Übung 4 zur Graphentheorie

Ihre Lösung zu der mit * markierten Aufgabe geben Sie bitte am Anfang Ihrer jeweiligen Übungsgruppe ab. Ihre Lösungen zu den anderen Aufgaben bringen Sie bitte präsentierbereit zur Übung mit.

- 1. Moving alternately, two players jointly construct a path in some fixed graph G. If $v_1 \ldots v_n$ is the path constructed so far, the player to move next has to find a vertex v_{n+1} such that $v_1 \ldots v_{n+1}$ is again a path. Whichever player cannot move loses. For which graphs G does the first player have a winning strategy, for which the second?
- $2.^{-}$ Derive the marriage theorem from König's theorem.
- 3. Show that if there exist injective functions $A \to B$ and $B \to A$ between two infinite sets A and B then there exists a bijection $A \to B$.
- 4.* Let k be an integer. Show that any two partitions of a finite set into k-sets admit a common choice of representatives.
- 5. Show that all stable matchings of a given graph cover the same vertices. (In particular, they have the same size.)

Hinweise

- 1. Consider a maximal matching in G.
- 2.⁻ If there is no matching of A, then by König's theorem few vertices cover all the edges. How can this assumption help you to find a large subset of A with few neighbours?
- $3. \quad \mbox{Turn the functions into a multigraph, and consider its components.}$
- $4.^*~$ Apply the marriage theorem.
- 5. Alternating paths.