It’s all about power: definition, modeling and control of swarm type direct current microgrids

Lia Strenge
Talk, Workshop on Industrial and Applied Mathematics 2016
September 1, 2016
Outline

1. Introduction
2. Modeling and simulation frameworks
3. Possible interfaces to applied mathematics
4. Modeling
5. Control
6. Ongoing and future work
Outline

1. Introduction
2. Modeling and simulation frameworks
3. Possible interfaces to applied mathematics
4. Modeling
5. Control
6. Ongoing and future work
Solar Home Systems in Bangladesh

Figure: Solar Home System (SHS) (left); SHSs in Raipura, Bangladesh (right)
Definition

An electrical energy provision system is called **Solar Home System (SHS)** if it satisfies the following conditions.

1. **It is composed by a photovoltaic (PV) panel, a battery storage, a charge controller and domestic loads.**
2. **The voltage level is 12-220 volt direct current (DC), where 12 volt is more common.**
3. **It usually operates independently as islanded system. It can be connected to other solar home systems through the swarm concept.**
The swarm type low voltage direct current microgrid

Swarm concept [Str15]

Definition

The **swarm concept** is a bottom-up electrification scheme which

1. interconnects existing generation, storage and consumption units to form an electrical power grid, typically where a cluster of stand-alone energy provision systems is installed, e.g., SHSs. This setting is called swarm type cluster;

2. allows for plug-and-play operation, i.e., each unit can connect to or disconnect from the grid;

3. grows organically, i.e., the network topology changes [...] arise spontaneously when a new household is connected. It interconnects swarm type clusters with each other or with existing true islanded power systems called microgrids, minigrids or nanogrids in practice through a point of common coupling. This setting is called swarm type microgrid;

4. grows towards and eventually reaches the main power grid, which is usually operated by a national power entity, in order to draw or feed-in power.
The swarm type low voltage direct current microgrid

PhD thesis (objective):

How can a swarm type low voltage DC microgrid be modularly modeled, controlled and simulated in order to contribute to the technology development?

→ I am in the first year comparing different modeling and simulation frameworks for control and did some preliminary work in my master thesis
Outline

1. Introduction
2. Modeling and simulation frameworks
3. Possible interfaces to applied mathematics
4. Modeling
5. Control
6. Ongoing and future work
Modeling frameworks, qualitative comparison

<table>
<thead>
<tr>
<th>Framework Criteria</th>
<th>ODEs</th>
<th>DAEs</th>
<th>DESs</th>
<th>HS</th>
<th>BG</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-knowledge of the author</td>
<td>high</td>
<td>high</td>
<td>medium</td>
<td>medium</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Access to gurus</td>
<td>very high</td>
<td>high</td>
<td>very high</td>
<td>very high</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>Existing theory for control</td>
<td>very high</td>
<td>advanc.</td>
<td>advanc.</td>
<td>advanc.</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Usage in (control) application</td>
<td>very high</td>
<td>medium</td>
<td>high</td>
<td>increas.</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Analytical handling</td>
<td>easy</td>
<td>ok for s-free</td>
<td>diffic.</td>
<td>diffic.</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Numerical handling</td>
<td>easy</td>
<td>index dep.</td>
<td>easy</td>
<td>diffic.</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Bidirectional power flow</td>
<td>diffic.</td>
<td>diffic.</td>
<td>easy</td>
<td>easy</td>
<td>easy?</td>
<td>easy</td>
</tr>
</tbody>
</table>

Simulation frameworks

<table>
<thead>
<tr>
<th>Programm</th>
<th>Dymola</th>
<th>Matlab/Simulink</th>
<th>Octave</th>
<th>Scilab/Xcos, PowerDevs</th>
<th>20-sim</th>
<th>Phyton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria ↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost [Euro]</td>
<td>> 1000</td>
<td>>> 2000</td>
<td>free</td>
<td>free</td>
<td>> 1000</td>
<td>free</td>
</tr>
<tr>
<td>Open Source</td>
<td>No*</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Not anymore</td>
<td>Yes</td>
</tr>
<tr>
<td>Platform</td>
<td>W</td>
<td>L,M,W</td>
<td>L</td>
<td>L</td>
<td>L,W</td>
<td>W,M,L?</td>
</tr>
</tbody>
</table>

* language Modelica yes. (L)inux, (M)ac OS, (W)indows

Other suggestions?
Outline

1. Introduction
2. Modeling and simulation frameworks
3. Possible interfaces to applied mathematics
4. Modeling
5. Control
6. Ongoing and future work
Maths and engineering research: a clash of paradigms?

Assumptions

- (Applied, numerical) mathematics wants to advance in theory: from general to specific

- Practical engineering wants to build new machines and use modeling and simulation for component design and parameter selection: from specific to general

Result for me

Theoretical engineering with focus on control wants to apply the theory: general statements for a specific class of models

Questions

- What are the incentives to *bridge the communication gaps*?

- Are those gaps a result of *community paradigms*? (A math PhD student has to publish in math journals and an engineering PhD student in engineering journals)
Touched areas of applied mathematics

- **control systems** based on ordinary differential equations
- **differential-algebraic equations** (descriptor systems)
- graph theory
- switched systems
The standard feedback control loop

We have $r : \mathbb{I} \rightarrow \mathbb{R}$ as reference/setpoint, $e : \mathbb{I} \rightarrow \mathbb{R}$ as control error, $u : \mathbb{I} \rightarrow \mathbb{R}$ as input or control, $y : \mathbb{I} \rightarrow \mathbb{R}$ as output, $y_m : \mathbb{I} \rightarrow \mathbb{R}$ as measured output.

Figure: Standard control loop: single-input-single-output (SISO). Source: www.texample.net/tikz/examples/control-system-principles/.
Differential-algebraic equations (DAEs)

Definition

A set of equations of the form \(0 = F(t, x(t), \dot{x}(t))\), (short \(0 = F(t, x, \dot{x})\)) (1), with \(F: I \times D_x \times D_{\dot{x}} \rightarrow C^{n_e}\); \(D_x, D_{\dot{x}} \subseteq C^{n_s}\) are suitable open sets; \(n_e, n_s \in \mathbb{N}\); \(I \subseteq \mathbb{R}\) is a compact interval; is called a **set of differential-algebraic equations (DAE)**. Furthermore \(x: I \rightarrow C^{n_s}\) are called the state variables or unknown variables. \(t \in I\) is called the independent variable. If in addition to (1) an initial condition \(x(t_0) = x_0\) with \(t_0 \in I, x_0 \in C^{n_s}\) (2) exists, then (1), (2) is called **initial value problem (IVP)** and \(x_0\) is called the initial value. [Ste13]

If a set of equations can be written in the form

\[
\dot{x}_d(t) = \tilde{f}(t, x_d(t), x_a(t)) \\
0 = \tilde{g}(t, x_d(t), x_a(t))
\]

with \((\tilde{f}^T, \tilde{g}^T)^T: I \times \mathbb{R}^{n_d} \times \mathbb{R}^{n_a} \rightarrow \mathbb{R}^{n_e}; \quad n_d, n_a, n_e \in \mathbb{N}\); it is called a **semi-explicit DAE**. \(x_d\) are called differential state variables (or differential states) and \(x_a\) algebraic state variables (or algebraic states). In addition, we have \(n_d + n_a =: n_s\) as total number of states.
DAEs and the strangeness-index

Hypothesis

Consider $F \in C^\mu(D, \mathbb{R}^{n_{e}})$ with $D = I \times D_{x} \times D_{\dot{x}}$. Let there exist $\mu, d, a \in \mathbb{N}_0$, such that $\mathcal{L}_\mu \neq \emptyset$ and for every $z_0 \in \mathcal{L}_\mu$ there exist a sufficiently small neighborhood $B(z_0) \subset \mathcal{L}_\mu$, such that the following properties hold.

1. We have $\text{rank}(M_\mu(z_0)) = (\mu + 1)n_e - a$ on \mathcal{L}_μ and there exists a matrix function Z_2 with orthonormal columns and maximal rank $\text{rank}(Z_2) = a$ on \mathcal{L}_μ, such that $Z_2^T M_\mu = 0$ on \mathcal{L}_μ. Locally, we have that $Z_2 \in C^\mu(B(z_0), \mathbb{R}^{(\mu+1)n_e \times a})$.

2. We have $\text{rank}(Z_2^T \tilde{N}_\mu) = a$ on \mathcal{L}_μ, where $\tilde{N}_\mu = N_\mu[l_{n_e} 0 \ldots 0]^T$, and there exists T_1 with orthonormal columns and maximal rank $\text{rank}(T_1) = d$, $d = n_e - a$, on \mathcal{L}_μ, such that $Z_2^T \tilde{N}_\mu T_1 = 0$ on \mathcal{L}_μ. Locally, we have that $T_1 \in C^\mu(B(z_0), \mathbb{R}^{n_e \times d})$.

3. We have $\text{rank}(F_\dot{x}(t, x, \dot{x})T_1(z_\mu)) = d$ on \mathcal{L}_μ and there exists $Z_1 \in \mathbb{R}^{n_{e} \times d}$ with orthonormal columns and maximal rank $\text{rank}(Z_1) = d$ on \mathcal{L}_μ, such that $\text{rank}(Z_1^T F_\dot{x} T_1) = d$ on \mathcal{L}_μ.

The smallest μ for which the hypothesis holds, is called the **s-index** (strangeness-index) of F. If $\mu = 0$, then $F(t, x, \dot{x}) = 0$ is called **s-free**.
Outline

1. Introduction
2. Modeling and simulation frameworks
3. Possible interfaces to applied mathematics
4. Modeling
5. Control
6. Ongoing and future work
The swarm type low voltage DC microgrid model

Network as oriented undirected graph

Vertices $\rightarrow \text{(grid) nodes}$ where the SHSs are connected to the grid. Edges $\rightarrow \text{connections or power lines}$ between the SHSs. For the connection jk of two grid nodes j and k with $j, k \in \{1, 2, ..., N\} =: \mathcal{N} \subset \mathbb{N}$, $j < k$ containing power line $h \in \{1, 2, ..., m\} =: \mathcal{M} \subset \mathbb{N}$, $m \in \{\eta \in \mathbb{N} \mid \eta \leq N(N-1)/2\}$, we define the edge-vertex incidence matrix

$$M := \begin{bmatrix}
m_{1,1} & \cdots & m_{1,N} \\
\vdots & \ddots & \vdots \\
m_{m,1} & \cdots & m_{m,N}
\end{bmatrix} \in \mathbb{R}^{m \times N},$$

with $m_{h,j} = 1$ and $m_{h,k} = -1$ and all others $m_{h,k} = 0$ with power line $h \in \mathcal{M}$ not connecting the SHS grid node $k \in \mathcal{N}$. We order the connections as pq, pr, qr with $p, q, r \in \mathcal{N}$, $p < q < r \leq N$.

Remark: M is singular!
Electrical equivalence circuit

Figure: Electrical equivalence circuit for two connected SHSs [Str15]
Modeling the SHS

We define

\[f_j(t) = \begin{cases} g_{P,j}(t), & j \in \mathcal{N}_P \\ g_{C,j}(t), & j \in \mathcal{N}_C \end{cases} \]

with \(g_{P,j}: \mathbb{I} \to \mathbb{R}_{\geq 0} \) as producer current in ampere and \(g_{C,j}: \mathbb{I} \to \mathbb{R}_{< 0} \) as consumer current in ampere, \(j \in \mathcal{N} \).

The SHS as producer

For the SHS as producer, we get a controlled current source

\[g_{P,\alpha}(t) = u_{\alpha}(t), \]

with \(u_{\alpha}: \mathbb{I} \to \mathbb{R} \) as input, \(\alpha \in \mathcal{N}_P \).

The SHS as consumer

- Constant power load (CPL): \(g_{C,\beta}(t) = \frac{P_{gh,\text{given},\beta}}{v_{gn,\beta}(t)} \) with \(\beta \in \mathcal{N}_C \)

- Constant current load (CCL): \(g_{C,\beta}(t) = i_{gh,C,\text{given},\beta} < 0 \), which has the (mathematical) advantage of being a linear equation.
Model equations: uncontrolled system

We reorder the equations and get the uncontrolled model for $t \in \mathbb{I}$.

Uncontrolled model (\(*)

\[
\begin{align*}
L_c \frac{d i_C(t)}{dt} & = v_C(t) - R_C i_C(t), \\
\hat{C}_{cap} \frac{d \hat{v}_{gn}(t)}{dt} & = \hat{i}_{cap}(t), \\
0 & = \hat{M}\hat{v}_{gn}(t) - v_C(t), \\
0 & = \hat{M}^T i_C(t) - \hat{i}_{gh}(t), \\
0 & = -\hat{i}_{cap}(t) - \hat{i}_{gh}(t) + \left[\begin{array}{c} g_P(t) \\ g_C(t) \end{array} \right],
\end{align*}
\]
Outline

1. Introduction
2. Modeling and simulation frameworks
3. Possible interfaces to applied mathematics
4. Modeling
5. Control
6. Ongoing and future work
Control: Droop control as standard control scheme

1. Control objectives
2. Droop control
Control objectives

1. **Bounded voltage deviation** in steady state from the reference voltage of the grid

 \[|v_{gn,j}(t) - v_{gn,ref,j}| \leq e_v, \forall t \in I, j \in N, e_v \in \mathbb{R}_{>0} \]

 \[\lim_{t \to \infty} |v_{gn,j}(t) - v_{gn,ref,j}| \leq e_v, \forall t \in I, j \in N. \]

2. **Power sharing** of the producing SHSs, i.e.,

 \[\lim_{t \to \infty} P_{gh,\alpha}(t) = \lim_{t \to \infty} P_{gh,\tilde{\alpha}}(t) \forall \alpha, \tilde{\alpha} \in N_P. \]

Next step: Introduce droop control and check if the closed-loop model meets the control objectives. For which droop coefficients?
Droop control

Decentralized control scheme for the producing SHSs introducing a virtual resistance $d_{\text{droop,} \alpha} \in \mathbb{R}_{>0}$ in ohm, $\alpha \in \mathcal{N}_P$.

$$u_\alpha(t) = g_{P, \alpha}(t) = \frac{1}{d_{\text{droop,} \alpha}}(v_{\text{gn,ref}, \alpha} - v_{\text{gn,} \alpha}) = k_{\text{droop,} \alpha}(r_\alpha - y_\alpha)$$

Figure: Closed-loop model with droop control in standard feedback control loop representation without measurement dynamics or disturbances, $K_{\text{droop}} = \text{diag}(k_{\text{droop,} \alpha})$ and $v_{\text{gn,ref}} = \text{vector}(v_{\text{gn,ref,} j}, j \in \mathcal{N})$.

Definition, modeling and control of swarm type direct current microgrids | Lia Strenge | September 1, 2016 | 28/40
Closed-loop model

Adding droop control and the nonlinear constant power load model

\[g_{C,\beta}(t) = \frac{P_{gh,\text{given},\beta}}{v_{gn,\beta}(t)}, \beta \in \mathcal{N}_C \]

to the uncontrolled model \((\ast)\), we obtain the nonlinear DAE \((\ast\ast)\) for \(t \in \mathbb{I}\).

Closed-loop model \((\ast\ast)\)

\[
\begin{align*}
L_c \frac{di_c(t)}{dt} &= v_c(t) - R_c i_c(t), \\
\hat{C}_{cap} \frac{d\hat{v}_{gn}(t)}{dt} &= \hat{i}_{cap}(t), \\
0 &= \hat{M}\hat{v}_{gn}(t) - v_c(t), \\
0 &= \hat{M}^T i_c(t) - \hat{i}_{gh}(t), \\
0 &= -\hat{i}_{cap,P}(t) - \hat{i}_{gh,P}(t) + K_{\text{droop}}(v_{gn,\text{ref}} - \hat{v}_{gn,P}(t)), \\
0 &= -\hat{v}_{gn,C}(t) \circ \hat{i}_{cap,C}(t) - \hat{v}_{gn,C}(t) \circ \hat{i}_{gh,C}(t) + P_{gh,\text{given}}.
\end{align*}
\]
Closed-loop model

Adding droop control and the nonlinear constant power load model

\[g_{C,\beta}(t) = \frac{P_{gh,\text{given},\beta}}{v_{gn,\beta}(t)}, \quad \beta \in \mathcal{N}_C \]

to the uncontrolled model (*), we obtain the nonlinear DAE (**) for \(t \in \mathbb{I} \).

Closed-loop model (**)

\[
\begin{align*}
L_c \frac{dx_{d,1}}{dt} &= x_{a,1} - R_c x_{d,1}, \\
\hat{C}_{cap} \frac{dx_{d,2}}{dt} &= x_{a,2}, \\
0 &= \hat{M} x_{d,2} - x_{a,1}, \\
0 &= \hat{M}^T x_{d,1} - x_{a,3}, \\
0 &= -x_{a,P,2} - x_{a,P,3} + K_{\text{droop}} v_{gn,\text{ref},P} - K_{\text{droop}} x_{d,P,2}, \\
0 &= -x_{d,C,2} \circ x_{a,C,2} - x_{d,C,2} \circ x_{a,C,3} + P_{gl,\text{given}}.
\end{align*}
\]
Lemma

The closed-loop model (**) is strangeness-free with $d = m + N$, $a = m + 2N$ if $v_{g_n, \beta}(t) > 0$, $\beta \in \mathcal{N}_C$, $\forall t \in \mathbb{I}$.

Proof.

We omit the time argument of the states hereafter and write (**) in the form $\dot{x}_d = \tilde{f}(x_d, x_a)$, $0 = \tilde{g}(x_d, x_a)$ with $x_d := (i_T^T, \hat{v}_{g_n}^T)^T$, $x_a := (v_c^T, \hat{i}_{cap}^T, \hat{i}_{gh}^T)^T$ and $(\tilde{f}^T, \tilde{g}^T)^T$ as right side of (**). We need to show that \tilde{g}_{x_a} is regular.
Proof

Proof.

$$\tilde{g}_{xa} = \begin{bmatrix} -I_m & O_{m \times N} & O_{m \times N} \\ O_{p \times m} & -I_p & O_{p \times l} \\ O_{l \times m} & -\text{diag}(\hat{v}_{gn,C}) & -\text{diag}(\hat{v}_{gn,C}) \end{bmatrix} \begin{bmatrix} -I_p & O_{p \times l} \\ O_{l \times p} & -\text{diag}(\hat{v}_{gn,C}) \end{bmatrix}$$

Let \tilde{P} be a suitable permutation matrix of dimension $m + 2N$.
Proof (II)

Proof.

We get that

\[
\tilde{P}\tilde{g}_x = \begin{bmatrix}
-\mathcal{I}_m & \mathcal{O}_{m\times N} \\
\mathcal{O}_{p\times m} & -\mathcal{I}_p \\
\mathcal{O}_{l\times m} & -\mathcal{I}_l \\
\mathcal{O}_{m\times N} & -\text{diag}(\hat{V}_{gn,c}) \\
\mathcal{O}_{l\times p} & -\text{diag}(\hat{V}_{gn,c}) \\
\mathcal{O}_{N\times N} & -\mathcal{I}_N
\end{bmatrix}.
\]

\(\tilde{P}\tilde{g}_x\) is regular since it is an upper triangular matrix with full diagonal for \(\text{diag}(\hat{V}_{gn,c}) > 0\forall t \in \mathbb{T}\).

Hence, the DAE (**) is strangeness-free.
Technical interpretation and conclusion

Preliminary results for droop control (based on exemplary simulation)

- Constant offset of maximum 2.4 volt, i.e., 5 percent
- Equal power sharing achieved for simple network topologies

Conclusion
We have a modular mathematical representation of the swarm type low voltage DC microgrid allowing for control design and simulation

Open issues until a possible contribution to the technology dev.

- Mode switching between producer and consumer (prosumer)
- Inclusion of $P_{gh,\text{max}}$ in order to evaluate proportional power sharing
Outline

1. Introduction
2. Modeling and simulation frameworks
3. Possible interfaces to applied mathematics
4. Modeling
5. Control
6. Ongoing and future work
Work in progress

- Simulation study on parameter variations for linear and nonlinear model and a fixed network topology
- Test bed development to verify modeling assumptions by experimental data
Switching: mode changes in the SHS (I - time-based)

We have a partition of the time interval \(I = \bigcup_{\nu=0}^{\mu} I_\nu \), with \(I_\nu = [t_\nu, t_{\nu+1}) \), \(I_\mu = [t_\mu, \infty) \) and \(T := \{t_0, t_1, t_2, \ldots, t_\nu, \ldots, t_\mu\} \).

Assumption

We assume a fixed \(q(0) \in \{0, 1\}^N \) for all \(t \in I_0 \). At \(t = t_1 \), the first power flow change including a mode change from producer to consumer or vice versa of at least one SHS \(j \in \mathcal{N} \) takes place with a sign change of the corresponding \(i_{gh,j} \) and therefore the switching of the corresponding \(q(0),j \). Hence, we have a new \(q(1) \in \{0, 1\}^N \) for all \(t \in I_1 \). Analogously, at \(t = t_\nu \in T \), the \(\nu \)-th mode power flow change including a sign change of at least one \(i_{gh,j}, j \in \mathcal{N} \) takes place and the corresponding \(q(\nu-1),j \) switch(es). We have \(q(\nu) \in \{0, 1\}^N \) for all \(t \in I_\nu \). Hence, we have \(q: T \rightarrow \{0, 1\}^N; q = q(t_\nu) = q(\nu) \).

Hence,

\[
f_j(t, q_j): = \begin{cases} g_{P,j}(t) & , \quad q_j = 1 \\ g_{C,j}(t) & , \quad q_j = 0 \end{cases},
\]

with \(g_{P,j}: I \rightarrow \mathbb{R}_{\geq 0} \) as producer current in ampere and \(g_{C,j}: I \rightarrow \mathbb{R}_{< 0} \) as consumer current in ampere, \(j \in \mathcal{N} \).
Future work

- Analytic derivation of boundaries for stable operation of the swarm type DC microgrid
- Measurements to verify modeling assumptions by experimental data
Bibliography I

A. Steinbrecher.
Differential-Algebraic Equations.

Lia Strenge.
Modeling and simulation of a droop controlled swarm type low voltage DC microgrid in a DAE framework.
Summary and discussion

Summary

- Strangeness-free closed-loop model without switching
- Bi-directional power flow by discrete event systems or hybrid system theory

Thank you for your attention!
Advantages of strangeness-free DAEs

- Closer to physical intuition compared to a manually derived ordinary differential equation (ODE) in fewer variables
- A large part of the ODE theory has been transferred to strangeness-free DAEs
- Decreased numerical differentiation and hence increased numerical stability compared to problems of higher s-index
- No hidden constraints
Research projects at Control Systems Group

Biomedical Engineering
- Inertial Sensor-Based Gait Analysis
- Controlled Functional Electric Stimulation for Rehabilitation Purposes

Chemical Process Engineering
- Hyperbolicity of Quasi-Linear PDEs for General Isotherms
- Crystal Shape Control
- Control of Preferential Crystallization Processes

Power Systems
- Hybrid Control Systems
- Control of Discrete Event Systems

HTS-Systems
- Mathematical Modelling of Viral Evolution and Cultivation Processes
- Bioprocess Engineering

Control Concepts for Microgrids

APPLICATION

THEORY

Hierarchical and Cooperative Control