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Motivation
What is the ‘shape’ of data?
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A simple example
What is the shape of this set of points?

Technically, a set of points does not have a ‘shape’. Still, we perceive
the points to be arranged in a circle. How can we quantify this?
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A simple example
What is the shape of this set of points?

We can ‘squint’ our eyes and look at how the connectivity of the
points changes. The more we squint, the more connections we see.
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What did we see?

Points are arranged in a circle, as long as the radius of the disks we
use to cover them does not exceed a certain critical threshold.

How can we formulate this more precisely?
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Algebraic topology

The branch of mathematics that is concerned with finding invariant
properties of high-dimensional objects.

Simple invariants

1 Dimension: R2 6= R3 because 2 6= 3

2 Determinant: If matricesA andB are similar, their
determinants are equal.
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Betti numbers
A topological invariant

Informally, they count the number of holes in different dimensions
that occur in an object.

β0 Connected components
β1 Tunnels
β2 Voids
...

...

Space β0 β1 β2

Point 1 0 0
Circle 1 1 0
Sphere 1 0 1
Torus 1 2 1
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Calculating Betti numbers

The kth Betti number βk is the rank of the kth homology group
Hk(X) of the topological spaceX .

To define this formally, we require a notion of ‘holes’ in simplicial
complexes. This, in turn, requires the concepts of boundaries and
cycles.

Technically, I should write simplicial homology group every time. I am not going to do this.
Instead, let us first talk about simplicial complexes.
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Simplicial complexes

A family of sets K with a collection of subsets S is called an abstract
simplicial complex if:

1 {v} ∈ S for all v ∈ K.

2 If σ ∈ S and τ ⊆ σ, then τ ∈ K.

The elements of a simplicial complex are called simplices. A
k-simplex consists of k + 1 indices.
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Simplicial complexes
Example

Valid Invalid
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Chain groups

Given a simplicial complex K, the pth chain groupCp of K contains
all linear combinations of p-simplices in the complex. Coefficients
are inZ2, hence all elements ofCp are of the form

∑
j σj , for

σj ∈ K. The group operation is addition withZ2 coefficients.

We need chain groups to algebraically express the concept of a
boundary.
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Boundary homomorphism

Given a simplicial complex K, the pth boundary homomorphism is
the homomorphism that assigns each
simplex σ = {v0, . . . , vp} ∈ K to its boundary:

∂pσ =
∑
i

{v0, . . . , v̂i, . . . , vk}

In the equation above, v̂i indicates that the set does not contain the
ith vertex. The function ∂p : Cp → Cp−1 is thus a homomorphism
between the chain groups.
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Fundamental lemma & chain complex

For all p, we have ∂p−1 ◦ ∂p = 0: Boundaries do not have a boundary
themselves. This leads to the chain complex:

0
∂n+1−−−→ Cn

∂n−→ Cn−1
∂n−1−−−→ . . .

∂2−→ C1
∂1−→ C0

∂0−→ 0
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Cycle and boundary groups

Cycle group Zp = ker ∂p
Boundary groupBp = im ∂p+1

We haveBp ⊆ Zp in the group-theoretical sense. In other words,
every boundary is also a cycle.
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Homology groups & Betti numbers

The pth homology groupHp is a quotient group, defined by
‘removing’ cycles that are boundaries from a higher dimension:

Hp = Zp/Bp = ker ∂p/ im ∂p+1,

With this definition, we may finally calculate the pth Betti number:

βp = rankHp

Intuitively: Calculate all boundaries, remove the boundaries that
come from higher-dimensional objects, and count what is left.
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Real-world multivariate data

Often: Unstructured point clouds

n items withD attributes; n×D matrix

Non-random sample fromRD

Manifold hypothesis

There is an unknown d-dimensional manifoldM ⊆ RD ,
with d � D, from which our data have been sampled.
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Converting unstructured data into a simplicial complex
Rips graphRε

Use a distance measure dist(·,·) such as the Euclidean distance and
a threshold parameter ε. Connect u and v if dist(u, v) ≤ ε.
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How to get a simplicial complex fromRε?

Construct the Vietoris–Rips complex Vε by adding a k-simplex
whenever all of its (k − 1)-dimensional faces are present.
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How to calculate Betti numbers?
Direct calculations are unstable

ε = 0.35 ε = 0.53 ε = 0.88 ε = 1.05
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Persistent homology

Note that the ‘correct’ Betti number of the data persists over a
certain range of the threshold parameter ε. To formalize this,
assume that simplices in the Vietoris–Rips complex are added one
after the other with an associated weight. This gives rise to a
filtration,

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn−1 ⊆ Kn = K,

such that each Ki is a valid simplicial subcomplex of K. We write
w(Ki) to denote the weight of Ki.
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Similar to what we have previously seen, this gives rise to a
sequence of homomorphisms,

f i,j
p : Hp(Ki) → Hp(Kj),

and a sequence of homology groups, i.e.

0 = Hp(K0)
f0,1
p−−−→ Hp(K1)

f1,2
p−−−→ . . .

fn−2,n−1
p−−−−−−−→ Hp(Kn−1)

fn−1,n
p−−−−−→ Hp(Kn) = Hp(K),

where p denotes the dimension of the homology groups.
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Persistent homology group

Given two indices i ≤ j, the pth persistent homology groupH i,j
p is

defined as

H i,j
p := Zp (Ki) / (Bp (Kj) ∩ Zp (Ki)) ,

which contains all the homology classes of Ki that are still present
in Kj .

We may now track the different homology classes through the
individual homology groups.
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Tracking of homology classes

Creation in Ki : c ∈ Hp (Ki), but c /∈ H i−1,i
p

Destruction in Kj : f
i,j−1
p (c) /∈ H i−1,j−1

p and f i,j
p (c) ∈ H i−1,j

p

The persistence of a class c that is created in Ki and destroyed in Kj

is defined as
pers(c) = |w(Kj)− w(Ki)|,

and measures the ‘scale’ at which a certain topological feature
occurs.
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ε = 0.35 ε = 0.53 ε = 0.88 ε = 1.05

Here, the topological feature is the circle that underlies the data. It
persists from ε = 0.53 to ε = 1.05, so its persistence is:

pers = 1.05− 0.53 = 0.52

In general, a high persistence indicates relevant features.
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How to represent topological information?
Persistence diagram

Given a topological feature created in Ki and destroyed in Kj , add a
point with coordinates (w(Ki), w(Kj)) to a diagram:

This summarizing description is always two-dimensional, regardless
of the dimensionality of the input data!
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Uses for persistence diagrams
Well-defined distance measures

Persistence diagrams from the same object. Some noise has been
added to the object, resulting in spurious topological features.
Large-scale features remain the same, though!
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Distance measure
Second Wasserstein distance

W2(X,Y ) =

√
inf

η : X→Y

∑
x∈X

‖x− η(x)‖2∞
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Stability

Theorem

Let f and g be two Lipschitz-continuous functions. There are constants
k andC that depend on the input space and on the Lipschitz constants
of f and g such that

W2(X,Y ) ≤ C‖f − g‖1−
k
2∞ , (1)

whereX and Y refer to the persistence diagrams of f and g.
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Summarizing statistics

Given a persistence diagramD, there are various summary statistics
that we can calculate:

∞-norm:
‖D‖∞ = max

(x,y)∈D
|c− d|

p-norm:

‖D‖p =

 ∑
(x,y)∈D

(x− y)p

 1
p

Total persistence:

pers(D)p =
∑

(x,y)∈D

(x− y)p
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Scalar field analysis
Climate research
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Scalar field analysis
What are the issues?

Need to know about large-scale & small-scale differences in
qualitative behaviour of the fields

Similar phenomena may appear at different regions in the data

Time-varying aspects: What are outlying time steps with
markedly different properties than the remaining ones?

Using a 2D simplicial complex (surface of the Earth), we can only
find topological features in dimensions 0, 1, and 2.
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Combined persistence diagram
1460 time steps, dimension 1
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Combined persistence diagram
Outliers
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What do the outliers represent?

Time steps in the simulation with extremal temperature
phenomena at different places in the world.

Except by visual inspection, this cannot be detected by other
methods!
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Analysis of cyclical behaviour using summary statistics
Embedding based on the Wasserstein distance

500

1,000

Outliers can easily be spotted; cyclical behaviour is indicated by
points of different colours that are situated next to each other
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Analysis of cyclical behaviour using summary statistics
Heatmap visualization of the sorted distance matrix

Cyclical structure is hinted at by the block structure.
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2-norm of all persistence diagrams
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Detection of cyclical behaviour (seasons, micro-climate) regardless
of the physical location.
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2-norm vs.∞-norm
All time steps
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2-norm vs.∞-norm
Interesting time steps: Large 2-norm, small∞-norm
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Conclusion

Take-away messages

1 Persistent homology is a new way of looking at complex data.

2 It has a rich mathematical theory and many desirable
properties (robustness, invariance).

3 Lots of interesting applications.

Interested? Drop me a line at bastian.rieck@iwr.uni-heidelberg.de!
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