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1 Introduction

This work will investigate spectral separations, an important method to generate parti-

tions of sets to analyse their internal structure.

Let V be a finite set and suppose every v ∈ V can be described by a collection of binary

features q1, . . . , qk : V → {−1, 1}. Every feature q splits V into a subset A ⊆ V of ele-

ments that have this particular feature and the complement V \A consisting of elements

that do not have this feature, this can be encoded by letting q(v) = 1 or q(v) = −1

respectively. In this manner every feature induces a bipartition of V . Similarly, every

bipartition can be interpreted as a binary feature. If {V \B,B} is an arbitrary bipar-

tition of V , we can define a corresponding binary feature qB : V → {−1, 1} by letting

qB(v) = 1 if and only if v ∈ B. This way, we can identify bipartitions and binary fea-

tures.

If we equip a bipartition of V with a notion of orientation, by making the bipartition

{V \ A,A} either point in the direction of A or in the direction of V \ A, then such an

oriented bipartition allows us to localise a feature within the set V .

The other way round, every v ∈ V yields an orientation of all the bipartitions induced

by its features’ values. More generally, every possible assignment of values −1 or 1 to

all of the features q1, . . . , qk provides an orientation of all induced bipartitions. Such an

assignment might correspond to a subset of elements that exactly match all the features

but in general this need not be the case. Interestingly, if we impose restrictions on the

set of allowed orientations, even feature combinations that do not appear anywhere in V

can localise relevant substructures of V . The notion of a tangle provides a very general

framework to formalise these restrictions and thereby offers a promising novel paradigm

for data analysis. Informally, the idea is that relevant substructures cannot be cut into

many irrelevant pieces by these bipartitions, because most of the elements of such a

substructure share any given feature or its negation.

In the theory of tangles one works with the more general notion of separations instead

of bipartitions. In our applied context a set separation is a segmentation of a set into

two parts with possibly nonempty intersection. We still can interpret a set separation

as a feature on V where we allow an unspecified feature value. For elements in the

intersection we do not want to make a strict decision if they have a feature or not.

Usually a data set that we want to analyse does not come together with a set of mean-

ingful binary features. Often only relations between data points are given, for example

similarities or dissimilarities, or every data point is characterised by a number of real-

valued measurements. In this cases we first have to generate a set of meaningful features
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– or separations – that can describe relevant substructures of our data. Essentially, we

need two things before we can analyse the tangles of a data set V . We first need a

way to measure how descriptive a separation is of the structure. This is usually done

with help of an order function, a function quantifying the ‘usefulness‘ of a separation.

Second, we need a way to find a set of separations that are reflective of the structure of

V . These two tasks are of central importance and often impose a challenge of their own.

The goal of this thesis is to first discuss an important class of order functions given by

matrices containing pairwise information about the elements of V . We shall see that the

problem to optimise these order functions then naturally leads to a spectral approach to

generating set separations.

We start the discussion in section 2 where we formally introduce our notion of separation

and informally describe how tangles can help to detect interesting substructures of data

sets. The third section then describes the important class of matrix order functions.

In the fourth section we finally delve into our main topic: the discussion of spectral

separations as a generic way to find structure reflecting separations of data sets.
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2 Prerequisites: Separations and Tangles

Our goal is to find separations of a set V that help us to unveil hidden structures induced

by properties of – or relations between – the elements of a set V . In this chapter we

want to briefly introduce the notion of separation we will use in the sequel and explain

how separations can help us to analyse interesting substructures of data sets.

2.1 Systems of Set Separations

Let V be a nonempty, finite set of size |V | = n ∈ N. We usually use V to denote a

ground set that is a superset of all other sets encountered later. If B ⊆ V , we denote

the complement of B in V by Bc = V \ B. The vector B ∈ {0, 1}V with B(v) = 1 if

and only if v ∈ B is called (ordinary) indicator vector of the set B.

A set separation of V is a two-element set {A,B} where A,B ⊆ V and A ∪B = V . We

call the sets A and B the sides of the separation {A,B}. If A ∩ B = ∅, we call {A,B}
a bipartition of V . If u, v ∈ V , we say a separation s = {A,B} separates u and v if

u ∈ A \B and v ∈ B \A or v ∈ A \B and u ∈ B \A.
The set of all set separations of V is denoted by SV , the set of all bipartitions of V

by BV . Obviously we have BV ⊂ SV and for a reasonably sized set V the sets BV

and SV are both quite large. The total number of bipartitions is |BV | = 2n−1 as every

bipartition can be identified with a subset of V and every subset and its complement

define the same bipartition. To compute the total number of set separations let b(k) be

the number of bipartitions of a k-element set for k ∈ N ∪ {0}. Then b(0) = 1 since the

only set separation of the empty set is {∅, ∅}. The total number of set separations can

be computed by summing over the number of bipartitions of the sets V \ A ∩ B for all

possible intersections A ∩B. We have

|SV | =
n!

k=0

"
n

k

#
b(k) = 1 +

n!

k=1

"
n

k

#
2k−1 = 1 +

1

2

$
n!

k=0

"
n

k

#
2k − 1

%
= 1 +

3n − 1

2

In the introduction we associated separations of V with features that the elements v ∈ V

either have or not have. It is intuitively clear that in real situations, i.e. if the elements

of V correspond to real word objects or concepts, usually not all of this huge number

of possible features are equally descriptive. Otherwise each element v ∈ V can only be

characterised by its plain identity and there is no subset that can be described by any

distinctive properties except the identities of the contained elements. In other words,

there is not really a structure on V in this case.
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Since our goal is to detect meaningful substructures of V we can assume that not all

features, or separations, are equally relevant. The relevance of a separation is usually

given by a real valued function

| · | : SV → R,

called an order function on SV . Every order function induces a quasi-order on SV , a

reflexive and transitive relation, that allows us to rank separations by their relevance or

some kind of ’usefulness’ to describe interesting substructures of V . To rank the sep-

arations we either sort a list of separations by ascending or by descending order value.

Depending on the semantics of | · | sometimes one way is more intuitive than the other.

If we are sorting by ascending order value, we can interpret the order value as the cost

of splitting V in the two (possibly overlapping) parts of a separation.

We want to localise substructures of V , therefore we work with oriented separations.

Every separation s = {A,B} ∈ SV has two orientations !s and !s, for example !s = (A,B)

and !s = (B,A). 1. If T ⊆ SV is a set of (unoriented set separations), we denote the

corresponding set of oriented separations by !T . And vice versa.

If for a set C ⊆ V we have C ⊆ B, we say !s = (A,B) is pointing to C, if C ⊆ A, we say

!s is pointing away from C. We call A the small side and B the big side of !s = (A,B).

The set of all oriented separations of V is denoted by !SV , its subset of oriented bipar-

titions by !BV . The involution ∗ : !SV → !SV that maps !s to !s is called the inversion on

!SV . If !s = (A,B) ∈ !SV , we call the vector !s := B − A the oriented indicator vector

of !s, the oriented indicator vector of !s then is !s = − !s.

Every order function defined on S can be generalised to !S by simply setting |!s| := |s|.
To ensure that a candidate order functions | · | : !SV → R is well defined we therefore

have to check independence of orientation, this means |!s| = | !s| for all s ∈ S.

We can define a partial order on !SV . Let !s = (A,B) and !t = (C,D) be two oriented

separations, we set

!s ≤ !t ⇐⇒ A ⊆ C and B ⊇ D

If !s ≤ !t, the ‘bigger’ separation !t is more specific as it points to less subsets of V than

the ‘smaller’ separation !s. If two unoriented separations s and t have orientations !s and

!t such that !s ≤ !t, we say the separations are nested. Otherwise they cross.

If !T is a subset of !SV that is closed under the inversion ∗ on !SV , we call !T a set

1the notation !s does not specify wich orientation is meant. It is one of the orientations of s and the
only thing we know is that !s is the other orientation of s.
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separation system. If for every pair of separations !s,!t ∈ !T there exists an infimum !s ∧!t

and a supremum !s∨!t, we call the tuple (!TV ,≤,∨,∧,∗ , | · |) a universe of set separations

of V . The set !SV obviously has this property, we call it therefore the universe of all set

separations of V and denote it also by !SV .

If an order function | · | satisfies the inequality

|!s ∨ !t|+ |!s ∧ !t| ≤ |!s|+ |!t|

for all !s,!t ∈ !S, then | · | is submodular. If the reverse inequality holds, then | · | is super-
modular.

If two oriented separations !s,!t ∈ !SV are represented by their oriented indicator vec-

tors !s, !t ∈ {−1, 0, 1}V , their supremum and infimum can be obtain by taking the

elementwise minimum or maximum, respectively

!s∨!t = min( !s, !t) and !s∧!t = max( !s, !t)

If !T is a universe of separations, a subset !R ⊆ !T closed under ∨ and ∧ (as defined on

!T ) is called a subuniverse of !T . In this case we write !R ⊑ !T .

If R ⊆ !SV is any collection of oriented set separations, we call the intersection of all

subuniverses of !SV containing R, i.e.

&

R⊆!T , !T ⊑ !SV

!T (1)

the subuniverse of !SV generated by R. The set of all oriented bipartitions of V , !BV , is

obviously a subuniverse of !SV and it can be generated by the set of all bipartitions that

point to a single element of V

'
(V \ {v}, {v}) : c ∈ V

(

This follows directly from

Proposition 2.1. Let V be a set of size |V | = n. A set of oriented bipartitions !S ⊆ BV

generates !BV if and only if for every pair u, v ∈ V there is an s ∈ !S that separates u

and v.

Proof. Let us assume that we can separate every pair of elements u, v ∈ V by a bipar-

tition in !S. We have to show that for arbitrary subsets B ⊆ V we can generate the

oriented bipartition !s = (Bc, B). Let B ⊆ V be a an arbitrary subset of V . For every
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v ∈ B and u ∈ Bc let !suv ∈ S be the separation separating u and v oriented so that it

points to v. Then for every v ∈ B the supremum !sv =
)

u∈V \{v} !suv separates v from

all other vertices in V and hence the infimum of these suprema is the wanted separation

!sB =
*

v∈B !sv = (Bc, B). As B ⊆ V was arbitrary, we can generate the whole universe

!BV .

For the other direction let u, v ∈ V be inseparable by all bipartitions in !S. Then u, v

are on the same side of every bipartition in !S. Let !U ⊆ !BV be the set of all bipartitions

of V where u and v are on the same side. Then !U is a subuniverse of !BV . Indeed, if

!s,!t ∈ !U do not separate u and v, then neither do !s ∨ !t, !s ∧ !t or one of the inverses !s, !t.

Therefore !U is one of the intersected universes in (1) and the universe generated by !S

cannot contain any separation that separates u and v. Hence it is not equal to !BV .

The generating set of !BV we have seen above is canonical but it is not the most efficient

way to generate !BV . We can generate !BV using much fewer bipartitions:

Proposition 2.2. Let V be a set of size |V | = n. The minimum number of bipartitions

needed to generate !BV is ⌈log2 n⌉.

Proof. Let M ∈ {0, 1}n×⌈log2 n⌉ be the matrix that contains the binary representation of

the integer i − 1 in the i-th row. We interpret the columns of M as indicator vectors

on V . Let u, v ∈ V . Because every row in M is unique, we find a column f ∈ {0, 1}V

of M such that f(u) ∕= f(v). If B ⊂ V is the subset indicated by f , then (Bc, B) ∈ !BV

separates u and v. As u, v ∈ V are arbitrary, the previous proposition now assures that

we can generate !BV .

Let now be S ⊂ !BV a set of size k < ⌈log2 n⌉. The matrix M containing the indicator

vectors of the big sides has at most 2k < n different columns hence there are different

u, v ∈ V corresponding to two identical rows of M . Therefore u and v are on the same

side of all bipartitions in S. Hence, by the previous proposition S cannot generate all of

!BV .

Interestingly, the theory of separation systems can be worked out without any reference

to sets that actually are separated leading to a theory of abstract separation systems.

More details about the notions introduced in this section and an overview about the

abstract theory of separations can be found in [4].
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2.2 Tangles of Separation Systems

Now that we know the notions of systems and universes of separations, let us find out

how separations can be used to detect interesting substructures in V . Our topic is mainly

the discovery of separations and we will not need any technical details of how we use

them to analyse data sets afterwards. Yet it is the main motivation of our considerations

and we therefore want to describe some important parts of the theory and practice from

a bird’s eye perspective.

Let us assume we already have found a separation system !T ⊆ !SV , for example both

orientations of the k most expressive separations according to an order function | · |
defined on SV . Let U ⊂ V be a set of data points sharing some interesting properties

or revealing some high level information about the data. We explicitly do not want to

specify in more detail what exactly makes a substructure of V ‘interesting’, the concrete

interpretation of such a structure depends on the data and known or unknown relations

between the data points. For example, if we have a measure of pairwise similarity be-

tween data points, an example of an interesting substructure is a cluster, i.e. a subset of

very similar data points that can be clearly distinguished from its complement. But that

is not all we want to be able to describe. Data points belonging to the same interesting

substructure do not have to share any properties. Such a substructure can, for example,

also be a set of outliers, consisting of objects that do not have anything in common,

except that they neither have anything in common with any of the other (non-outlier)

objects.

The central idea is to not describe what the interesting substructures exactly are but

where they are [4] within the structure induced on V by the information we have about

our data 2. Our assumption is that our separation system !T and, in particular, the

order function we defined on S form a refined representation of this structure inducing

information, and that the representation allows us to answer the question of the ‘where‘

(but not necessarily the ‘what’). The idea is that separations, marked as ’useful‘ by the

order function, will not cut an interesting substructure easily into completely uninter-

esting parts, or vice versa, that subsets of V that can be shattered into a lot of small

parts by the separations in T are not interesting at all.

In what follows, we want to give a very informal description of the tangle method for

2... whatever form this information may take: It can be a combinatorial structure, like a graph or a
matroid, it can be an explicit set of properties of each object, relations defined between the objects or
any different concept that might make sense for the problem at hand.
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data analysis. The interested reader is recommended to have a look at [4], [7] and [8] for

more detailed theory, [9] and [6] for the use in practice and [11] for details on algorithmic

aspects.

An orientation O of a separation system !T is a subset of !T that contains exactly one

orientation of each separation in the corresponding set of unoriented separations T . We

want to define a tangle of T as an orientation of T so that it describes describes an

interesting substructure of V . Clearly not all orientations of !T can be tangles, otherwise

the notion would not contain much information. The minimum requirement for an ori-

entation O to be a tangle is consistency, this means if !r,!s ∈ !T are two different oriented

separations and if !r ≤ !s, then O does not contain the orientations !r and !s at the same

time - in words, a consistent orientation does not contain orientations that point away

from each other. Additionally we can define sets of partial orientations F of !T , these

are orientations of subsets of T , that we want to forbid in a tangle. All together, a

tangle is a consistent orientation of !T that does not contain any of the sets in F . An

example of such a forbidden set F is the collection of three-element subsets {!r,!s,!t} ⊂ !T

such that the big side of the set separation !r ∨ !s ∨ !t contains less than m elements of

V , where m ∈ N is a pre-specified constant. A tangle of T then is an orientation O of

!T such that for all !r,!s,!t ∈ O with !r = (A1, B1), !s = (A2, B2) and !t = (A3, B3) we have

|B1 ∩B2 ∩B3| ≥ m.

Let us assume the separations in T are sorted, for example by the ranking induced by

an order function. Let T1 ⊂ · · · ⊂ Tk = T be the sequence of sets of separations where

Ti contains the first i separations of T , this means the i most important separations of

T . Then the tangles of all the oriented separations systems !Ti can be represented by

nodes of a binary tree whose edges between nodes at height i − 1 and i correspond to

the orientations of the i-th separations of T . Figure 1 shows an example. We call this

tree the tangle search tree (TST) 3.

There is another tree that plays an important role in tangle theory. If the order function

| · | is submodular, if the separation system !T is in some sense ‘rich‘ enough, and under

some additional constraints on the set of forbidden orientations F , we can find a nested

subset of T that distinguishes all tangles of !T [7]. This means, we can find a hierarchical

representation of the data set and its structure by arranging nested separations in a tree.

3The name reflects its use in practice. When searching for tangles of a separation system T , such a
tree is built iteratively by adding one separation after another, starting by the most relevant, until T is
exhausted or no new tangle can be found.
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!s1

!s2 !s2

!s3

!s1

!s2

!s3

!s4

!s5

!s4

!s2

!s3

!s4

!s5

!s6

!s3

!s4

( !s1 !s2)

( !s1!s2 !s3)

(!s1 !s2!s3 !s4!s5)

(!s1 !s2!s3!s4)

(!s1!s2 !s3!s4!s5 !s6)

(!s1!s2!s3!s4)

Figure 1: An example of a Tangle Search Tree of a separation system !T . Every edge
corresponds to an orientation of a separation in !T . The path from root to a node defines
the orientations corresponding to the node.

We call this tree the Tree-of-Tangles (ToT). This tree is usually not a binary tree.

2.3 Further prerequisites

We assume the reader has basic knowledge of Linear Algebra and Graph Theory. A

good overview of Linear Algebra, especially the ‘spectral‘ part can be found in [18]. We

will not need a lot of general graph theory, but we presume familiarity with the standard

notations found in [5]. Details about spectral graph theory can be found in [14].
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3 Matrix Order Functions

If we want to analyse the structure of a data set V with the help of tangles, the choice

of an order function has a crucial influence on the characteristics of detectable substruc-

tures and therefore the meaning of a tangle. As we have seen, an order function should in

general provide a way to assess a separation’s usefulness or ‘naturalness‘. If our objects

in V come with some natural notion of pairwise similarity, we intuitively would require

a natural separation to rather separate dissimilar objects than similar objects. It turns

out that in such situations matrices provide a general way to define an important class

of order functions.

3.1 Motivation and Definition

Let us first look at a prominent example of a useful order function on (similarity)

graphs. Let G = (V,E) be a graph and let A ∈ RV×V be its adjacency matrix. Let

s = {Bc, B} ∈ BV be a bipartition of V and assume that both of B,Bc are nonempty.

Then s induces a nontrivial cut in G. An important property of a cut is its size, i.e. the

number of edges between the sides of s. Both orientations of s induce the same cut, so

a cut’s size is a good candidate for an order function on !BV .

We denote the size (or the weight) of the cut induced by a bipartition {Bc, B} in G by

cutG(B
c, B) :=

!

u∈B,v∈Bc

A(u, v) = t
BcA B

and the volume of a subset B ⊆ V by

volG(B) :=
!

u∈B,v∈V
A(u, v) = t

BA

As the matrix A is symmetric, both of these notions are well-defined. The vector

A ∈ RV contains the degrees of G’s vertices, hence the volume of B ⊆ V is the sum of

the degrees of the vertices in B and in particular volG(V ) = 2|E|.
We might drop the subscripts if the graph is clear from context. Let D ∈ RV×V be the

degree matrix of G, this means the diagaonal matrix with diagonal A = ( tA)t, and

L = D − A the laplacian of G. Then the size of the cut represented by an indicator

vector B of one of its sides can be written as a quadratic form defined by the laplacian

12



matrix

t
BcA B = ( − B)

tA B

= tA B − t
BA B

= t
BD B − t

BA B

= t
BL B

and because of L = L = D −A = 0 we have

t
BL B = ( − t

Bc)L( − Bc) = t
BcL Bc

We usually want to represent an oriented bipartition !s = (Bc, B) by its oriented indicator

vector !s instead of B. Plugging !s into the quadratic form does not change anything

qualitatively. Utilising the symmetry of L, the value of the quadratic form is

t
!sL !s = ( B − Bc)tL( B − Bc)t

= t
BL B + t

BcL Bc − 2 · t
BL Bc

= 4 cut(Bc, B)

because t
BL B = t

BcL Bc and t
BL Bc is summing −1 once for every edge crossing

the cut.

We can extend this example to weighted graphs: If G is an edge-weighted graph, then

the adjacency matrix A contains the weights and we do not just count the cut’s edges

but sum their weights.

The question if it makes sense to replace the laplacian by a different matrix M ∈ RV×V

seems very natural. The only property to be checked is independence of orientation. For

any !s = (B1, B2) ∈ !SV we obviously have

( B2 − B1)
tM( B2 − B1) = ( B1 − B2)

tM( B1 − B2)
t(−1)2

and we can go on and give such order functions their own name:

13



Definition 3.1. Let V be a finite set and M ∈ RV×V an arbitrary matrix. The function

| · |M : !SV → R

!s 4→ t
!sM !s

is called the matrix order (function) induced by M .

The definition allows non-symmetric matrices but we will usually focus on symmetric

matrices. We do this for two reasons: The first is the word ‘spectral‘ in the title. The

symmetry of a matrix guarantees real valued eigenvalues - a property that we will need

later. The second is practical: Most of the relevant matrices we will see encode pairwise

information about elememts in V like similarities, correlations or distances, for example.

Usually this information is symmetric.

The general interpretation of a matrix order function is very simple. Let M ∈ RV×V be

a matrix and !s = (Bc, B) ∈ !BV an oriented bipartition. If we write the oriented indicator

vector of !s in terms of ordinary indicator vectors, !s = B − Bc , we can rearrange

t
!sM !s = ( B − Bc)tM( B − Bc)

= t
BM B + t

BcM Bc − t
BM Bc − t

BcM B (2)
+
= tM − 2 · t

BM Bc − 2 · t
BcM B

,

A matrix order thus always compares the sum of the matrix entries within each side with

the sum of the matrix entries corresponding to edges between the sides. In the middle

equation every matrix entry appears in the sum exactly once and with a factor of −1 if

it corresponds to a pair of data points separated by !s. We see in the last equation that

only separated pairs have influence on the order as tM is constant.

If !s = (A,B) ∈ !SV is a set separation, the expression can be decomposed similarly

t
!sM !s = ( B\A − A\B)

tM( B\A − A\B)

= t
B\AM B\A + t

A\BM A\B − t
B\AM A\B − t

A\BM B\A (3)

The interpretation is very similar, except that the matrix entries corresponding to the

intersection of the sides are ignored.

Please note that this doesn’t necessarily mean that the entries in the intersection do

not contribute to the order: Missing information also can be valuable information, and
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moreover, the diagonal of M might contain summarised data about the relations be-

tween the objects including values ignored in the sum.

3.2 Examples

Now that we know that at least one matrix exists which induces a reasonable order

function, namely the Laplacian of a graph, we should have a look at some more examples.

Not all matrix orders assign the smallest order to the ‘best‘ or in some sense most

‘natural‘ separation. It depends on the the matrix entries’ meaning:

For example, if the matrix entries represent distances on V , a ’good’ separation should

not separate a lot of points that are very close but should separate pairs of mainly very

distant points. This means, a cut’s weight, that is the sum of the distances between

separated points, should be large. The cut’s weight goes into the order negatively, hence

we would like to minimise such an order function in order to find useful separations.

If the matrix entries describe similarities, a ’good’ separation should not separate a lot

of similar objects. Every separated pair should be as dissimilar as possible. Hence a

cut’s weight, i.e the sum of the similarities of separated pairs, should be small. Hence,

we want to maximise the order function in this case 4.

3.2.1 Adjacency Matrix

Let A ∈ {0, 1}V×V be the adjacency matrix of a graph G = (V,E). Let !s = (Bc, B) ∈ BV

be a bipartition of V . With equation (2) the order of !s given by the adjacency matrix is

|!s|A = t
BA B + t

BcM Bc − 2 · t
BM Bc

= volG[B](B) + volG[Bc](B
c)− 2 cutG(B,Bc)

= volG(V )− 4 cutG(B,Bc)

The function takes a large value if the sides of !s are highly connected and induce a small

cut. This is an example of a matrix order taking higher values on more useful or more

natural separations. As volG(V ) is twice the number of edges, the order is negative if

the cut contains more than a half of the edges.

4We can always negate a matrix to reverse the behaviour of the order function. This might result
in an order function that takes only nonpositive values. Either we are comfortable with this fact or we
have to subtract the resulting value from a big enough constant to shift all values to the positive side.
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This order function also makes sense in SV . Please note that elements of SV are in

general not separations of G in the usual graph theoretic sense. We explicitly want to

allow arbitrary splits of V into two possibly overlapping sets without any restrictions on

edges that cross the separator. What type of ‘separation‘ is meant will mostly be clear

from the context and often we will use the term ’(proper) vertex separation’ if we talk

about separations of graphs and the term ‘set separations‘ if we mean separations of V

as a set.

Comparing equation (2) and (3), we see that the function | · |A takes the same value

for a set separation s = {A,B} as the bipartition version would for the bipartition

{A \ B,B \ A} on the reduced graph G[V \ (A ∩ B)]. If all paths between the sides

of the separation pass through the intersection, i.e. if the separation is a proper ver-

tex separation, the subtracted terms in (3) are zero and the order depends only on the

number of edges contained in the graph on the symmetric difference of A and B. In

particular, a vertex separation of G, where the separator T ⊂ V is an independent set

with minimal number of neighbours on each side, has maximal order. The actual size

of T only has an indirect effect on the order via the edges ignored in the sum 5. The

order of the degenerate set separation {V, V } ∈ BV is zero. When we search for tangles

or build a Tree-of-Tangles, natural separations have to be oriented first. For | · |A this

means we go through the list of separation in descending order and stop before we reach

the degenerate set separation.

The adjacency order function can be generalised to weighted graphs like above: then

A has real valued entries and we sum over the edges’ weights instead of just counting

the edges. The discussion of edge weighted graphs in graph clustering is often limited

to graphs with nonnegative weights. This might have algorithmic benefits and most

meaningful similarity measures are nonnegative, but there is an exception:

If our data set V is a set of vectors in Rk, the cosine similarity matrix provides an

interesting example of a graph with signed edge weights. The cosine similarity of two

data points u, v ∈ Rk is the cosine of the angle between u, v and is defined by

simcos(u, v) :=
utv

‖u‖‖v‖

The matrix S ∈ RV×V with entries S(u, v) = simcos(u, v) is called cosine similarity ma-

5This allows, for example, a higher order for a separation given by a single highly connected vertex
than for a separator consisting of two low-degree vertices. This unfortunate feature can be reduced by
going over to the matrix cI +A with some constant c > 0.
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trix and can be interpreted as the adjacency matrix of a complete graph with signed

edge weights in [−1, 1].

Interpreting equation (2) for this matrix, the order of a bipartition !s ∈ BX is high if the

data points within the sides are very similar and the cut contains small, mostly negative

edges. We can interpret the entries of S as correlations between the data points. A

bipartition is rewarded by the order function if it combines positively correlated data

points into the same group while at the same time elements of different groups tend to

be negatively correlated.

3.2.2 Modularity Matrix

A slightly different view on the characterisation of interesting substructures of networks

(or graphs) 6 is proposed in [19]. These substructures are called communities and are

subgraphs whose connectivity differs significantly from what we would expect in a ran-

dom graph with the same degree distribution. The random graph model underlying the

idea is the configuration model [15]. The model provides a distribution over multigraphs

with predefined degree sequence. Therein the expected number of edges between two

nodes u, v ∈ V with degrees du, dv ∈ N is given by dudv
2|E| .

Let G = (V,E) be a graph and d ∈ NV its degree sequence. If the edges of G are

distributed according to the configuration model, the expected adjacency matrix is

E(A) =
ddt

vol(G)

The modularity matrix M of G is defined as the deviation of the adjacency matrix A of

G from E(A)

M := A− E(A) = A− ddt

vol(G)

Let B ⊂ V , then t
BM B is the sum over the matrix entries corresponding to edges

between vertices in B and measures the deviation of B’s connectivity from the one we

would expect from the configuration model. The value should be high, if B really is a

community of G, i.e if we have significantly more edges within the subgraph induced by

B than expected. The idea is the following:

We already know the degrees of all vertices in B, so we know how much edges have one

6A network is the same as a graph. The notion is sometimes used if a graph directly represents a
concrete real world system of interconnected entities, for example, people usually refer to social networks
instead of social graphs. In our context the difference is futile.
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end vertex inside B. If the edges were random and if B was not too big, we would expect

that a relatively large number of edges leaves B. If they do not, we have good reason to

think that B is a community in G.

The modularity of a bipartition !s ∈ !B is given by

mod(!s) :=
1

2 vol(G)
t
!sM !s

and measures, informally, to what degree the sides form communities and to what degree

other communities of G are torn apart by the split.

We ignore the constant factor 7 and use the remaining part to define a new matrix order

function | · |M , the modularity order function.

Given that a bipartition of high modularity should split the graph into parts consisting

of tight communities, one could assume on first sight that this order function evaluates

a very different criterion than the order functions we have seen before. The definition of

the matrix might already give a hint that this is not really the case. This becomes more

clear if we explicitly write the modularity order in terms of the adjacency order

|!s|M = |!s|A − |!s|E(A)

= |!s|A − (dt !s)
t(dt !s)

vol(G)

= |!s|A − (vol(B)− vol(Bc))2

vol(G)

We see that the order function is a slight variation of the adjacency order including a

term favouring splits into parts that are more balanced in volume.

3.2.3 Laplacian Matrices

We already have seen the order induced by the (combinatorial) Laplacian

L = D −A

7... that was introduced in [19] merely for compatibility with previous definitions
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of an edge-weighted graph G = (V,E) on !BV with adjacency matrix A and degree matrix

D. Now we can derive it in a different way using what we already know about | · |A: The
order of a bipartition !s = (Bc, B) ∈ !BV is

|!s|L = t
!sD !s − t

!sA !s = vol(G)− |!s|A = 4 cutG(B,Bc)

We call this order function Laplacian order or cut weight order.

Like the adjacency order, this order function is also meaningful for set separations. Let

!s = (A,B) ∈ !SV and G̊ = G[V \A ∩B]. Then

t
!sL !s = 4 cutG̊(A \B,B \A) + cutG(A ∩B, V \A ∩B)

this means a set separation might be strongly preferred to a bipartition if most of the

paths between the sides meet a vertex in the intersection.

Another important type of Laplacian matrix is the normalised Laplacian

Lnorm = D− 1
2LD− 1

2

The induced matrix order function has a slightly different interpretation. It can be

explained easiest as importance weighting of the edges in G. We interpret D− 1
2AD− 1

2

as an adjacency matrix of a weighted graph G∗ = (V,E,W ) with the same vertices and

edges but each edge uv of G∗ is weighted by W (u, v) = d(u)−
1
2d(v)−

1
2 , this means the

adjacency matrix of G∗ is A∗ = D− 1
2AD− 1

2 . Let D∗ be the degree matrix of G∗, then

Lnorm = D− 1
2 (D −A)D− 1

2

= I −D− 1
2AD− 1

2

= (D∗ −D− 1
2AD− 1

2 ) + (I −D∗)

= L∗ + C

with a diagonal matrix C = I − D∗ and the combinatorial Laplacian L∗ of G∗. The

edge weights quantify the importance to the connectedness of their end vertices. The

order function favours cutting edges between high degree vertices. If a graph contains

two sparsely inter-connected but highly inner-connected subgraphs, the order function

| · |Lnorm will reward separating these two regions more than | · |L does by counting the

edges alone. Hence the order function takes edges inside the sides of a separation into
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account.

3.3 Sub- and Supermodularity

An important property of an order function for the theory of tangles is sub- or super-

modularity. In general, matrix orders are neither sub- nor supermodular, but whether

they are, can easily be read off the signs of the matrix entries, at least if the matrix is

symmetric.

Lemma 3.2. Let M ∈ RV×V and f, g ∈ RV arbitrary. Then

f tMf + gtMg =max(f, g)tM max(f, g) + min(f, g)tM min(f, g)

− (g −min(f, g))tM(max(f, g)− g)

− (max(f, g)− g)tM(g −min(f, g))

where minima and maxima are taken element-wise.

Proof. We have

f = min(f, g) + max(f, g)− g

and therefore

f tMf + gtMg = (min(f, g) + max(f, g)− g)tM(min(f, g) + max(f, g)− g)

+ gtMg

= min(f, g)tM min(f, g) + min(f, g)tM(max(f, g)− g)

+ (max(f, g)− g)tM min(f, g) + (max(f, g)− g)tM(max(f, g)− g)

+ gtMg

= min(f, g)tM min(f, g) + max(f, g)tM max(f, g)

+ (min(f, g)− g)tM(max(f, g)− g)

+ (max(f, g)− g)tM(min(f, g)− g)

= max(f, g)tM max(f, g) + min(f, g)tM min(f, g)

− (g −min(f, g))tM(max(f, g)− g)

− (max(f, g)− g)tM(g −min(f, g))
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Please note that for every v ∈ V and every f, g ∈ RV at most one of the values g(v) −
min(f, g)(v) and max(f, g)(v)− g(v) is nonzero. Therefore the diagonal entries of M do

not contribute to the subtracted terms in the lemma.

If the matrix M is symmetric, the equation simplifies to

f tMf + gtMg =max(f, g)tM max(f, g) + min(f, g)tM min(f, g) (4)

− 2(g −min(f, g))tM(max(f, g)− g)

Now the claimed connection between signs of the matrix elements and sub- or super-

modularity is apparent:

Corollary 3.3. Let M ∈ RV×V be a symmetric matrix and | · |M : !S → R the induced

matrix order function. Then | · | is submodular if and only if all off-diagonal entries of

M are non-positive and | · |M is supermodular, if and only if all off-diagonal entries of

M are non-negative.

Proof. Let all off-diagonal entries of M be non-negative. Then the subtracted term in

equation (4) also is non-negative, hence the inequality

|!s|M + |!t|M = t
!sM !s +

t
!t
M !t

≤ max( !s, !t)
tM max( !s, !t) + min( !s, !t)

tM min( !s, !t)

= t
!s∧!tM !s∧!t +

t
!s∨!tM !s∨!t

= |!s ∧ !t|M + |!s ∨ !t|M

holds for arbitrary separations !s,!t ∈ !SV . Therefore the matrix order | · |M is supermod-

ular.

The same reasoning applies if all off-diagonal entries of M are non-positive. The sub-

modulary of |·|M follows since the subtracted term are non-positive and hence the inverse

inequality holds.

We noticed already that elements on M ’s diagonal do not contribute to the difference

between the sides of the inequality, but all other entries do: Let M(u1, v1) > 0 and

M(u2, v2) < 0 for u1, u2, v1, v2 ∈ V . Then the bipartitions (Ac, A) and (Bc, B) with

corners A∩Bc = {u1}, Ac ∩B = {u2}, the remaining corners chosen nonempty, but ar-

bitrarily, and the bipartitions (Cc, C), (Dc, D) with corners C∩Dc = {v1}, Cc∩D = {v2},
the remaining corners again chosen arbitrarily nonempty, are examples, where for the

first pair of separations the submodularty inequality and for the second pair the super-

21



modularity inequality holds. The inequalities are strict in both cases.

The if-statements of the proposition hold for non-symmetric matrices, too. The other

direction doesn’t hold in general as the subtracted terms in the lemma might counteract

each other. For example, if the matrix is skew-symmetric, the subtracted terms cancel

out and the induced matrix order is both super- and submodular 8.

For graphs with nonnegative edge weights, for example similarity or distance graphs, we

obtain

Corollary 3.4. Let G = (V,E) be a graph with nonnegative edge weights. Let A ∈ RV×V

be the adjacency matrix and L ∈ RV×V the Laplacian of G. Then the matrix order | · |A
is supermodular and the matrix order | · |L is submodular.

Let us conclude this section by rephrasing its observations in a more general way:

Corollary 3.5. Let V be a finite set and σ : V ×V → [0,∞) a nonnegative function on

V × V . Then the order function

| · |σ : !BV → R, (Bc, B) 4→
!

u∈B,v∈Bc

σ(u, v)

is submodular.

Proof. Let L be the Laplacian of a graph G = (V, V × V ) where the edges are weighted

by σ. Then | · |σ = 1
4 | · |L.

3.4 Shifting and Balance

We have seen that the signs of a matrix’ entries determine wether its matrix order is

sub- or supermodular or neither. If we use the order function just to evaluate the quality

of a separation, it does not play a big role. For example, if we are satisfied with creating

a tangle search tree, we can use any matrix order function. But as soon as we want to

build a Tree-of-Tangles, the property of an order function to be sub- or supermodular is

very important. An obvious idea to enforce this property is to simply change the matrix

entries so that the off-diagonal entries have the same sign and, hopefully, as much as

8These matrix orders might sound interesting at first, but a closer look unveils that they are completely
useless in our scenario: the induced quadratic form takes the same value on every oriented bipartition
vector, namely the sum of the diagonal, the only matrix elements that do not cancel out
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possible of the order’s effect on BV is retained.

The simplest way to achieve non-positivity or non-negativity, and therefore submodu-

larity or supermodularity, is to add a fixed constant to all matrix entries. We call this

process shifting of a matrix order (function). Shifting a matrix order has an interesting

effect, it changes the order’s preference for balanced separations:

Let A ∈ RV×V and | · |A : !SV → R be the induced matrix order function. Let c ∈ R
be a constant and J = (1)u,v∈V ∈ RV×V be the matrix that has all entries equal to one.

Then the shifted order of !s = (A,B) ∈ !SV is

|!s|A+cJ = t
!sA !s + c t

!sJ !s

= |s|A + c(|B \A|− |A \B|)2

Hence, the order of an unbalanced separation will increase if we shift the matrix in pos-

itive direction using c > 0 and decrease if c < 0. The less balanced !s is, the greater is

the effect.

If we interpret A as an adjacency matrix of a similarity graph, more useful splits of V

typically have higher order, so a positive shift of A results in an order function that tends

to prefer unbalanced separations. This means that if we want our order function to be

supermodular, we have to, at least partially, desist from desires about balanced cuts.

Clearly, neither functions that ignore the balance nor functions that ignore everything

except the balance are usually very helpful. If we are not forced to use sub- or super-

modular order functions, shifting allows to gradually change the balancing preference.

The effect is quite interesting in situations where the relationships between objects of

a set V are given by a distance function dist : V × V → R≥0. Let us assume we are

searching for an order function on bipartitions of V . A good bipartition should split V

into subsets with distances between elements on the same side rather small and distances

between elements on different sides fairly large. Matrix order functions provide an easy

way to evaluate such an objective. We could either directly use an order function defined

by the distance matrix or transform the distance information into a similarity measure.

Intuitively, these two approaches should be quite similar, but the effect of matrix shifting

can make a significant difference.

There are multiple ways to create similarity functions based on distances, the simplest

is to just negate the distance function and thereby turn minimal distances into maximal

similarities. Similarities are usually nonnegative, so we might be tempted to additionally
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add a constant c ∈ R and obtain the similarity function

σ : V × V → R

(u, v) 4→ c− dist(u, v)

We combine all values of σ into a similarity matrix A = (σ(u, v))u∈V,v∈V to assess bi-

partitions of V by the induced matrix order function | · |A on !BV .

Now a change of the constant c corresponds to a shift of the matrix order function and

therefore changes the balance preferences. Hence, working with distances seems to have

a significantly different meaning than working with similarities, at least in the context of

matrix order functions and if we used a naive way to make the similarities nonnegative.

The two approaches are equivalent only if c = 0 and all similarities are nonpositive. If

we shift the values of the similarity function into a positive range, we change our matrix

order to prefer more unbalanced separations. This effect does not have to be detrimen-

tal, in this example using the distance matrix without any changes leads to a matrix

order that strongly prefers balanced cuts. This is due to combinatorial reasons: There

are much more pairs of separated points if a bipartition is balanced.

As we have noted above, an important motivation for such shifts can also be the sub- or

supermodularity of the implied matrix order. From an optimisation perspective there

seems to be no free lunch: in our example above, we either maximise a submodular set

function that takes the balance into account (c = 0) or a supermodular function that

prefers unbalanced separations (c = maxu,v∈V dist(u, v)). The maximisation of super-

modular set functions without constraints is considered easy but as soon as constraints

come into play, for example the balance of a cut, the maximisation might become diffi-

cult [3].

We have seen a similar balancing effect in example 3.2.2. There, the order function

preferred slightly more balanced bipartitions by introducing a term comparing the vol-

umes of the sides. This was achieved by weighting the vertices non-uniformly by their

degree via using the matrix ddt instead of J = t. Both approaches follow the same

principle and we can summarise the effect of matrix shifts on a matrix order’s balancing

preferences.

24



Proposition 3.6. Let V be a set, M ∈ RV×V a matrix, c ∈ {−1, 1} and f ∈ RV . Let

!s = (Bc, B) ∈ !SV be a separation, the order induced by the matrix

M + cff t

computes to

|!s|M+cff t = |!s|M + c

$
!

u∈Bc

f(u)−
!

v∈B
f(v)

%2

resulting in a change of the preference for balanced partitions.

3.5 Clamped matrices

Another way to influence the balancing preference of a matrix order function | · |M is to

limit the range of the matrix’ entries. We want to call this operation clamping a matrix

order function. For matrices M,N ∈ RV×V we define the element-wise maximum and

minimum by

min (M,N) :=
-
min

+
M(u, v), N(u, v)

,.

(u,v)∈V×V

max (M,N) :=
-
max

+
M(u, v), N(u, v)

,.

(u,v)∈V×V

Let c∗ < c∗ be two real numbers. Then the result of clamping the matrix M to the range

[c∗, c
∗] is the matrix

min
-
max

+
M, c∗J

,
, c∗J

.

where J ∈ RV×V is the all-one-matrix.

We illustrate the effect by revisiting the previous example about data points in euclidean

space and similarities arising from distances.

Let V be a finite set of points in Rk and ∆ ∈ RV×V matrix containing the distance

between the points, i.e. ∆(u, v) = dist(u, v) for all u, v ∈ V . The matrix order | · |∆
directly induced by ∆ takes low values on ‘good‘ cuts and strongly favours separating

distant points. This is generally what we want, but the effect can be quite strong, making

the order function sensitive to outliers and exaggerating the preference for balanced cuts.

As we have seen above, we can try to counterbalance this property by simply shifting
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Figure 2: A randomly generated set of points in R2, partitioned into two groups. The
solid line is soft max-margin decision boundary found by a Support Vector Maschine.
The dashed lines illustrate the margin around the decision boundary. The bipartite
graph inside the margin is induced by points on opposite sides of the bipartition that
are close enough.

the matrix. A different possibility is trying to reduce the effect of far distant pairs by

limiting the maximal entry of ∆, i.e by using the matrix

∆′ := min(∆, δmaxJ)

for some δmax ∈ R. The modified matrix induces an order function where the linearly

growing influence of sufficiently distant points is reduced to a constant one. If we combine

both operations, shifting and clamping, we obtain, after scaling and negating the matrix,

a very simple and natural similarity graph G∗ with nonnegative edge weights. The

adjacency matrix of G∗ is given by

∆∗ := −min(∆, δmaxJ)− δmaxJ

δmax
= max(J − ∆

δmax
, 0)

As usual we treat edges of weight zero as nonexistent, so in G∗ two vertices are connected

if their corresponding points in Rk are close together and the edge’s weight is higher if

their distance is smaller, i.e. if they are more similar.
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The induced matrix order | · |∆∗ ignores big distances (or the corresponding small sim-

ilarities). Loosely speaking, the order function behaves more locally in Rk around a

hypothetical boundary curve of the separations’ sides than the original one induced by

∆. According to this order function better bipartitions have higher order and with

equation (2) we see that a bipartition s = {B,Bc} ∈ BV has optimal order, if

!

u∈B,v∈Bc

max(1− dist(u, v)

δmax
, 0) =

!

u∈B,v∈Bc

dist(u,v)<δmax

1 −
!

u∈B,v∈Bc

dist(u,v)<δmax

dist(u, v)

δmax

is minimal. The expression balances the number of separated close pairs and the dis-

tances of these pairs. There might be a bipartition that separates more close pairs than

another bipartition but nevertheless can have higher order if the sum of the distances

between close points is sufficiently larger. The order is minimal if only a few close points

are separated and if these points are not too close to each other.

Intuitively, we can imagine a soft margin given by δmax around an hypothetical optimal

decision boundary between the sides of s in Rk. The deeper a pair of separated points

is inside this margin the lower is the order. Points outside the margin are ignored.

Please note that unlike to common max-margin methods, not only the distance of a pair

from the boundary is important but also the connectivity of the bipartite graph induced

on the data points within the margin. Figure 2 shows an example.

3.6 Monotonic Transformations

Let !S be a universe of separations. Every order function |·| : !S → R induces a quasi-order

on !S. We have already seen examples of order functions inducing the same or a reversed

quasi-order. It will simplify our following considerations if we give this relationship a

name:

Definition 3.7. Let | · |1 : !S → R and | · |2 : !S → R be two order functions. We say

that | · |2 is a monotonic transformation of | · |1, if there is a strictly monotonic function

h : R → R such that | · |2 = h ◦ | · |1. If h is monotonically increasing, we say | · |2 is an

order preserving (monotonic) transformation of | · |1, if h is monotonically decreasing,

we say | · |2 is an order reversing (monotonic) transformation of | · |1.

It is intuitively obvious that the property of two order functions being monotonic trans-

formations of each other is an equivalence relation:
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Proposition 3.8. Let O be the set of all order functions on !S. The relation ∼ ∈ O×O
defined by

| · |1 ∼ | · |2 ⇐⇒ | · |2 is an order preserving transformation of | · |1

is an equivalence relation.

Proof. The reflexivity is clear, for every order function we have | · | = I ◦ | · | where
I : R → R is the identity function.

If | · |2 is an order preserving transformation of | · |1, then there is a strictly increasing

function h : R → R and | · |2 = h ◦ | · |1. As h is strictly increasing it is invertible, so

| · |1 = h−1 ◦ | · |2. The inverse of a strictly increasing function is also strictly increasing,

hence | · |1 is an order preserving transformation of | · |2.
Let | · |1, | · |2, | · |3 be three order functions. If | · |1 ∼ | · |2 and | · |2 ∼ | · |3, then there

are monotonic functions h1, h2 : R → R with | · |1 = h1 ◦ | · |2 and | · |2 = h2 ◦ | · |3 and

hence | · |1 = (h1 ◦ h2) ◦ | · |3. The composition of monotonically increasing functions is

monotonically increasing, so | · |1 ∼ | · |3.

We have already seen that the diagonal of a matrix M ∈ RV×V does not have a quali-

tative effect on the induced order function | · |M on !SV . In the world of graphs we can

state this fact quite nicely using the notion of monotonic transformations:

Definition 3.9. Let G = (V,E,A) be a weighted graph with adjacency matrix A and

Laplacian matrix L. Let D ∈ RV×V be an arbitrary diagonal matrix. Then we call

A′ := D + A a generalised adjacency matrix and L′ := D + L a generalised Laplacian

matrix of G.

Proposition 3.10. G = (V,E) be an arbitrarily weighted graph. Then every pair of gen-

eralised adjacency matrices of G is order preserving, every pair of generalised Laplacian

matrices of G is order preserving and every pair consisting of a generalised adjacency

matrix of G and a generalised Laplacian matrix of G is order reversing.

Proof. Let A1 = A +D1, A2 = A +D2 ∈ RV×V be two generalised adjacency matrices

of G. Then | · |A1 = | · |A + | · |D1 = | · |A + | · |D2 + | · |D1−D2 = | · |A2 +C where C ∈ R is

constant as D1 −D2 is diagonal. Hence | · |A1 = h ◦ | · |A2 with h : x 4→ x+C. The same

argument applies if L1 = D1 + L and L2 = D2 + L are generalised Laplacian matrices

of G.

Finally, we compute | · |L1 = | · |L + | · |D1 = | · |D − | · |A + | · |D1 = −| · |A + C ′ for a

constant C ′ ∈ R and hence | · |L1 = h′ ◦ | · |L1 with h′ : x 4→ −x+ C ′.
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4 Spectral Separations

An order function should provide a way to rank separations according to their usefulness

for detecting meaningful structures in a dataset. Given any order function it is interest-

ing to ask how the most useful separations might look like, how we can find them and,

if this turns out to be difficult, if there is an easy way to approximate them. In this

section we want to discuss these questions for order functions given by real symmetric

matrices and want to motivate the use of spectral methods.

Spectral approaches in data analysis can be motivated in multiple ways. A nice discus-

sion, in particular about Spectral Clustering, can be found in [22]. We will look at the

topic mainly from an optimisation perspective.

4.1 Definitions and basic facts

In what follows we need some basic properties of eigenvalues and eigenvectors of sym-

metric matrices. We assume the reader already has basic knowledge but want to briefly

repeat the most important definitions and some basic facts. We will state all properties

without proofs, they can be found for example in [14] or [18].

Let M ∈ Rn×n be a matrix. A number λ ∈ R is an eigenvalue of M if there exists a

vector 0 ∕= f ∈ Rn solving the equation

(M − λI)f = 0

where I is the n × n-identity matrix. If such a vector exists, it is called an eigenvector

corresponding to the eigenvalue λ. An eigenvector f is not zero, hence the equation has

a solution if and only if the determinant of the matrix M − λI is zero. The polynomial

PM (λ) = det(M − λI)

of degree n is called characteristic polynomial of M . Every eigenvalue of M is a root

of the characteristic polynomial of M and therefore M can have at most n different

eigenvalues. The set of all different eigenvalues,

σ(M) := {λ ∈ R : PM (λ) = 0},
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is called the spectrum of M and the real number

ρ(M) := max
λ∈σ(M)

|λ|

is called the spectral radius of M .

If λ is an eigenvalue of M , we call the multiplicity of λ as a root of PM the algebraic

multiplicity of λ. The subspace

Eλ = {f ∈ Rn | (M − λI)f = 0}

of Rn is called eigenspace of λ and its dimensionality is called the geometric multiplicity

of λ.

In general, these two types of multiplicity need not necessarily be equal. But for symmet-

ric matrices they are, we therefore will talk simply about the multiplicity of an eigenvalue

of a symmetric matrix.

Symmetric matrices are very friendly matrices, we summarise some important properties

in a theorem we want to call the Spectral Theorem for symmetric matrices:

Theorem 4.1. Let M ∈ Rn×n be a symmetric matrix. If we count the eigenvalues of

M with multiplicity, then M has exactly n real eigenvalues λ1 ≤ · · · ≤ λn and there is

an an orthonormal basis of Rn consisting of the corresponding eigenvectors f1, . . . , fn.

The matrix M therefore is similar to a diagonal matrix Λ containing the eigenvalues of

M on the diagonal. This means

M = UΛU t

where U ∈ Rn×n is an orthogonal matrix that contains the eigenvectors f1, . . . , fn as

columns.

Every vector f ∈ Rn can be written as a linear combination of the orthonormal basis

vectors f1, . . . , fn with a vector a = (α1, . . . ,αn)
t ∈ R of coefficients given by

a = U tf

Hence, the matrix vector product Mf can be computed very intuitively by simply mul-

tiplying the coefficients by the eigenvalues

Mf = UΛU tf = UΛa =

n!

i=1

αiλifi
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If we write out the equation in theorem 4.1 a bit differently,

M = UΛU t =

n!

i=1

λifif
t
i

we can see that every symmetric matrix can be written as a linear combination of the

rank-one-matrices fif
t
i ∈ Rn×n weighted by the eigenvalues of M . Hence, we could

truncate the sum after a couple of terms to work with a low rank approximation of M .

Similarly, we can remove or alter some of the terms to create new matrices that still

contain parts of the original matrix’ information but differ in other aspects.

There is one small observation that might appear trivial but is of central importance for

our topic. Let λ ∕= 0 be an eigenvalue of M ∈ RV×V . Then the entries of a corresponding

eigenvector f ∈ RV are coupled by the equation Mf = λf . The equation for a single

component is
+
λ−M(v, v)

,
f(v) =

!

u ∕=v

M(v, u)f(u) (5)

In particular the coupling has consequences for the possible signs of the entries corre-

sponding to significant values M(u, v), this means values of large absolute value.

This is a bare minimum of eigenvalue theory we need repeatedly in the sequel. We will

see some more specialised results in places where they are used.

4.2 Matrix Order Optimisation

Let V be a finite set and M ∈ RV×V be a symmetric matrix. We assume that the matrix

order given by M takes large values on good partitions, so we are interested in a sepa-

ration s ∈ BV with maximal order |s|M 9. Our general goal is to solve the optimisation

problem

maximize
f ∈ {−1, 1}V

f tMf (6)

9There are no substantial differences for matrix order functions that are to be minimised. We want
to focus on the maximisation case because a lot of the needed classic matrix theory is about nonnegative
matrices and we want to minimise the situations where we artificially talk about the negation of our
matrix of interest.
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The optimisation problem (6) is a form of a quadratic unconstraint binary optimisation

problem (QUBO-problem 10) and very difficult to solve for general matrices [16]. But

for some special matrices the problem is very easy to solve. For example also in our case:

if we require non-negativity of all entries of M , then the vectors and − both produce

maximal solutions. We have seen above (section 3.6) that the diagonal of a matrix does

not play a role if we compare the matrix’s induced order of two separations. Hence, if

a matrix order is supermodular, the trivial bipartition {∅, V } has maximal order. Simi-

larly, if we were to minimise a submodular order function given by a symmetric matrix

with nonpositive off diagonal entries, the trivial bipartition has minimal order.

The trivial bipartition is usually not what we are interested in. We can avoid it as the

solution of (6) by adding a balancing term like in section 3.4, but, as we have seen, the

order function will then loose its supermodularity and the optimisation problem will

become difficult. The latter applies also if we use different constraints to enforce more

balanced solutions, for example if we optimise the RatioCut objective function for graph

cuts [22].

However, the potential difficulty should not discourage us from taking a further look

into the problem: often satisfying approximations to the optimal solution can be found

by applying suitable heuristics.

A particularly appealing heuristic is to relax the constraint forcing the solution to be a

bipartition indicator vector with entries in {−1, 1}. Dropping this constraint, the relaxed

optimisation problem reads

maximize
f ∈ RV

f tMf

subject to ‖f‖ = 1

(7)

where the length constraint is added to enforce the existence of a maximum.

This problem can be solved efficiently by computing the eigenvector corresponding to

the smallest eigenvalue of M . This follows from a slightly more general fact that we will

need often in what follows. These inequalities, or some variations of them, are sometimes

called Rayleigh’s Inequalities [14]:

Theorem 4.2. Let M ∈ Rn×n be a symmetric matrix and f1, . . . , fn an orthonormal ba-

sis of eigenvectors of M corresponding to eigenvalues λ1 ≤ · · · ≤ λn. Let I ⊆ {1, . . . , n}
10sometimes these problems are called unconstrained binary quadratic programming-problems, but the

acronym UBQP is much less appealing. Some authors switched to QUBO in a later paper [17]
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be a nonempty subset of indices and f ∈ span{fi | i ∈ I}. Then

λmin I ≤ f tMf

‖f‖2 ≤ λmax I

with equalities if and only if

f ∈ Eλmin I
∩ span{fi | i ∈ I}

or

f ∈ Eλmax I
∩ span{fi | i ∈ I}

respectively.

Proof. By the Spectral Theorem (4.1) we have M = UΛU t where U is an orthogonal

matrix containing the eigenvectors f1, . . . , fn as columns and Λ is a diagonal matrix with

diagonal entries λ1, . . . ,λn. Then f tMf = (U tf)tΛ(U tf) where (a1, . . . , an)
t := U tf is a

vector containing the coefficients of f written as a linear combination of the orthonormal

vectors f1, . . . , fn. Because f ∈ span{fi : i ∈ I} the coefficients ai for i /∈ I are zero. If

we set

bi :=
a2i/
j∈I a

2
j

for i ∈ I we have bi ≥ 0 for all i ∈ I and
/

i∈I bi = 1. Then the quotient

f tMf

‖f‖2 =

/
i∈I a

2
iλi/

i∈I a
2
i

=
!

i∈I
biλi

is a convex combination of the eigenvalues corresponding to indices in I and

λmin I =
!

i∈I
biλmin I ≤

!

i∈I
biλi ≤

!

i∈I
biλmax I = λmax I

is obvious. We have equality on the left if and only if all weights bi for indices i ∈ I

where λ1 > λmin are zero. This holds if and only if f ∈ Eλmin I
∩ span{fi | i ∈ I}. The

statement about equality on the right side follows similarly.

Well, the eigenvector corresponding to the largest eigenvalue solves our relaxed optimisa-

tion problem but a critical step is missing: We have to turn a solution into a bipartition

of V .

Every component of an eigenvector f ∈ RV of M corresponds to a data point v ∈ V , so
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the most straightforward way to transform the solution of (7) into an approximate solu-

tion of (6) is to interpret the signs of the eigenvector’s entries: We create a bipartition

(Bc, B) ∈ !BV by combining all v ∈ V with f(v) > 0 to the set B. This idea is simple

but is not at all clear that it makes any sense. We will try to justify this simple method

in the following sections. Before we start, we optimistically anticipate the definition of

our central notion:

Definition 4.3. Let M ∈ RV×V be a symmetric matrix and f ∈ RV an arbitrary

eigenvector of M . Any separation !s ∈ !SV that is derived from f is called a spectral

separation. If !s = (Bc, B) with B = {v ∈ V | f(v) > 0} we say that !s is the canonical

spectral separation of f . If the eigenvalues of M are sorted and the eigenvalue belonging

to f appears in the k-th position, we say that !s is of rank k.

Please note that this is a definition of a class of separations. There are multiple reason-

able ways to derive a bipartition from an eigenvector. We will see some of them later

but want to have a strong focus on canonical spectral separations. If the term ‘spectral

separation‘ is used without further specification, we mostly mean ‘canonical spectral

separations‘.

Please note also, that the rank of a spectral separation depends on a sorting that is not

specified in the definition. There are situations where we want to sort the eigenvalues

ascending and in other situations descending. Moreover, we have to be careful with the

rank if we have eigenvalues of multiplicity greater than one. In this case we have multi-

ple canonical spectral separations with the same rank that are not inverses of each other.

We start with a few fundamental observations that follow immediately from the orthog-

onality of eigenvectors. We are interested in the signs of the eigenvectors’ entries; if

f ∈ RV is an eigenvector of M then so is −f , therefore we can simplify the statements

by following the convention that an eigenvector where all nonzero entries have the same

sign is scaled such that all nonzero entries are positive.

Proposition 4.4. Let V be a finite set, |V | = n, and M ∈ RV×V a symmetric matrix.

Let f1, . . . , fn be an orthonormal set of eigenvectors of M . Then

(i) there is at most one 1 ≤ i ≤ n such that fi(v) > 0 for all v ∈ V

(ii) if there are 1 ≤ i < j ≤ n such that fi(v) ≥ 0 and fj(v) ≥ 0 for all v ∈ V then the

sets {v ∈ V |fi(v) > 0} and {v ∈ V |fj(v) > 0} are disjoint.
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The proposition does not yet tell us much about the usefulness of spectral separations,

but it serves as a first sanity check:

If an orthonormal eigenvector basis of RV contains an eigenvector giving rise to the

trivial canonical spectral separation, it is the only one with this property.

If there are multiple eigenvectors that do not contain entries of both signs, then each

one of them contains information about a set of data points disjoint from the support

of the others. We will see that this happens in particular easy situations where each of

these vectors induces an optimal bipartition of V in a quite trivial way.

4.3 Supermodular Order Functions, Perron-Frobenius and Essential

Positivity

Let M ∈ RV×V be a matrix that induces a supermodular order function | · |M . Then the

trivial bipartition (∅, V ) has optimal order, so a solution of the optimisation problem

(6) will not help us to find good bipartitions. We have to add an additional constraint.

Proposition 4.4, together with Rayleigh’s Inequalities 4.2, provides an elegant way to

find approximate optimal bipartitions regarding supermodular (or submodular) matrix

order functions. To see how and why, we need some more notions and a powerful theo-

rem from Linear Algebra, the Perron-Frobenius-Theorem about nonnegative matrices.

A matrix M ∈ RV×V is called reducible if there exists a permutation matrix P such that

P tMP =

$
X Y

0 Z

%
(8)

where X ∕= 0 and Z ∕= 0 are square matrices [18]. If this is not the case, M is called

irreducible.

Multiplying M by P t and P results in a simultaneous reordering of rows and columns,

hence the symmetry is preserved. Therefore a symmetric matrix M is reducible if we find

a permutation matrix such that P tMP is block-diagonal (with more than one block),

this means Y = 0 in (8). Intuitively, a symmetric nonnegative matrix M is irreducible

if and only if the graph with adjacency matrix M is connected.

35



Theorem 4.5 (Perron-Frobenius-Theorem). Let M ∈ RV×V be a nonnegative, irre-

ducible matrix. Then ρ(M) is an eigenvalue of M with algebraic multiplicity one and

there is a corresponding eigenvector f ∈ RV with f(v) > 0 for all v ∈ V .

A proof of the theorem can be found for example in [18]. The unique vector p ∈ RV

with Mp = ρ(M)p and ‖p‖1 = 1 is called the Perron-vector of M .

If an irreducible matrix M ∈ RV×V induces a supermodular order function, all its

off-diagonal entries are nonnegative. Then there is an everywhere nonnegative matrix

M ′ = M +D with D ∈ RV×V diagonal that induces an order preserving transformation

|·|M ′ of |·|M . The matrixM ′ clearly still is irreducible and symmetric. The Perron-vector

pM ′ of M ′ induces the trivial bipartition (∅, V ) and every eigenvector corresponding to a

different eigenvalue than ρ(M) is orthogonal to pM ′ and hence must have both positive

and negative entries. It therefore induces a nontrivial bipartition of V . In particular,

the unit length eigenvector corresponding to the second largest eigenvalue is an optimal

solution of (7) for the matrix M ′ with the additional constraint that the solution must

be orthogonal to pM ′ .

We can transfer this optimsation directly to matrices inducing supermodular order func-

tions without explicitly creating a new order function. The important parts of the

Perron-Frobenius Theorem can be generalised to matrices that have negative entries on

the diagonal.

An irreducible matrix with nonnegative off-diagonal elements is called essentially positive

[18]:

Definition 4.6. Let M ∈ RV×V be a symmetric matrix. If M(u, v) > 0 for all u ∕= v ∈
V , we call M essentially positive.

Any essentially positive matrix has an eigenvector where all entries are positive:

Proposition 4.7. Let M ∈ RV×V be essentially positive and symmetric. Then the

multiplicity of the largest eigenvalue λmax of M is one and there exists a corresponding

eigenvector f ∈ RV where all entries are positive.

Proof. Because M is essentially positive, there is α ∈ R such that M ′ := M + αI is

nonnegative, irreducible and symmetric. By the Perron-Frobenius Theorem there is a

positive eigenvector p of M ′ corresponding to the maximal eigenvalue λmax = ρ(M ′).

Then Mp = (M ′ − αI)p = λmaxp− αp = (λmax − α)p, so p is an eigenvector of M with

eigenvalue λmax − α. The multiplicity of λmax as an eigenvalue of M ′ is one and hence
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the multiplicity of λmax − α as an eigenvalue of M .

If λ is any other eigenvalue of M , then it is a real number because of the symmetry and

λ+α is an eigenvalue of M ′ since M ′f = (M+αI)f = (λ+α)f . Therefore λ+α < λmax

and hence λmax − α is a maximal eigenvalue of M .

If the vector f in the proposition sums to one, i.e. |f |1 = 1, we call f the Perron-vector

of M , similar to the nonnegative case.

If a symmetric and off-diagonal nonnegative matrix M is reducible, it makes sense to

analyse the blocks separately:

Proposition 4.8. Let M ∈ RV×V be a symmetric and reducible matrix with nonnegative

off-diagonal entries. Then there is a partition V =
0k

i=1 Vi in sets of sizes |Vi| = ki > 0,
/k

i=1 ki = |V |, and an orthonormal set of eigenvectors of M

B := {fiji ∈ RV | 1 ≤ i ≤ k, 1 ≤ ji ≤ ki},

such that

(i) the matrices M |Vi×Vi are irreducible for 1 ≤ i ≤ k

(ii) fiji |V \Vi
= 0 for 1 ≤ i ≤ k, 1 ≤ ji ≤ ki

(iii) for each 1 ≤ i ≤ k exactly one of the eigenvectors in B is positive on Vi and the

corresponding eigenvalue is the maximal eigenvalue of M |Vi×Vi

Proof. As M is reducible there is a permutation matrix P such that P tMP is blockdi-

agonal with k > 1 blocks. We can assume that P is chosen so that k is maximal. Let

V1 . . . , Vk ⊂ V be subsets of V corresponding to the blocks. Then clearly V =
0k

i=1 Vi

is a partition of V .

Let the i-th block be Mi := M |Vi×Vi ∈ RVi×Vi and ki = |Vi| for 1 ≤ i ≤ k. Since k is

maximal, each block Mi is irreducible, otherwise we could find a second permutation

matrix P2 such that P t
2P

tMPP2 has more than k blocks. So the first statement holds.

The other statements follow directly from the irreducibility of the matrices Mi for all

1 ≤ i ≤ k: If giji ∈ RVi is an eigenvector of Mi with eigenvalue λijI , then fiji ∈ RV with

fiji |Vi = giji and fiji |V \Vi
= 0 is an eigenvector of M with the same eigenvalue. this is

the second statement, the third then follows from proposition 4.7 for the matrix Mi.
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As seen in the proof, the spectrum of a blockdiagonal matrix is the union of the spectra

of the blocks, so if the spectra of the blocks are disjoint, all orthogonal sets of eigen-

vectors have the form given in the proposition. If the spectra intersect, there might be

a different set of orthogonal eigenvectors that are nonzero on multiple Vi’s at the same

time - in this case an eigenspace might arise from multiple blocks.

If the matrix M is reducible, there are pairwise disjoint subsets V1, . . . , Vk ⊂ V that are

kind of independent from each other. By equation (2), the order | · |M does not change if

one or multiple of the sets Vi change sides as a whole. Therefore every bipartition that

does not cut through one of the Vi’s has maximal order or, in other words, the order of

a bipartition is only determined by the sets Vi that are split.

We summarise the results in the words of matrix orders and bipartitions:

Corollary 4.9. Let M ∈ RV×V be a symmetric matrix inducing a supermoduler matrix

order function | · |M .

(i) If M is irreducible, then the trivial bipartition {∅, V } is a canonical spectral separa-

tion of the Perron-vector of M and has maximal order | · |M . The order of all other

bipartitions is strictly smaller. The canonical spectral separation of an eigenvector

of the second largest eigenvalue of M is an approximation to the optimal nontrivial

bipartition according to | · |M .

(ii) If M is reducible, then there are multiple nontrivial bipartitions of maximal order

| · |M . Each one is a canonical spectral separation of a suitable eigenvector of M .

4.4 Importance and Orthogonality

In this section we want to give an heuristic interpretation of the information contained

in eigenvectors and discuss some consequences of their orthogonality.

The absolute values of an eigenvector’s entries can be interpreted as weights of the data

points in V . Let A ∈ RV×V be an essentially positive matrix and let p ∈ RV be its

Perron-vector. For every v ∈ V the (positive) value p(v) is called eigenvector centrality

of v .
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Eigenvector centrality is a widely used measure of the importance of nodes in networks

or the influence a node has on other nodes in a network [20]. It measures the importance

of each data point v ∈ V by evaluating the relations to other data points given by A.

What is interesting about eigenvector centrality is that it takes the importances of closely

related data points into account. A data point has a high score if it is closely related to

other points that themselves have a high score. The score of each v therefore depends

not only on local relations of v but takes the global structure given by the matrix A on

V into account 11.

Let now f ∈ RV be another eigenvector of A. Then f is orthogonal to p and we can try

to extend the interpretation of the values |f(v)| for v ∈ V as importances of the data

points. If we create the canonical spectral separation of f , the signs of f ’s entries deter-

mine the side a data point belongs to and the absolute value of an entry can similarly

be interpreted as some kind of centrality inside the partition’s side. The coupling of the

eigenvector entries given by equation (5) in section 4.1 has the effect that also inside

each side heavily weighted data points have strong relations to other heavily weighted

data points with the same sign. If A is an adjacency matrix, this means the weights of a

positively weighted vertex’ neighbours are mostly positive. This suggests that canonical

spectral separations corresponding to positive eigenvalues tend to cut through bottle-

necks of the graph, at least if the weighting is taken into account.

The orthogonality has the effect that the ‘total importance‘ on each side sums to the same

value, where each data point v’s contribution |f(v)| to a side is additionally weighted

by the a-priori centrality given by the Perron-vector. Hence every spectral separation of

such a matrix is balanced, in the sense of a centrality related importance 12.

The interpretation of the absolute values of an eigenvector’s entries as some kind impor-

tance weighting of V is quite interesting in connection with the equivalence defined by

order preserving transformations. We have seen that two matrix order functions given

by matrices only differing on the diagonal induce the same quasi-order on !BV . If we

are only interested in this induced quasi-order, we can change the diagonal of a matrix

arbitrarily. Then the eigenvectors (and eigenvalues) certainly change and, in particular,

the eigenvector centralities change. We therefore can influence the importance of the

vertices and hence the spectral separations without changing the effect of the associated

11A variant of eigenvector centrality is one of the central building blocks of the page rank algorithm
[21], a search result ranking algorithm that revolutionised web search.

12Please note that we cannot conclude that a spectral separation necessarily is balanced in any other
sense: There are extremely unbalanced examples of spectral separations. Usually this is a result of a
very special structural feature of the data, for example extreme outliers.
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order function on !BV . On the one hand this emphasises the heuristic and possibly sub-

optimal nature of spectral separations in general, on the other hand it might provide a

tool to influence the results of the spectral approach in an advantageous way.

Any symmetric matrix A ∈ RV×V associated with a data set V induces a structure

on V by interpreting its entries as similarities or dissimilarities, depending on the data

model one primarily started with. The orthogonality has the effect that eigenvectors

tend to oscillate over this induced structure. Like the basis vectors of the discrete

fourier transform (DFT) 13 , they are orthogonal to each other and hence we can assume

that each eigenvector captures a different aspect of the data that is uncorrelated to all

other aspects. This makes them especially suitable for divisive data analysis techniques

utilising combined partitioning information from multiple levels, like for example tangle-

analysis. Moreover, by Rayleigh’s Inequalities (theorem 4.2) the k-th eigenvector 14 is an

optimal solution to the relaxed optimisation problem (7) under the additional constraint

that the solution should be orthogonal to the space spanned by all previous eigenvectors.

This means, heuristically, if the first k−1 eigenvectors capture the k−1 most important

aspects of the data, then the k-th eigenvector describes the most important aspect

that is still missing. In different words, a rank-k-spectral separation can be seen as a

simultaneous refinement of all rank-(< k)-spectral separations at once. By orthogonality,

at least one of the sides of each previous separation is split further. On real data, pairs of

nested spectral separations, this means where only one side is split further, are very rare.

It is not at all easy to randomly create a nonnegative matrix of medium size where such a

pair can be found within a reasonable number of the first canonical spectral separations.

The fact that spectral separations tend to cross makes them powerful generators of

separation universes.

Theorem 4.10. Let M ∈ RV×V be a symmetric matrix. Then there is a set of canonical

spectral separations that generates the whole universe of bipartitions BV over V .

Proof. Let U be a matrix that has the eigenvectors of M as columns and S ⊆ BV the set

of canonical spectral separations derived from the columns of U . Since the columns of

U are orthonormal, U is an orthogonal matrix and hence the rows also are orthonormal.

We can think of the rows of U being indexed by elements of V and the columns by

elements of S, so U ∈ RV×S . Then column s of U is the eigenvector that induces one of

13... which are closely related to the Laplacian eigenvectors of cycle graphs [10]
14The sorting of the eigenvalues and eigenvectors can be either ascending or descending - we reference

it by the rank of the induced spectral separation for simplicity.
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the orientations !s or !s of s. We denote the rows by rv for v ∈ V and their components

by rv(s) for s ∈ S.

We show, that every two data points u, v ∈ V, u ∕= v can be separated by a canonical

spectral separation of one of U ’s columns. The theorem then follows with proposition

2.1.

A small difficulty arises because exactly one of the sides of every separation includes

entries equal to 0. We start with an easy case and afterwards show that in the more

difficult situation we can negate some of the eigenvectors and are in the easy case.

Let us assume, that U does not contain two nonpositive rows, that’s the easy case.

Let u, v ∈ V be two arbitrary data points. Then u and v are on different sides of a

separation s ∈ S if and only if either ru(s)rv(s) < 0 or ru(s)rv(s) = 0 and one of the

values ru(s), rv(s) is strictly positive.

Let s ∈ S be a spectral separation such that ru(s) > 0 or rv(s) > 0. Such a row

must exist because U has at most one nonpositive row. We can assume ru(s)rv(s) > 0

otherwise u and v are already separated by s. The rows ru and rv are orthogonal and

hence there must be t ∈ S, such that ru(t)rv(t) < 0. This t separates u and v.

We now assume, that there are multiple nonpositive rows in U . The matrix U has

full rank and hence cannot contain a row that is completely zero. Therefore we find a

column of U where one of the rows is negative. We replace this column by its negation.

The negation of the column is still an eigenvector and at least one of the nonpositive

rows has a positive entry in this position, i.e. its data point can be separated from the

other nonpositive rows. If the new matrix still contains multiple nonpositive rows, we

repeat the operation but take care, that we never negate the same column twice. Then

no formerly nonpositive row will turn nonpositive a second time and therefore we stop

after maximally n− 1 steps.

It remains to show that we can always find a column that was not negated before. Let

us assume this is not the case. Let ru be a nonpositive row of U where every negative

entry belongs to a column that was already negated in an earlier step. Let s be the

separation of such a column. Every already negated column contains a positive entry,

so there is another row rv such that ru(s)rv(s) < 0 and by orthogonality of ru and rv

both rows must contain a positive entry somewhere. This is a contradiction.

This result might not be that impressive, even if we had to clear a hurdle mounted by our

simple thresholding process. Please note that by proposition 4.8 the more difficult case

in the proof can only happen for matrices that induce order functions that are neither
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Figure 3: Number of (adjacency) spectral separations needed to generate the whole
universe of bipartitions of different random graphs on 1000 vertices.

super- nor submodular.

For real data usually much less spectral separations are needed to generate the uni-

verse. Figure 3 shows empirically results obtained from experiments on different types

of random graphs. Every figure was generated by sampling 1000 random graphs on 1000

vertices and counting how much canonical separations of the graphs adjecency matrix

are needed to generate the complete universe !BV . The graphs were created as randomly

interconnected unions of random graphs to avoid results biased towards graphs without

clear structure, on the left each cluster is an Erdös-Renyi random graph on the right

random graphs with a powerlaw degree distribution. The graphs in the top row were

composed of three, in the bottom row of six clusters. The numbers look quite stable,

the mean number of spectral bipartitions needed to generate !BV seems to be larger if

the graph has more structure.

The generating power of spectral separation sounds like a nice property. On real data we

typically need only very few canonical spectral separations to separate arbitrary subsets

from their complement. If our order function is reasonable and if we have a tractable way

to generate ‘good‘ suprema and infima, spectral separations theoretically allow to solve

every thinkable partitioning problem 15. However, unfortunately this property is not

without drawbacks. To be able to generate the whole universe of bipartitions out of only

a small number of bipartitions, these bipartitions must contain global information. This

15Clearly, the method is not a ‘silver bullet‘: Finding a systematic way to generate exactly the right
infima and suprema for the problem at hand can be expected to be difficult...
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means, an orientation of such a bipartition might point to multiple substructures that

are internally strongly connected but completely unrelated among each other. Again the

analogy to the DFT-basis vectors might help our intuition: The DFT-basis-vectors are

not localised in time, the eigenvectors of a matrix are not localised in the structure on

V that is induced by the matrix. As a consequence, one usually has to extract local in-

formation from the canonical spectral separations in practice. We will see an important

example in the next section.

4.5 Spectral Separations of Graph Laplacians

Everything we have seen about nonnegative matrices clearly applies to order functions

based on the adjacency matrix of a graph 16. We already mentioned that we can arbi-

trarily change the diagonal of a matrix without changing the quasi-order induced by the

corresponding matrix order function on V . Let us use this fact and remove the a-priori

weighting of the vertices given by the Perron-vector of a graph’s adjacency matrix:

Let G = (V,E) be a connected graph and A ∈ RV×V its adjacency matrix. Then A

is irreducible and the entries of the Perron-vector p of A define weights of the vertices

in V called eigenvector centrality. Despite the usefulness of the concept of eigenvector

centrality, we might be interested in spectral separations that treat all vertices equally,

at least a-priori. This means, we want a matrix Â that has the same off-diagonal el-

ements like A but has ∈ RV as an eigenvector of the largest eigenvalue. We define

Â := A−D, where D is the diagonal matrix containing the degrees of the vertices. Then

D contains the sums of A’s rows and therefore every row of Â sums to zero. Hence,

is an eigenvector of Â with corresponding eigenvalue 0. We changed only the diagonal,

so A′ is still essentially positive and by (4.7) eigenvectors corresponding to the maximal

eigenvalue are the only ones where all entries are positive. We conclude, that 0 is the

biggest eigenvalue of Â, and hence Â is negative semidefinite.

We have seen the negation of this matrix before, it is the (combinatorial) Laplacian

L = −Â of G. As | · |L is an order reversing transformation of | · |Â we found an equiv-

alent matrix where we ’balanced out’ the global eigenvector centrality in Â by adding

appropriate negative loops to G. The matrices Â and L = −Â have the same eigenvec-

tors, this means, every other eigenvector of L can be chosen orthogonal to and the

sum of the absolute values of the entries on each side of the induced canonical spectral

separation sum to the same value. Only the weights (or the centralities) of the vertices

16... or a graph with non-negatively weighted edges. For simplicity, we will focus on unweighted
graphs. All results can be generalised in a straight forward way to graphs with weighted edges.
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inside the sides are taken into account.

The Laplacian L = L(G) is historically tightly related to the connectivity of a graph G.

It might all have started with Fiedler calling the second smallest eigenvalue λ2 of L the

algebraic connectivity of G [12]. He showed that

0 ≤ λ2 ≤ κ(G)

where κ(G) is the vertex connectivity of G and, if fi ∈ RV denotes an eigenvector

corresponding to the i-th smallest eigenvalue, i ≥ 2 of L, that the subgraph G[V +(fi)]

with

V +(fi) := {v ∈ V | fi(v) ≥ 0}

does not have more than i − 1 connected components [13] 17. This leads us to an

important notion, the Nodal Domains of a vector according to a graph [1].

Definition 4.11. Let G = (V,E) be a connected graph and f ∈ RV . A positive

(negative) strong nodal domain of f is a maximal connected subgraph of G on vertices

v ∈ V with f(v) > 0 (f(v) < 0). A positive (negative) weak nodal domain of f is a

maximal connected subgraph of G on vertices v ∈ V with f(v) ≥ 0 (f(v) ≤ 0) that

contains at least one nonzero vertex.

The total number of positive and negative strong nodal domains is denoted by S(f),

the total number of positive and negative weak nodal domains by W(f).

Using this definition, Fiedler’s result can be stated

W(fi) ≤ 2(i− 1)

The inequality was generalised and improved afterwards. An important theorem is

known as the Discrete Nodal Domain Theorem. A proof can be found in [1].

Theorem 4.12 (Discrete Nodal Theorem). Let M be a generalised Laplacian of a con-

nected graph G = (V,E) with |V | = n. Let λ1 ≤ · · · ≤ λn be the eigenvalues of M . If λi

has multiplicity r, then any eigenvector fi corresponding to λi has at most i weak nodal

domains and at most i+ r − 1 strong nodal domains:

W(fi) ≤ i and S(fi) ≤ i+ r − 1

17If f is an eigenvector of λ2 so is −f , hence the same statement applies to V −(fi) := {v ∈ V | fi(v) ≤
0}
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The generality of the nodal domain theorem allows to write a similar statement about

the eigenvectors of an adjacency matrix as a simple corollary. Historically, though, this

special case might have been proved earlier [1].

Corollary 4.13. Let G = (V,E) be connected graph on |V | = n vertices and A ∈ RV×V

its adjacency matrix. Let λ1 ≤ · · · ≤ λn be the eigenvalues of A and f1, . . . , fn a

corresponding orthonormal set of eigenvectors. Let ri ∈ N be the multiplicity of λi.

Then

W(fi) ≤ n− i+ 1 and S(fi) ≤ n− (i+ r)

Proof. The matrix −A is a generalised laplacian of G. The eigenvalues of −A are

−λn ≤ · · · ≤ −λ1 and fn, . . . , f1 corresponding eigenvectors.

The bounds in theorem 4.12 are unfortunately not sharp. If a lower bound exist, it only

applies to special types of graphs, for example paths [1]. Nevertheless, it helps us to get

an idea of the interactions of different eigenvectors and their spectral separations.

We already have mentioned the ‘oscillation‘-like property of the eigenvectors, the nodal

domain theorem now provides something like an upper bound on something that we

want loosely describe as something like a ‘frequency’ of an eigenvector.

Let G = (V,E) be a connected graph and f ∈ RV a vector. Let D1, D2 ⊂ V be different

nodal domains of f in G. We call D1 and D2 adjacent if there is u ∈ D1, v ∈ D2

such that u is a neighbour of v in G. Obviously, two adjacent nodal domains must have

different sign. If D1, D2 are weak nodal domains they do not have to be disjoint. If their

intersection is not empty, then for all v ∈ D1∩D2 we have f(v) = 0. We can picture the

’frequency’-like property of the eigenvectors of a laplacian 18 L of G in the following way:

We assume, that all eigenvalues have multiplicity one. Let λ1 < · · · < λn be the eigen-

values of L corresponding to orthogonal eigenvectors f1, . . . , fn. The first eigenvector

f1 has exactly one nodal domain given by all of G. The second eigenvector f2 must

be orthogonal to the first, so there are exactly two nodal domains, one positive and

one negative. Hence, intuitively stretching the analogy to periodic functions, we can

imagine f2 as a function that takes a full period about the full data set, i.e. one with

a frequency of 1 over the whole graph. Any eigenvector fi for i > 2 has also at least

two nodal domains - for the same reason as f2 - but it might have more. The picture

18or, by the corollary, the adjacency matrix in reversed order
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Figure 4: The first four canonical spectral separations of a ε-neighborhood graph of
points in R2. Two points are connected if their distance is smaller than a threshold ε.

extends to this case naturally, the graph is split by fi into adjacent nodal domains of

different sign. Of course, the analogy to one dimensional periodic functions does usually

not work anymore, but the ‘oscillation‘-like property of higher eigenvectors can be visu-

alised very intuitively for graphs that are embedded into R2. Figure 4 shows an example.

We mentioned above that the orthogonality of eigenvectors can have the effect that

spectral separations contain nonlocal information. This means, canonical laplacian sep-

arations of higher rank tend to contain global information about the structure of a graph.

The unions of nodal domains with equal sign, i.e. a side of the canonical spectral separa-

tion, might be scattered all over the graph. This is most probably not what we want if

we search guseful bipartitions of a graph. Nevertheless, they contain a lot of information

that can be used to derive more local separations.

Nodal domains provide a way to extract local information from canonical spectral sep-

arations, we therefore define a special type of spectral separation.

Definition 4.14. Let G = (V,E) be a graph and f ∈ RV a vector with (weak or strong)

nodal domains D1, . . . , Dk on G. Then the bipartitions

(Dc
1, D1), . . . , (D

c
k, Dk) ∈ !SV

are called nodal domain separations of G induced by f .

Using this definition, we can describe the non-locality of a higher rank canonical spectral

separation induced from a (laplacian) eigenvector more exactly: The orientation point-

ing to the positive side arises as the infimum of the nodal domain separations induced

by the positive strong nodal domains of fk. A canonical spectral separation of a graph
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can therefore be seen as a composition of appropriate local separations that point to

strongly connected subgraphs of G.

4.6 Principal Separations

So far we have mainly focused on sub- or supermodular matrix order functions, this

means order functions given by offdiagonal-nonpositive or offdiagonal-nonnegative ma-

trices. For matrices with mixed signs outside the diagonal the situation is a bit more

involved because we cannot rely on the Perron-Frobenius theorem or one of its variations.

In this section we want to have a look at another matrix type that arises very naturally if

our data points are given as elements of the euclidean vector space Rk. Then a canonical

measure of similarity between two vectors u, v ∈ Rk is the inner product 〈u, v〉 = utv and

the matrix containing the dot products of all pairs serves as a very natural similarity

matrix.

Let V = {v1, . . . , vn} be a set of objects and Q = {q1, . . . , qk} a set of attributes or

features. We think of the attributes as functions qi : V → R that map each object to its

attribute value and combine all these attribute values in a data matrix

M =

1

223

q1(v1) . . . qk(v1)
...

. . .

q1(vn) qk(vn)

4

556 ∈ RV×Q

We assume that the data set is centred around zero, this means
/

v∈V q(v) = 0 for all

q ∈ Q. It will simplify the notation if we identify V ⊂ Rk by its embedding in Rk induced

by Q, in particular we associate v ∈ V with its feature vector
+
q1(v), . . . , qk(v)

,t
. Then

the attributes in Q are projections onto the coordinate axes, qi : (q1(v), . . . , qk(v) 4→ qi(v)

for 1 ≤ i ≤ k. In this section we are interested in the order function | · |K defined by the

matrix

K = MM t ∈ RV×V

Then K(u, v) = utv is the dot product between the feature vectors of u ∈ V and v ∈ V

and we can interpret it as the correlation of the feature values of u and v. The order

function | · |K take a large value for a bipartition s ∈ BV if data points on the same

side of s are positively correlated and points on different sides are negatively correlated.

The order function induced by K is very similar to the cosine similarity but without
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normalising the length of the feature vectors of u and v.

The matrix K is symmetric, hence it has real eigenvalues and according to Rayleigh’s

inequality (4.2) the solution of the relaxed problem (7) is the largest eigenvalue of K

achieved by a corresponding eigenvector.

Rayleigh’s inequality applies to arbitrary real symmetric matrices but here we are more

interested in the special case where the matrix K comes as a product of a data ma-

trix and its transpose. In this case, we can say a bit more about the solution of the

relaxed optimisation problem by decomposing the matrix M into a product of the ma-

trices MM t, D and M tM where D is a diagonal matrix. This decomposition is called

Singular Value Decomposition (SVD) [2] and one of its important uses in data analysis

is a technique called Principal Component Analysis (PCA). We call canonical spectral

separations derived from eigenvectors of the matrix K = MM t the principal separations

of the data matrix M .

To better understand PCA and principal separations, we informally model each of our

features in Q as a random variable and interpret the rows of M as results of an i.i.d

sampling process from the unknown joint distribution of the attributes q1, . . . , qk. Each

one dimensional subspace of Rk can be associated with an attribute of our data points.

In particular, we can associate the one dimensional subspaces spanned by the standard

unit basis vectors with the original attributes q1, . . . , qk and the projection of the data to

these subspaces reveal the columns of the matrix M . The subspaces spanned by other

unit vectors can be interpreted as derived attributes. Each derived attribute arises as a

linear combination of the original attributes. The goal of PCA is to find a new basis of

this space and thereby a new representation of the data with some favourable properties.

The first property we want our new basis to have is that the associated derived attributes

are uncorrelated, in the sense that there is no linear (or monotone) relationship between

values of different attributes, the second is that most of the information the data set

contains should be concentrated in the subspace spanned by the first few of the new

basis vectors. Both of these properties can be very useful. The first allows us to ’whiten’

the data, i.e. to remove linear dependencies between the attributes, the second can be

used to reduce the dimensionality of the data while preserving most of the information.

We will look at these properties in more detail, but let us first go back to where we

started and find out, what this has to do with the solution to our relaxed optimisation

problem stated in (7).

The descition of principal component analysis in this section primarily follows [2].
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4.6.1 The first principal component

Suppose we want to reduce the dimensionality of our data most aggressively by project-

ing all data points to a single one dimensional subspace of Rk while keeping as much

information as possible. This means, we want to introduce a single new derived attribute

that describes our data as good as possible.

There are a lot of ways to quantify the information that is kept or lost in such a di-

mensionality reduction process, in PCA we focus on two very obvious notions that turn

out to be two sides of the same coin: the variance of the derived attribute and the least

square error of the projection.

Let q ∈ Rn be a vector of observed attribute values, for example a column of M . Then an

estimate of the attribute’s variance is Var(q) = 1
nq

tq = 1
n‖q‖

2, assuming the attribute has

zero mean19. If w ∈ Rk is a derived attribute, its variance is Var(Mw) ∝ wtM tMw and

maximal, by Rayleigh’s Inequality, if w is an eigenvector corresponding to the largest

eigenvalue of the symmetric matrix M tM . Interestingly, maximising the variance is

equivalent to minimising the least squared distance of the data to the subspace spanned

by w. This follows directly from Pythagoras’ Theorem: For a single point v ∈ V , i.e. a

row of M , we have

|〈w, v〉|2 = ‖v‖2 − ‖v − 〈w, v〉w‖2

and as ‖v‖2 is constant, the left side is maximal if the minuend on the right side, that

is the squared distance from v to its projection on the space spanned by w, is minimal.

Summing over all rows of M shows the correspondence:

Var(Mw) ∝ (Mw)tMw =
!

v∈V
|〈w, v〉|2 =

!

v∈V
‖v‖2 −

!

v∈V
‖v − 〈w, v〉w‖2

4.6.2 The eigenvectors of MM t and M tM

We are actually interested in the vector f ∈ Rn that solves the relaxed optimisation

problem (7), that is the unit vector that maximises f tKf = f tMM tf . We already

know, that f must be an eigenvector of MM t corresponding to the largest eigenvalue.

19 If we explicitely centred the data, an unbiased estimate would be 1
n−1

qtq but this does not make
a difference for our purpose. We are interested in maximising the estimated variance and can happily
ignore any constant factors.
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The spectra of MM t and M tM are closely related: Let w ∈ Rk and λ ∈ R, then

M tMw = λv ⇒ MM t(Mw) = λ(Mw)

and in the other direction, if f ∈ Rn we have

MM tf = λf ⇒ M tM(M tf) = λ(M tf)

Hence, MM t and M tM have the same nonzero eigenvalues and there is a one to one

correspondence between the associated eigenvectors20.

Summing up, we can interpret a solution to the relaxed optimisation problem as follows.

If f ∈ Rn is a unit vector maximising f tMM tf then there is a vector w ∈ Rk such that

f = Mw and wtM tMw is maximal. Please note that different to the discussion above,

here w is usually not a unit vector.21 The vector w spans a one dimensional subspace

of Rk that can be associated with a derived attribute containing the most information

about the data a single linearly derived attribute can. The components of the vector f

are the values the new attribute takes on the elements of V and the rows of the matrix

fwt ∈ Rn×k are least square approximations to the data points within the subspace

spanned by w. The vector w
‖w‖ is called the first principal component of M .

The first principal separation then splits the data according to the sign of f . In other

words, we project the data onto the first principal component w and split the data set

at the mean of this new derived attribute. This semantically makes sense: We found the

best way to characterise the data by a linear combination of all attributes and use this

information to decide where to split the data set in roughly balanced subsets.

4.6.3 Principal Component Analysis

The one dimensional case can be extended to higher dimensional subspaces. In the

previous section we found the direction in Rk where the data has the largest variance

and called it the first principal component. To extend the definition, we write the first

20One of the matrices M tM and MM t might be bigger than the other. The spectrum of the bigger
matrix is filled up with zeros

21w already contains a scaling factor needed to reconstruct the data, we will come back to this point
later in the section about SVD
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principal component in the following form

w1 := argmax
‖w‖=1,

‖Mw‖2

and define the remaining principal components inductively as the directions of maxi-

mal variance in the orthogonal complement of the subspace spanned by the previous

components

wj+1 := argmax
‖w‖=1,

w⊥w1,...,wj

‖Mw‖2

for 1 ≤ j < k. Again, Rayleigh’s inequality confirms that w1, . . . , wk are eigenvectors

corresponding to the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λk of the matrix M tM .

Despite a generally pleasing aspect and a nice match with properties of the eigenvectors,

the orthogonality constraint might look somehow arbitrary on the first view. That’s not

the case, in contrary, this emerges quite naturally if we construct the principal com-

ponents one after the other: Assuming we have already found the first j − 1 principal

components, the j-th principal component wj is the direction of largest variance of the

matrix Mj := M −
/j−1

i=1 Mwiw
t
i . This matrix contains the remaining information that

is not already described by the first j− 1 principal components. It sends the whole sub-

space spanned by w1, . . . , wj−1 to zero and behaves exactly like M on the complement,

so wj becomes the largest eigenvector of M t
jMj , i.e. the first principal component of Mj .

If V is a linear vector space and U ⊆ V is a linear subspace, we write U ≤ V and denote

the projection of v ∈ V to U as

prU (v) :=

l!

i=1

〈v, bi〉bi,

if b1, . . . , bl ∈ V is a basis of U .

We call U a least squares fit subspace to a set of points p1, . . . , pn ⊆ Rk, if the average

squared distance between the points and their projections to U is minimal, i.e. if

1

n

n!

i=1

‖pi − prU (pi)‖2

is minimal. With these definitions we are ready to state the most important fact about

principal components: The least square property of the first principal component also
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extends to higher dimensional subspaces.

Theorem 4.15. Let M ∈ Rn×k a matrix containing data points v1, . . . , vn ∈ Rk as

rows. Let w1, . . . , wk an orthonormal family of eigenvectors of M tM corresponding to

eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λk. Then for each 1 ≤ l ≤ k the subspace Wl ≤ Rk spanned

by w1, . . . , wl is a least square fit subspace to v1, . . . , vn.

A proof can be found in [2].

Principal component analysis might serve the intuition about how a spectral separation

of rank k > 1 refines the sides of spectral separations of rank < k. The first princi-

pal separation provides the best split of the data along the axis of maximal variance.

Every additional principal separation then refines the previous splits utilising a derived

attribute that is uncorrelated to all derived attributes before and contains the most in-

formation, in the sense of variance, that was not already used for an earlier split. Hence,

every principal separations should be used in combination with the lower rank separa-

tions, for example by building corners or by using a more specialised approach like nodal

domains for graphs.
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5 Summary

We discussed Spectral Separations, an important method to generate bipartitions and

set separations to analyse the internal structure of data sets. The method comes with

a somewhat heuristic flavour but we have analysed the approach rigorously using argu-

ments from optimisation, matrix theory and graph connectivity analysis.

We first encountered a very broad class of order functions defined as quadratic forms

involving matrices representing pairwise information between elements of a set. The

class of these matrix order functions covers the standard evaluation criterium for a cut

in a graph, namely its cut weight. Furthermore it allows us to transfer general char-

acterisations of a data set’s pairwise structure to the theory and practice of separation

systems, like for example covariances and distances.

We have seen a fundamental way to influence qualities of a matrix order function through

matrix shifting. This operation allows us to change a matrix order’s preference for bal-

anced separations. We have shown that the balancing behaviour of a matrix order

function is tightly connected to sub- or supermodularity, an important property of an

order function in the theory of separation systems and tangles.

Another important matrix modification, the clamping of matrix elements, allowed us to

draw an interesting comparison to a well known class of partitioning methods in super-

vised machine learning. By restricting the matrix entries to a certain range we can make

an order function focus more on local relationships between data points. This allowed

us to intuitively link similarity graph clustering methods to margin-classifiers.

Matrix order functions provide a way to evaluate the usefulness of a separation in de-

scribing the internal structure of a set. The task to find separations that optimise such an

order function can be stated as a quadratic unconstrained binary optimisation problem.

A relaxation of such problems naturally motivated the definition of spectral separations,

that is separations derived from eigenvectors of the order function’s defining matrix.

For the special class of essentially positive matrices, or their negations, we justified this

method by resorting to the Perron-Frobenius Theory of nonnegative matrices. The the-

ory allowed us to verify basic properties of spectral separations and lead to the important

concept of eigenvector centrality. A slight generalisation allowed us to interpret the ab-

solute values of an eigenvector’s entries as a measure of the corresponding data points’

importance within their side of a separation. According to this, a spectral separation,

derived from an eigenvector corresponding to a large eigenvalue, cuts a data set at a
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bottleneck if we take the importance weighting into account.

The class of nonnegative matrices in particular includes adjacency matrices of graphs.

Analysing the connectivity of graphs using spectral methods is well established in the

literature. Spectral separations fit nicely into the theory, especially the notion of a nodal

domain provides a way to extract local connectivity information from eigenvectors. We

further observed that spectral separations of different rank refine each other.

This refinement process finally was illustrated from a different point of view by a dis-

cussion of principal component analysis. Associating spectral separations with principal

components intuitively explained the interaction of multiple spectral separations as an

iterative refinement process.

This thesis focused mainly on theoretical aspects but spectral separations could provide

a promising tool in the practical data analyst’s toolbox. This could especially apply for

its use as a preprocessing step in tangle analysis. A deeper examination of the interplay

between tangles and spectral separations could be a very interesting future research

direction.
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