2 then there would
exist angles ϕ1, ϕ2 and distances r1, r2 such that ψ(r1, ϕ1) ∈ K ∩X1 and ψ(r2, ϕ2) ∈ K ∩X2, but
then for every r it follows that ψ(r, ϕ1 +π) and ψ(r, ϕ2−π) are disjoint and not close to K, hence
T :=

⋃
r∈(0,R) ψ(r, ϕ1 + π) ∪ ψ(r, ϕ2 − π) is disjoint and not close to K. But any path connecting

C to a point in X1 or X2 must intersect T since T separates the circle into two components T1, T2,
hence K would not be connected and there would be sets K1 := T1 ∩K and K2 := T2 ∩K and K
must thus be a cluster, but in a cluster K1 and K2 would be close which would imply that K1 and
K2 must also be close to T . This is a contradiction hence if KA or KB lie in Xi then they can not
lie in X2−i.
If KA does not intersect X2 then we define a := min(IR(KA), b′) which implies that QA :=
( δ2 , R] × (−b′ + δ

2 , a −
δ
2 ) is not close to KA on the other hand if KA does not intersect with X1

then we define a := min(−SR(KA), b′) and QA := ( δ2 , R]× (−a+ δ
2 , b
′ − δ

2 ) is not close to KA.
If KB does not intersect X2 then we define b := min(IR(KB), b′) which implies that QB :=
( δ2 , R] × (−b′ + δ

2 , b −
δ
2 ) is not close to KB on the other hand if KB does not intersect with X1

then we define b := min(−SR(KB), b′) and QB := ( δ2 , R]× (−b+ δ
2 , b
′ − δ

2 ) is not close to KB .

Now we define Q′ := QA ∩QB which is not close to either KA or KB . Then Q′ ⊆ ( δ2 , R]× (−a+
δ
2 , b−

δ
2 ) or Q′ ⊆ ( δ2 , R] × (−b + δ

2 , a−
δ
2 ) we define Q as the one of the two rectangles such that

Q′ ⊆ Q. Note that by definition |KA| > k + δ − 2a and |KB | > k + δ − 2b.
We know that |L ∩ Q| > 2a + 2b − 2δ and if S is the set of points close to KA ∪ KB then
|L ∩ S| > k + |KA|+ |KB |. Together this means, since Q and S are disjoint, that

3k > |L| ≥ |L ∩Q|+ |L ∩ S| ≥ k + k + δ − 2a+ k + δ − 2b+ 2a+ 2a− 2δ = 3k

Which is a contradiction.

Theorem 6.1. For every circle X of radius R > k
2 and for ε < min( δk4π ,

δ2

8 )there is no cut L of
X with length k and margin of ε.

Proof. Suppose there exists a cut L with length k and margin of ε. We use Lemma 6.4 on the
cluster ∅ to show that there exists an outer component in L. Hence there also exists an outer
component of minimal radius KA. We again use Lemma 6.4, this time using the cluster KA, to
show that there exists another outer component. We choose KB with minimal radius from the
outer components of L \ {KA}. Now KA and KB are either close or not close. In both cases either
lemma 6.12 or lemma 6.13 imply that L is not a cut. Contradiction.

To conclude this chapter we will prove a small lemma which we will need for the next section.
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Lemma 6.14. If we have a set L of strong outer components such that |L| ≤ k then λ2(L) ≤
λ2(M |L|

2

) where Mh := {(x, y) ∈ X|y < h−R} for h < R. Furthermore

λ2(Mh) = R2arccos
R− h
R

− (R− h)
√
h(2R− h).

Proof. We start by showing the formula for λ2(Mh). For that consider

λ2(Mh) =

∫ h−R

−R
2
√
R2 − y2dy =

[
R2arctan

y√
R2 − y2

+ y
√
R2 − y2

]h−R
−R

= R2arctan
h−R√
h(2R− h)

− (R− h)
√
h(2R− h) +R2π

2

= R2arctan

√
h(2R− h)

R− h
− (R− h)

√
h(2R− h)

= R2arccos
R− h
R

− (R− h)
√
h(2R− h)

Next we show that λ2(L) ≤ λ2(G |L|
2

) holds for sets L containing a single outer separation K. To

see this let us rotate X in the same way as in Lemma 6.12 such that SL(K) = SR(K) =: h − R
with 0 < h < R. From Lemma 6.6 ii) we get |K| ≥ 2R + 2(h − R) which means h ≤ |K|2 . Since
SL(K) = SR(K) = h−R we have H ⊆Mh ⊆M |K|

2

and thus λ2(K) ≤ λ2(M |K|
2

).

Finally we only have to show that this also works if L contains more than one element since for
L = ∅ the lemma is trivially true. For that we first calculate that

d2

d2h
(λ2(Mh)) =

2(R− h)√
h(2R− h)

which is greater than 0 for h ∈ (0, R). Since λ2(M0) = 0 this means that for any a, b > 0 with
a+ b < R we get λ2(Ma) + λ2(Mb) ≤ λ2(Ma+b), which means that by induction and limit

λ2(L) =
∑
K∈L

λ2(M |K|
2

) ≤ λ2(M∑ |K|
2

) = λ2(M |L|
2

)
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Lemma 6.15. For every circle X of radius R > k
2 and for any set L of disjoint inner and outer

components contained in X which fulfill the following properties:

� The components in L are disjoint,

�

∑
K∈L |K| ≤ k,

� λ2(K) < πR2

2 ,

it follows that λ2(L) < πR2

2 .

Proof. Let us consider a disjoint partition L = I ∪ O into the weak inner components and the

strong outer components of L and suppose λ2(L) ≥ πR2

2 . Let a := |I| then b := |O| ≤ k − a. Let
us define

Nh := {(x, y) ∈ X|x < 0 and x2 + y2 > (R− h)2}

then clearly Mh ⊆ Nh. Further λ2(Nh) = πR2

2 −
π(R−h)2

2 . This means that

λ2(I) ≥ πR2

2
− λ2(O) ≥ πR2

2
− λ2(Ma

2
) ≥ πR2

2
− λ2(Na

2
) =

π(R− a
2 )2

2
.

But then λ2(I) ≥ πb2

8 which means that using Lemma 6.1 we get that

πb2

8
≤ λ2(I) ≤ b2

4π
⇔ π

2
≤ 1

π

Which is a contradiction.
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7 Tangles in the euclidean plane

We will now apply the results of the previous sections to the euclidean space and look at one
sensible way to define tangles.

The weight function in the general case could represent a kind of density of the shape at certain
points but in the euclidean plane we will just be looking at the geometric length of the polygonal
arc connecting the endpoints of the edge as its length. More precisely if a graph contains an edge
e which is connected by a polygonal arc going through the points a = a0, a1, ..., an = b. Then we
define

d(e) :=

n−1∑
i=0

d′(ai, ai+1)

where d′ is the euclidean distance in R2.
For looking at areas we will use the Lebesgue measure λ2.

We are going to use d as the weight function for our separations. This means that the order of
a separation is the length of the boundary. Specifically for a simple separation it is the length of
the cutting path. Now we want to define the triangulation system D∆ that we want to use for our
tangles.

D∆ := {(G, d)|G is a triangulation of D with ε(G) > 0}

Lemma 7.1. D∆ is a system of triangulations.

Proof. First we need to show that the weight functions are consistent. To do this let us consider
(G,wG), (H,wH) ∈ D∆ where H is finer than G. Let e ∈ E(G) be an edge of G and let E := {e′ ∈
E(H)|e′ ⊆ e}. Then by definition of d(e) it is not hard to see that d(E) = d(e) since except for
finitely many points the union of E is equal to e and thus by definition of d(e) as the geometric
length, both sets have the same length.
Next we need to show that if there are two triangulations (G1, wG1

), (G2, wG2
) ∈ D∆ that there

exists a (G′, wG′) ∈ D∆ where G′ is finer than both G1 and G2. But this follows instantly from
lemma 2.1.
Lastly we only need to show that for any ε′ < ε there exists a (G,wG) ∈ D∆ such that ε(G) > ε′.
From measure theory we know that since D \ ∂D is an open set we can approximate it by using
closed sets. Hence there exists a closed set Y ⊆ D \ ∂D such that λ2(D \Y ) > ε− ε′. We can now
find a triangulation G which contains the entirety of Y inside of it by choosing three points along
the boundary of D and connecting them by polygonal arcs which do not intersect Y . Hence

ε(G) = ε− λ2(D \G) ≥ ε− λ2(D \ Y ) = ε− ε+ ε′ = ε′

Now that we have found the system of triangulations that we wish to use we can look at
the structure of the tangles we get. We can directly apply the tree-of-tangles theorem and the
tangle-tree duality theorem.

Theorem 7.1. Let T be a set of tangles of D∆ then there is a nested set ST of simple separations
of a triangulation G ∈ D∆ such that

(i) any two tangles in T are distinguished by some separation in ST ;

(ii) every separation in ST distinguishes a pair of tangles in T .

Theorem 7.2. For every ε > 0 and k ∈ N exactly one of the following assertions holds:

(i) There exists an Fεk-tangle of D∆.

(ii) There exists a triangulation G ∈ D∆ with an
−→
Sk(G)-tree over Fεk .
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7.1 Deciders

In the previous section we have looked at the structure of tangles of D. In this section we find a
method with which we can prove that a tangle exists.

Definition 7.1. A decider of a tangle τ is a set X ⊆ R2 such that for all (A,B) ∈ τ it follows
that λ2(

⋃
A ∩X) < λ2(

⋃
B ∩X).

We can use arbitrary sets X to orient the separations of a separation system S by letting for
all s = {(A,B), (B,A)} ∈ S the set X(S) be the orientation of a subset of S that contains (A,B)
iff λ2(

⋃
A ∩X) < λ2(

⋃
B ∩X). The set X(S) orients every separation for which λ2(

⋃
A ∩X) 6=

λ2(
⋃
B ∩X).

Lemma 7.2. For any set X ⊆ R2 and separation system S the X(S) is consistent. Note that
X(S) does not orient separations for which λ2(

⋃
A ∩X) = λ2(

⋃
B ∩X).

Proof. Let (A,B) ∈ X(S) and let (C,D) ∈ S with (C,D) ≤ (A,B). Then

λ2(
⋃
C ∩X) ≤ λ2(

⋃
A ∩X) < λ2(

⋃
B ∩X) ≤ λ2(

⋃
D ∩X).

Hence (C,D) ∈ X(S) and thus X(S) is consistent.

Obviously if X is a decider of a Fεk -tangle τ then it follows that τ = X(Sk). On the other
hand, does every tangle have a decider? It is speculated that indeed every tangle as defined in this
chapter has a decider.

Conjecture 7.1. For every Fεk tangle τ of a disk D with respect to the triangulation D∆, there
exists a set X ⊆ D such that τ(G) = X(Sk(G)).

Even if in general not every tangle has a decider, there are certain important cases where we
do have a decider. Circles of certain size induce tangles. This can most easily be seen with large
circles where each separation has 3

4 of the area of the circle on its right side. In that case every
star must have 1

4 of the area of the circle in the intersection of the right sides and thus such a circle
is in fact a decider. Interestingly enough we do not need large circles but any size greater than k
suffices as the following theorem shows.

Theorem 7.3. Let D be a disk that contains a closed circle X of radius R > k
2 then τX is an

Fεk-tangle for every ε < min( δk4π ,
δ2

8 ) where we define τX in the following way: For every G ∈ D∆

we let τX(G) = X(Sk(G)).

Proof. We know that τX(G) is a consistent orientation since Sk(G) are not able to cut X in half,
so what we need to show is that τX(G) does not contain a forbidden star. Suppose there was a

G ∈ D∆ and an ε < min( δk4π ,
δ2

8 ) that contained a forbidden star σ ∈ Fε(G)
k .

Let σ be a star containing three nested separations (A,A0), (B,B0) and (C,C0). Since σ is a star
we know that A, B and C are disjoint. Hence there are disjoint components (using our definition
of connectedness of sets of faces) A1, ..., Ana of A, B1, ..., Bnb of B and C1, ..., Cnc of C. We write

L := {A1, ..., Ana , B1, ..., Bnb , C1, ..., Cnc}

for the set of all of these components and L′ := {
⋃
K ∩X|K ∈ L} for the point sets contained in

these components, where in
⋃
K we also include edges which lie on the boundary of two faces in

K and vertices which only lie on boundaries of edges which we included.
First we need to show that these elements K ∈ L′ are open. For that let us take a point x ∈ K. If
x lies inside of a face then we can find a neighbourhood which lies completely in that face. If x lies
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on an edge, then the edge lies on the frontier of two faces, hence every small enough neighbourhood
only contains points from the two faces and the edge. If x on the other hand is a vertex then all
of the neighbouring edges are contained in K and thus also all of the faces neighbouring x. This
means that a small enough neighbourhood of x contains only the neighbouring edges and faces
and itself.
Next we want to show that K is topologically connected. For that we first notice that it suffices
to show that any two points x, y which lie inside of faces are path-connected since any point not
in a face can be connected to a face of K. Suppose x lies in a face fx and y lies in a face fy then
there exists a sequence of faces in K fx = f1, ..., fn = fy where fi and fi+1 have a common edge
ei. We can now connect x by a path to the edge e1 then we can connect ei through fi+1 to the
edge ei+1 for all i ∈ {1, ..., n− 1} which means that we can connect x to fy where we can then find
a connection to y. To define L we for every element K ∈ L′ the components C of X \K. If there
exists a component C ′ ∈ C with area greater than half of λ2(X) then we can replace K by X \C ′.
Otherwise all elements of C have to be inner and outer components which cover more than half of
X, but by Lemma 6.15 this is impossible. We define L as the set we are left with after replacing
every element of K with multiple components in X \K.
We now show that the elements of L are disjoint inner or outer components. This can now be seen
from the fact that since X \K only contains one component for all K ∈ L we can find a path P
such that Im(P ) = ∂K, similarly to the simple separations in chapter 3.
This would mean that L is a cut as X can be covered except for an area of size less than ε(G) +
λ2(X \G) < ε by inner and outer components which have boundary less than k by definition of the

separations and which have area less than πR2

2 by virtue of being separations contained in τX(G).
This is a contradiction.

This theorem could have been shown a lot easier by using the following conjecture.

Conjecture 7.2. For every k exists an ε > 0 such that every consistent orientation of simple
separations that avoids Fεk is induced by a consistent orientation of Sk that avoids Fεk .

We have already seen that this does not hold with arbitrary order functions but if we define the
order functions as in this chapter by using the euclidean distance of the endpoints of each edge it
is conjectured to hold. This would have made the proof of the theorem much simpler as we would
not need to consider as many cases.

To conclude this thesis, we will prove the result promised in the introduction. Suppose we have
a shape containing different circles which can be pairwise separated, then we want to show that
each of these circles corresponds to a different tangle. To do this we first define what it means for
sets to be separated.

Definition 7.2. Let X1, X2 ⊆ R2 then we say that X1 and X2 can be k-separated if there exists
a triangulation G(X1, X2) ∈ D∆ with a separation (A,B) < k such that λ2(

⋃
B ∩X2) > 1

2λ
2(X2)

and λ2(
⋃
A ∩X1) > 1

2λ
2(X1)

Corollary 7.1. Let k > 0 and D be a disk containing closed circles Xi := {x ∈ R2|||x− oi|| ≤ ri}
with midpoints oi ∈ R2 and radii ri >

k
2 which can be pairwise k-separated from each other, then

τXi are distinct Fεk-tangles of the disk where ε ≤ mini∈I{ δik4π ,
δ2
i

8 } with δi := ri − k
2 .

Proof. From Theorem 7.3 we know that the τXi are Fεk -tangles. The only thing left to show is
that two tangles τXi , τXj are distinct for i 6= j. For that consider G(Xi, Xj) and the separation

(A,B) ∈
−→
S k(G(Xi, Gj)) which fulfills λ2(

⋃
B ∩ Xj) >

1
2λ

2(Xj) and λ2(
⋃
A ∩ Xi) >

1
2λ

2(Xi).
Then because of λ2(

⋃
B ∩ Xj) + λ2(

⋃
A ∩ Xj) ≤ λ2(Xj) we have λ2(

⋃
A ∩ Xj) <

1
2λ

2(Xj) <
λ2(
⋃
B ∩ Xj) which means that (A,B) ∈ Xj(Sk(G)) = τXj (G). We can analogously show that

(B,A) ∈ Xi(Sk(G)) = τXi(G). This proves the corollary.
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8 Outlook

In this thesis we have used tangles to analyse the structure of shapes in the plane R2. We have
restricted ourselves by only looking at those shapes that are homeomorphic to the unit disk since
shapes that have holes are intuitively less likely to have the tree structure that the tangles frame-
work is built to detect. It might be fruitful though to look at more general subsets of the plane or
even of other more general surfaces. It could very well be the case that similar theorems to the one
we have proven in this thesis hold for these other cases and this could have interesting implications
for the topological study of surfaces.
This thesis is another one that uses bipartitions for the tangle framework. In recent years there
have been many interesting results found using this method and we hope that this thesis inspires
others to also look at these possibilities. For people interested we recommend looking at [5] for an
application in the social sciences.
Another example for using bipartitions to apply the tangle framework would be [4] were they use
a similiar method to the one used in this paper to analyse images. They use bipartitions on the
pixels which we can imagine in the language of this thesis as the faces of a triangulation. Thus
this thesis is also applicable to that context and it could be interesting to see if the results from
this thesis could help in that context as well.
One thing that we did not look at in this thesis was classifying all of the tangles that we find,
not even the ones in the case of the euclidean plane. If one showed that every tangle is induced
by an orienting subset that would be a very impressive result and could be applied to many other
examples of tangles that would greatly benefit from understanding what a tangle ”looks like” and
thus could help in applying the tangle framework for other purposes.
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