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1.  For every field  extension  L/K  one has a restriction map  res = resL/K : B(K)  ––– > B(L)  of Brauer 
groups, sending a Brauer class   [A]  to  [AKL] . (So actually, res is extension of scalars; it is called 
restriction by virtue of the cohomological description of Brauer groups; cf. [Gr], p.125). The kernel of res 
is denoted  B(L/K)  and is called the relative Brauer group of the extension. In the case of global fields 
B(L/K)  has been determined in [FKS]. If  L/K  is separable, one also has a corestriction map  B(L) ––– > 
B(K) , cf. [Ke], § 18. The purpose of the present note is to derive information on the kernel and cokernel 
of both maps in the number field case by making full use of Hasse’s “Main Theorem in the Theory of 
Algebras”.

2.  If  K is a local field of characteristic 0 one has an isomorphism

(2.1)                                                                  B(K)  ≃ ℚ / ℤ

by means of Hasse invariants if  K is nonarchimedean. For  K =  ℝ   ( )    the group B K is cyclic of order 

          /  + ℤ  2 and is identified with the group generated by 1 2 in  ℚ / ℤ ;   (ℂ) = . clearly B 0 For 

   -        global K the above mentioned Main Theorem consists in an exact sequence

( . )                 2 2 1 –––>  B(K)  –––>  ⊕v (B Kv) –––> ℚ / ℤ  –––>  0

where  the sum in the middle  runs over all  primes of  K  (finite and infinite).  We may think of  B(Kv) 

as identified with  ℚ / ℤ ( .,   ),       ( . )   resp a subgroup thereof so that the second arrow in 2 2 is a sum 

  (     of restrictions relative to the extensions Kv/ )    .    K followed by invariant maps The third arrow in 

( . )    .  ,          ( . )2 2 is then simply summation Of course the complex primes of K could be omitted in 2 2  

          . but for our purposes it is necessary to carry them along

( . ) .    /           2 3 Lemma For an extension L K of number fields there is a commutative diagram with exact 

rows

                    1 –––>  B(K)  –––>  ⊕v (B Kv) –––> ℚ / ℤ  –––>  0
                                                                                   

                                           res                Res                    f    
                                                                              
                    1 –––>  B(L)  –––>  ⊕w (B Lw) –––> ℚ / ℤ  –––>  0

where  Res  maps the class  [A]  of  (B Kv)           to the element of the sum in the lower row having 

 [component A  K Lw]        ,       for a divisor w|v and 0 elsewhere and f is multiplication by the field 

  =  :  .degree n |L K|



.            Proof The commutativity of the first square follows from the equation

                                            (AK Kv) K  Lw    ≃   (AK L)L   Lw  ,

which  is  a  special  case  of  the  simple  fact  that  a  scalar  extension  can  be  realized  using  arbitrary 
intermediate steps.   In order  to prove the commutativity of the second square we make use of the 

identification of local Brauer groups with (subgroups of)   ℚ / ℤ . Recall also that in the nonarchimedean 
local case the diagram 

                                                        B(Kv )      ≃    ℚ / ℤ

( . )                        2 4 res                   fw|v

                            B(Lw 
)   ≃    ℚ / ℤ

,     commutes where w|v and fw|v        is multiplication by the local degree |Lw : Kv  , . [ ]. | cf Re An 

,           .    analogous but trivial diagram can be written down for the infinite primes Now for the element 

  of  ⊕vB(Kv)   /  + ℤ    -    ,   having k m at the v component and 0 elsewhere we obtain (with 

 -  hopefully self explanating notation) 

          s Res ( /  + ℤk m )  =  s ( |Lw : Kv  /  + ℤ| k m ) w|v  =  n. k/m +  ℤ =  f s( k/m + ℤ) 

because 
                                             

                                                        ∑ w|v   |Lw : Kv   =   .| n

   . This proves the lemma

    ( . )           To the diagram in 2 3 we now apply the snake lemma amd obtain an exact sequence

                                            

            1 –––> ker res –––> ker Res –––> ker f –––> cok res –––> cok Res –––> 0 ,

where     is the connecting homomorphism  (note that f is surjective) .  We first deal with ker Res. 
Clearly, 

                                                        ker Res    =    ⊕  v ker Res v  , 

where   Resv  denotes the restriction of  Res  to the  v-component. Now  l/m + ℤ  lies in  the kernel of 

Resv  if and only if   |Lw : Kv  /   ∈ | l m  ℤ   .    for all w|v This shows that ker Resv    is generated by 

/1 tv +  ℤ , where 



                                                         tv  =   gcd {  |Lw : Kv  ,  }. | all w|v

,          ,         Clearly ker Res is infinite if and only ker res is which is indeed the case as is shown in 

[ ].   FKS Thus we obtain

( .2 5) . Corollary tv >   .1 infinitely often

  Note that tv          .  ,   /    divides n since the local degrees add up to n For example if L K is of prime 

,           .  /   , degree it follows that infinitely many primes are fully inert in L If L K is Galois the 

      ’   . corollary is an easy consequence of Cebotarev s density theorem

 [ ]    In FKS the infinity of B(L/K)           , is proved with the aid of a theorem on permutation groups the 

            .    proof of which in turn relies on the classification of finite simple groups As the authors point 

,          out this theorem is actually equivalent to the infinity of B(L/K) (       in the usual sense that it is 

            much easier to derive one from the other than to derive it directly).     .If one could prove 2 5 

,       ,        directly by standard methods of algebraic number theory this would also give a proof of the 

          .  mentioned theorem on permutation groups which is independent of the classification

     .           = /  + ℤ.  Next we determine ker Clearly ker f is generated by a 1 n Unravelling the 

   ,                      definition of we can choose any finite prime v of K and as preimage of a under s 

   /  + ℤ   -     .  ,   the element having 1 n as v component and 0 elsewhere Applying Res we then obtain 

(a)  as the element having  w-component  |Lw : Kv  /  + ℤ      | n for w|v and 0 elsewhere (   this lies in 

   the image of B(L) automatically).  We choose   v  totally decomposed in  L/K  so that  |Lw : Kv  = | 1 

         for all w|v and there are n of them (t         he existence of such v follows from Cebotarev after 

      passing to a Galois extension containing L).  We must determine the smallest k such that  k(a) 

comes from  B(K)  under res; of course we may assume that k divides n.   Now if   k (a)  =  res [A] , 

then  A  has  v-invariant   k/n ;  for the   other primes   v'   the  v' - invariant   h/m + ℤ must be such that 

|Lw' : Kv'  /  ∈ ℤ    ,   {| h m for all w'|v' equivalenty gcd  |Lw' : Kv' , } /  ∈ ℤ | w'|v' h m . At the same 
time, the invariants must add up to an integer, that is,

                                                              k/n  ≡  - ∑ h/m  mod ℤ ,

where the sum extends over the primes  ≠ v . In other words, A exists if and only if   k/n  can be written 

mod ℤ  as  a  ℤ – linear combination of the numbers  {gcd  |Lw' : Kv' , }| w'|v' -  1 ,  v'  ≠  v.  The maximal 
denominator which can be generated in this way is the lcm of these numbers. Therefore,  A  exists if and 
only if   n/k  divides 



                                                l(L/K):  =  lcmv {gcd{ |Lw : Kv , }}| w|v

(              we may include the exceptional prime v since it doesn't contribute to the lcm).  This proves

(2.6) .       Lemma The order of ker equals d(L/K): =  / n l(L/K).

(Note that since all the gcd's divide n so does their lcm.)  Assume  L/K  Galois with group  G . Then the 
local degrees are the orders of the various decomposition groups of the primes of  L , and primes dividing 
the same prime of  K  have conjugate decomposition groups.  So we can write 

                                           l(L/K) =  lcm { |D| }  ,    d(L/K) =  gcd { |G : D| } ,

where  D  runs over the subgroups of  G  which occur as decomposition groups.   It  follows from 
Cebotarev that all cyclic subgroups occur (in fact, infinitely often).  Of course, non-cyclic subgroups can 
be decompositions groups only for ramified primes and therefore can occur at most finitely often; also 
there are restrictions from the well-known structure of the local Galois groups. I know of  no general 
result providing us with information about the actually occurring decomposition groups. 

If   G   has  cyclic  Sylow groups,  then   d(L/K)  =  1   because   in  this  case  all  Sylow groups  are 
decomposition groups.  I claim that  d(L/K) = 1  holds “generically”, i.e. for extensions   L/K  of degree 
n  having  the full symmetric group  Sn  as Galois group (of the Galois hull  E  of  L over  K). It suffices 
to show that there are always primes which are completely inert. Using the fact that  L is a simple 
extension of  K one can assume that the fixgroup  Sn-1 of  L is  embedded into  Sn   as the stabilizer of 1. 

By Cebotarev, every permutation   is the Frobenius of some unramified prime  u of  E, dividing the 
prime  v  of  K, and  by  a well-known theorem (cf. [Ja], p.101)  the primes of  L  dividing  v correspond 

to the cycles of the operation of   on the cosets   Sn/Sn-1  , and  their degrees to the lengths of these 
cycles. Writing 
                        

                                               Sn     =    Sn-1   ∪   (12) Sn-1   ∪     .....     ∪ (1n) Sn-1          

and taking   = ( ...12 n),           ,   one sees that there is but one cycle of length n which proves our 

.      ,   /    ,   -   claim To go to the other extreme if L K is a Galois but noncyclic p extension with no 

   prime totally ramified (  ,   for example suitable biquadratic extensions),  then l(L/K)    will be a proper 

  . divisor of n

,  Summarizing we state

(2.7) .         Corollary The kernel of res fits into an exact sequence

                 1–––> ker res –––>   ⊕vC(tv)   –––>  C(d(L/K))     –––>  1

where  C(t)  denotes a cyclic group of order t. 



      [ ]        .  The description of ker res in FKS is more detailed but requires much more work To bring 

  ,       /   .    ( . )  out the connection let us assume for simplicity that L K is Galois The sequence in 2 7 is the 

      -      (    ). sum of corresponding sequences for the p parts of the occurring groups p a rational prime Let 

pm      -    = ( / )        be the maximal order of p elements of G Gal L K and let t be an element having this 

.  ,   , order By Cebotarev the elements t tp, ..       all occur infinitely often as Frobenius automorphisms 

    .      of unramified primes of L This produces infinitely many copies of

                          (C pm) ⊕ ( C p -  m 1 ) ⊕ ... ⊕ ( ) C p

  -       ( . ),     “  ”     in the p part of the middle sum of 2 7 and this the typical infinite part of ker res as given 

 [ ]. in FKS

               . In order to obtain a similar result for the cokernel we need the cokernel of Res Concentrating 

  -    ⊕on the v block of w B(Lw)  (the elements having nonzero components at most at the divisors of w) 

we see that the image of Resv in this block consists of all vectors  (  |Lw : Kv  /  + ℤ| k m )  w|v  . This 

subgroup is the kernel of the following map   ℚ/ℤ s  –––> ℚ/ℤ -s 1 ,   = ( )  where s s v denotes the 

     :    ( ), ...  , ( ).    ( )-number of divisors of v denote these divisors w 1 w s Now multiply the w i

 component  of a vector  (aw)w  by       the product of the degrees |Lw : Kv ,   ≠ ( ) ,  | where w w i call that 

 vector  (bw)w         (and send it to the vector b ( )w 1  – b ( )  w s ,  ...  ,  b ( - )w s 1  – b ( )w s ). (   The proof is 

.)  ,        -   (    )elementary Thus the cokernel of Res on the v block is in the nonarchimedean case  

     isomorphic to the sum of s(v)−1    ℚcopies of  / ℤ. For the archimedean primes, one obtains a finite 
elementary 2-group whose  rank depends on the number of real primes of  K  and the number of their real 
extensions to L.  Summarizing, we state

(2.8) Corollary.   The cokernel of res fits into an exact sequence

                      1  –––> C(l(L/K))  –––> cok res  –––> E ⊕ (⊕v ( ℚ / ℤ) s(v)-1)   –––> 0 ,

where v runs over the nonarchimedean primes of K and E is a finite elementary 2-group. In particular, 
cok res  is infinite. 

The last statement follows from the fact that infinitely often  s(v) > 1 (otherwise  L = K  by a theorem of 
Bauer). 

3. The corestriction can be treated analogously; the results are even simpler (and perhaps less interesting) 
in  spite  of  the fact  that  the corestriction is  much more difficult  to  define;  we shall  need only two 
functorial properties of it. First we need the analogue of (2.4) in the nonarchimedean local case. Consider 
the diagram



                                                       B(L)      ≃          ℚ / ℤ

(3.1)                         cor                      g

                              ( )   ≃     ℚB K  / ℤ

         .     ,   where g is the map which makes the diagram commute In order to determine g we use the 

    [ ] = [ ]formula cor res A A n   [ ] ∈ for A B(K), . [ ], . .   ,  cf Ke p 62 For the invariants this becomes 

 g f (x) = .  nx Since f(x) = nx, we see that  g  is  the identity  on  elements of  the form  nx , and since 

ℚ /  ℤ  is  divisible,  we have   g  = id  .  It  follows  (perhaps  somewhat  unexpectedly)  that  cor  is  an 
isomorphism. In the archimedean local case (after the necessary modifications of the right column of 

(2.9)  g  becomes identity if   L  =  K  =  ℝ   and the zero map in the other cases.  The analogue of (2.3) is 

(3.2)  Lemma.  For an extension L/K of number fields there is an exact commutative diagram

                                 1     –––>   B(L)  –––>  ⊕w B(Lw) –––>  ℚ / ℤ  –––>  0                                     

                             

                                    cor                 Cor                  id
 

                         1    –––>    B(K)  –––>  ⊕v B(Kv)  –––> ℚ / ℤ  –––> 0 ,

where   Cor  sends the vectors in the v-block of   ⊕w (B Lw) to the sum  of their components, located at 

the v-position of  ⊕v (B Kv) .

.          Proof The commutativity of the left square amounts to the formula

                        invv(cor [B])  =  ∑ w|v invw [B],    [B]  ∈  B(L) ,

which in turn is the paraphrase in terms of algebras of the formula  (16)  on  p.187 of [Ta].   The 

commutativity of the right square is trivial.  

        This time the snake lemma leads to isomorphisms

                          ≃  ,    ≃   .ker cor ker Cor cok cor cok Cor

    ,  Since Cor is obviously surjective we conclude

( .3 3) .     Corollary The corestriction map B(L) –––>   B(K)  is surjective.



The  determination of  the  kernel  is   equally  easy since  for  any abelian group A the kernel  of  the 
summation map   An –––> A  is isomorphic  to  An-1 .    Invoking once more the fact that infinitely often 
s(v) > 1, we see

(3.4)  Corollary.  The  kernel  of  cor  is  the  sum of  infinitely  many copies  of   ℚ /  ℤ   and a finite 

 - .elementary 2 group
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