Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
					000

Optimale Steuerung instationärer Strömungsvorgänge mit Wärmeübertragung

Florian Prill

Universität Hamburg Fachbereich Mathematik

20.12.2005 / Vortrag zur Diplomarbeit

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick

Zielsetzung

Optimierung mit partiellen Differentialgleichungen –

Anwendung: Beeinflussung einer Flüssigkeitsströmung.

- Modellierung mit den inkompressiblen NSE.
- Diskretisierung mit finiten Differenzen.
- Zielfunktional: Gradientenberechnung mit der Adjungiertenmethode.

Einleitung 00000	Modellierung 00000000000	Optimalsteuerung 00000000000	Numerische Simulation	Beispiele 000000000	Ausblick
Bibliogr	aphie				

Optimal and instantaneous control of the instationary Navier-Stokes equations. Habilitationsschrift, 2002

N. Griebel, T. Dornseifer und T. Neunhoeffer Numerical simulation in fluid dynamics. SIAM Monographs, 1997

🌭 F. Troeltzsch

Optimale Steuerung partieller Differentialgleichungen. Vieweg Verlag, 2005

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
0000					
Adjungiertenmet	thode				
Glieder	ung				

1 Einleitung Adjungiertenmethode

2 Modellierung

Navier-Stokes-Gleichunger Schwache Formulierung

- ③ Optimalsteuerung Differentiate-then-Discretize
- A Numerische Simulation
 Zeitdiskretisierung
 Ortsdiskretisierung

5 Beispiele

Numerische Simulation

Optimale Steuerung

Steuerung über lange Zeitintervalle

6 Ausblick

Minimiere
$$J(\mathbf{y}, u)$$
 über $(\mathbf{y}, u) \in W \times U$
u. d. N. $\mathbf{e}(\mathbf{y}, u) = \mathbf{0}$.

- U : Banachraum der zulässigen SteuerungenW: Banachraum der möglichen Systemzustände.
- $\mathbf{e}: W \times U \to Z^*$ Zustandsoperator (Z : Banachraum).

Ist $\mathbf{e}(\mathbf{y}, u) = \mathbf{0}$ lokal und eindeutig nach $\mathbf{y} = \mathbf{y}(u)$ auflösbar: Minimiere $\hat{J}(u)$ über $u \in U$ mit $\hat{J}(u) := J(\mathbf{y}(u), u)$ reduziertes Zielfunktional.

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
00000					
Adjungiertenmethode					

Gradient des reduzierten Zielfunktionals

Differenzierbarkeitseigenschaften:

- In einer Umgebung von $(\mathbf{y}(u), u)$ sei JFrechét-differenzierbar,
- e sei stetig Frechét-differenzierbar,
- die partielle Ableitung $\mathbf{e}_{\mathbf{y}}(\mathbf{y}(u), u)$ sei lokal invertierbar.

Satz über implizite Funktionen liefert:

 $\mathbf{e}(\mathbf{y}, u) = \mathbf{0}$ lokal eindeutig auflösbar zu $u \mapsto \mathbf{y}(u)$.

und

$$\mathbf{y}'(u) \in \mathcal{L}(U, W)$$
$$\mathbf{y}'(u) = -\mathbf{e}_{\mathbf{y}}^{-1}(\mathbf{y}(u), u)\mathbf{e}_{u}(\mathbf{y}(u), u).$$

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick				
00000	00000000000	0000000000	0000000000000	00000000	000				
Adjungiertenme	Adjungiertenmethode								
Adjung	Adjungiertengleichung								

Anwendung der Kettenregel auf $\hat{J}(u) = J(\mathbf{y}(u), u)$ und Einsetzen von $\mathbf{y}'(u)$:

$$\begin{split} \hat{J}'(u)(\delta u) &= J_u(\mathbf{y}(u), u)(\delta u) - \mathbf{e}_u^*(\mathbf{y}(u), u)\mathbf{e}_{\mathbf{y}}^{-*}(\mathbf{y}(u), u)J_{\mathbf{y}}(u)(\delta u) \\ &= (J_u(\mathbf{y}, u), \delta u)_{U^*, U} + (\mathbf{e}_u^*(\mathbf{y}, u)\lambda, \delta u)_{U^*, U} \end{split}$$

für $\lambda := -(\mathbf{e}_{\mathbf{y}}^*(\mathbf{y}, u))^{-1} J_{\mathbf{y}}(\mathbf{y}, u) \in Z$: adjungierter Zustand.

Berechnung von λ : Adjungiertengleichung

$$\mathbf{e}_{\mathbf{y}}^{*}(\mathbf{y}, u)\lambda + J_{\mathbf{y}}(\mathbf{y}, u) = 0.$$

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick			
00000								
Adjungiertenmet	Adjungiertenmethode							
Optimie	Optimierungsproblem							

Problemstellung: Steuerung einer zweidimensionalen Flüssigkeitsströmung

- y Zustand der Strömung
- *u* Steuerungseinfluss
- $\mathbf{e}(\mathbf{y}, u) = \mathbf{0}$ Der Zustand \mathbf{y} ist Lösung der Navier-Stokes-Gleichungen
- $J(\mathbf{y}, u)$ problemabhängig formulierte Zielfunktion

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
	•0000000000				
Navier-Stokes-G	leichungen				
Glieder	ung				

- Einleitung Adjungiertenmethode
- Modellierung Navier-Stokes-Gleichungen Schwache Formulierung
 Optimalsteuerung
 - Differentiate-then-Discretize
- A Numerische Simulation
 Zeitdiskretisierung
 Ortsdiskretisierung
- **5** Beispiele
 - Numerische Simulation Optimale Steuerung Steuerung über lange Zeitinter
- 6 Ausblick

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
	00000000000				
Navier-Stokes-G	leichungen				
D 1 11					

Physikalische Größen

$\mathbf{x} \in \Omega \subset \mathbb{R}^2$ $t \in [0, T]$	Ortsgebiet Zeithorizont	Orts-Zeit-Zylinder Q
	Geschwindigkeitsvektor Druck Temperatur Dichte	t a r
$\mathbf{g} = (g_1, g_2)^T$	Vektor der Erdbeschleunig	gung

Schreibweise für den Nablakalkül:

$$(\mathbf{a} \cdot \nabla)\mathbf{b} = \left(\sum_{i=1}^{2} a_{i} \frac{\partial b_{j}}{\partial x_{i}}\right)_{j=1,2} , \ \nabla \cdot \mathbf{a} = \sum_{i=1}^{2} \frac{\partial a_{i}}{\partial x_{i}} , \ \Delta c = \sum_{i=1}^{2} \frac{\partial^{2} c}{\partial x_{i}^{2}}.$$

- Massenerhaltung: Masse kann weder erzeugt noch zerstört werden.
- Impulserhaltung (2. NEWTONsches Axiom): Die zeitliche Änderung des Impulses entspricht der Summe der einwirkenden Kräfte.
- Energieerhaltung (1. Hauptsatz der Thermodynamik): Die zeitliche Änderung der Gesamtenergie ist gleich der Summe der durch die Volumen- und Oberflächenkräfte eingebrachten Leistung sowie der Energieänderung durch Wärmeübergang.

$$\frac{d}{dt} \int_{\sigma(t)} \varrho(\mathbf{x}, t) \ d\mathbf{x} = 0$$

wobei $\sigma(t) \subseteq \Omega$: beschränktes Kontrollvolumen.

- Impulserhaltung (2. NEWTONsches Axiom): Die zeitliche Änderung des Impulses entspricht der Summe der einwirkenden Kräfte.
- Energieerhaltung (1. Hauptsatz der Thermodynamik): Die zeitliche Änderung der Gesamtenergie ist gleich der Summe der durch die Volumen- und Oberflächenkräfte eingebrachten Leistung sowie der Energieänderung durch Wärmeübergang.

$$\frac{d}{dt} \int_{\sigma(t)} \varrho(\mathbf{x}, t) \ d\mathbf{x} = 0$$

wobei $\sigma(t) \subseteq \Omega$: beschränktes Kontrollvolumen.

- Impulserhaltung (2. NEWTONsches Axiom): Die zeitliche Änderung des Impulses entspricht der Summe der einwirkenden Kräfte.
- Energieerhaltung (1. Hauptsatz der Thermodynamik): Die zeitliche Änderung der Gesamtenergie ist gleich der Summe der durch die Volumen- und Oberflächenkräfte eingebrachten Leistung sowie der Energieänderung durch Wärmeübergang.

$$\frac{d}{dt} \int_{\sigma(t)} \varrho(\mathbf{x}, t) \ d\mathbf{x} = 0$$

wobei $\sigma(t) \subseteq \Omega$: beschränktes Kontrollvolumen.

• Impulserhaltung:

$$\frac{d}{dt} \int_{\sigma(t)} \varrho(\mathbf{x}, t) \mathbf{y}(\mathbf{x}, t) \ d\mathbf{x} = \int_{\sigma(t)} \mathbf{f}_{\Sigma} \ d\mathbf{x}.$$

• Energieerhaltung (1. Hauptsatz der Thermodynamik): Die zeitliche Änderung der Gesamtenergie ist gleich der Summe der durch die Volumen- und Oberflächenkräfte eingebrachten Leistung sowie der Energieänderung durch Wärmeübergang.

$$\frac{d}{dt} \int_{\sigma(t)} \varrho(\mathbf{x}, t) \ d\mathbf{x} = 0$$

wobei $\sigma(t) \subseteq \Omega$: beschränktes Kontrollvolumen.

• Impulserhaltung:

$$\frac{d}{dt} \int_{\sigma(t)} \varrho(\mathbf{x}, t) \mathbf{y}(\mathbf{x}, t) \ d\mathbf{x} = \int_{\sigma(t)} \mathbf{f}_{\Sigma} \ d\mathbf{x}.$$

• Energieerhaltung (1. Hauptsatz der Thermodynamik): Die zeitliche Änderung der Gesamtenergie ist gleich der Summe der durch die Volumen- und Oberflächenkräfte eingebrachten Leistung sowie der Energieänderung durch Wärmeübergang.

$$\frac{d}{dt} \int_{\sigma(t)} \varrho(\mathbf{x}, t) \ d\mathbf{x} = 0$$

wobei $\sigma(t) \subseteq \Omega$: beschränktes Kontrollvolumen.

• Impulserhaltung:

$$\frac{d}{dt} \int_{\sigma(t)} \varrho(\mathbf{x}, t) \mathbf{y}(\mathbf{x}, t) \ d\mathbf{x} = \int_{\sigma(t)} \mathbf{f}_{\Sigma} \ d\mathbf{x}.$$

• Energieerhaltung:

$$\frac{d}{dt}\int_{\sigma(t)} \varrho \varepsilon \ d\mathbf{x} = W(\sigma(t)) + Q(\sigma(t)).$$

Navier-Stokes-Gleichungen							
	0000000000						
Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick		

Satz (Transporttheorem von Reynolds)

$$\frac{d}{dt} \int_{\sigma(t)} F(\mathbf{x}, t) \ d\mathbf{x} = \int_{\sigma(t)} \left[\frac{\partial F}{\partial t}(\mathbf{x}, t) + (\mathbf{y}(\mathbf{x}, t) \cdot \nabla) F(\mathbf{x}, t) + F(\mathbf{x}, t) \operatorname{div} \mathbf{y}(\mathbf{x}, t) \right] \ d\mathbf{x}.$$

Konstitutive Gleichungen

z.B. Newtonsches Fluid, Fouriersche Wärmeleitung.

Entdimensionalisierung (Π-Theorem von Buckingham)

Mathematische Modelle physikalischer Prozesse lassen sich in dimensionslose Form bringen. Die dimensionslosen Parameter können als Produkte von Potenzen der ursprünglichen Parameter geschrieben werden.

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick	
	00000000000					
Navier-Stokes-Gleichungen						

Erhaltungsgleichungen

- + Transporttheorem
- + konstitutive Gleichungen
- + Entdimensionalisierung
- + Näherung für Auftriebsphänomene
- = inkompressible

Navier-Stokes-Gleichungen

 $mit \ Boussinesq-Approximation$

- → Die Dichte ist konstant außer in den Termen der Auftriebskräfte; dort: Linearer Ansatz for $\varrho(\theta)$.
- \rightsquigarrow Alle anderen Fluideigenschaften werden als konstant angenommen.

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
	00000000000				
Navier-Stokes-Glei	chungen				

Zustandsgleichungen

Zustandsgleichungen

$$\operatorname{div} \mathbf{y} = 0$$
$$\frac{\partial \mathbf{y}}{\partial t} + (\mathbf{y} \cdot \nabla)\mathbf{y} - \frac{1}{Re}\Delta \mathbf{y} + \nabla p = -\gamma \mathbf{g}\theta$$
$$\frac{\partial \theta}{\partial t} + (\mathbf{y} \cdot \nabla)\theta - \frac{1}{Re}\frac{1}{Pr}\Delta\theta = 0$$

Reynoldszahl
$$Re = \frac{\varrho_{\infty} u_{\infty} L}{\mu}$$
, **Prandtlzahl** $Pr = \frac{\nu \varrho_{\infty} c_p}{k}$

Randbedingungen für die Geschwindigkeiten:

 Haftbedingung (no-slip condition) Kein Fluid dringt durch die Wand, und das Fluid haftet an der Wand, d.h.

$$\mathbf{y} = \mathbf{0}$$
 auf $\Gamma_{no-slip}$.

<u>Einströmbedingung</u> (*inflow condition*)
 Beide Geschwindigkeitskomponenten sind fest vorgegeben:

$$\mathbf{y} = \mathbf{y}_{inflow}$$
 auf Γ_{in} , $\mathbf{y}_{inflow} : [0, T] \to \mathbb{R}^2$ gegeben.

Randbedingungen für das Temperaturfeld:

• Vorgegebene Wandtemperatur: Dirichlet-Randbedingungen:

 $\theta|_{\Gamma} = \theta_0$, θ_0 vorgegeben.

2 <u>Definierter Wärmestrom</u> Neumann-Randbedingungen:

$$-\kappa \frac{\mathrm{d}\theta}{\mathrm{d}\eta}\Big|_{\mathsf{F}} = q_w$$

mit q_w : Wärmestrom, κ : Wärmeleitkoeffizient.

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
	0000000000000				
Schwache Form	nulierung				
Glieder	ung				

 Einleitung Adjungiertenmethode

Ø Modellierung

Navier-Stokes-Gleichungen Schwache Formulierung

- 3 Optimalsteuerung Differentiate-then-Discretize
- A Numerische Simulation
 Zeitdiskretisierung
 Ortsdiskretisierung

5 Beispiele

Numerische Simulation

- Optimale Steuerung
- Steuerung über lange Zeitintervalle
- 6 Ausblick

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
Schwache Form	nulierung				
Integra	Idarstellung	ξ.			

- \rightsquigarrow Wie ist der Zustandsoperator $\mathbf{e}(\mathbf{y}, u)$ definiert?
- \rightsquigarrow Welche Gestalt hat der Raum W der möglichen Systemzustände?

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
	000000000000000000000000000000000000000				
Schwache Forn	nulierung				

Integraldarstellung

 $\mathbf{y} \in \mathcal{C}^2(\overline{Q}), \ p \in \mathcal{C}^1(\overline{Q})$ seien klassische Lösungen von

 $\operatorname{div} \mathbf{y} = 0$ $\frac{\partial \mathbf{y}}{\partial t} + (\mathbf{y} \cdot \nabla)\mathbf{y} - \frac{1}{Re}\Delta \mathbf{y} + \nabla p = \mathbf{f} \quad \text{in } \Omega$ $\mathbf{y}(0) = \mathbf{y}_0 \text{ in } \Omega ; \ \mathbf{y} = \mathbf{0} \text{ auf } \Gamma \times (0, T)$

Wähle Testfunktion $\mathbf{v} \in \mathcal{V} := \{ \mathbf{y} \in \mathcal{C}_0^{\infty}(\Omega) \mid \text{div } \mathbf{y} = 0 \}.$ \Rightarrow Multiplikation mit \mathbf{v} , Integration, partielle Integration:

$$\frac{d}{dt} \int_{\Omega} \mathbf{y}(\mathbf{x}, t) \mathbf{v}(\mathbf{x}) \ d\mathbf{x} + \frac{1}{Re} \int_{\Omega} \nabla \mathbf{y} \cdot \nabla \mathbf{v} \ d\mathbf{x} + \int_{\Omega} (\mathbf{y} \cdot \nabla) \mathbf{y} \cdot \mathbf{v} \ d\mathbf{x}$$
$$\underbrace{-\int_{\Omega} p(\mathbf{x}, t) \operatorname{div} \mathbf{v}(\mathbf{x}) \ d\mathbf{x} + \int_{\Gamma} p(\mathbf{v} \cdot \eta) \ dS}_{= 0} = \int_{\Omega} \mathbf{f}(\mathbf{x}, t) \mathbf{v}(\mathbf{x}) \ d\mathbf{x}.$$

Umformulierung: Für $\mathbf{v} \in \mathcal{V}$ gilt

$$\frac{d}{dt}(\mathbf{y},\mathbf{v})_{L^2(\Omega)} + \frac{1}{Re}(\mathbf{y},\mathbf{v})_{H^1} + b(\mathbf{y},\mathbf{y},\mathbf{v}) = (\mathbf{f},\mathbf{v})_{L^2(\Omega)}$$

mit dem Skalarprodukt

$$(\mathbf{y},\mathbf{v})_{H^1} = \int_{\Omega}
abla \mathbf{y}(\mathbf{x}) \cdot
abla \mathbf{v}(\mathbf{x}) \,\, d\mathbf{x}$$

und der Trilinearform

$$b(\mathbf{u},\mathbf{v},\mathbf{w}) := \int_{\Omega} (\mathbf{u}\cdot
abla) \mathbf{v}\cdot \mathbf{w} \; d\mathbf{x}.$$

 \Rightarrow Integral darstellung macht bereits Sinn für allgemeinere Lösungsräume.

Man definiert die Räume

$$V := \overline{\mathcal{V}}^{\|\cdot\|_{H^1_0(\Omega)}} \quad \text{und} \quad H := \overline{\mathcal{V}}^{\|\cdot\|_{L^2(\Omega)}}.$$

Es werden Funktionen $\mathbf{y}:[0,\,T]\to V$ betrachtet.

• Einführung von Treppenfunktionen, Messbarkeits- und Integralbegriff

 \Rightarrow Bochner-Räume $L^p(0, T; V)$

• Distributionelle Zeitableitung $\frac{d}{dt}$

Definition des Zustandsoperators \mathbf{e} : $W \to Z^*$ mit

 $W := \{ \mathbf{y} \in L^2(0, T; V) \text{ mit distributioneller Zeitableitung} \}$ $Z := L^2(0, T; V) \times H$

Einleitung 00000	Modellierung ○○○○○○○○○●	Optimalsteuerung 00000000000	Numerische Simulation	Beispiele 00000000	Ausblick 000	
Schwache Formu	llierung					
Existenz- und Eindeutigkeitsresultate						

Satz (Existenz- und Eindeutigkeitssatz)

Bei Dirichlet-0-Randbedingungen gilt: Für jede Anfangsbedingung $\mathbf{u}_0 \in H$ existiert genau eine schwache Lösung $\mathbf{y} \in W$ der Navier-Stokes-Gleichungen.

Einleitung 00000	Modellierung 00000000000	Optimalsteuerung •0000000000	Numerische Simulation	Beispiele 00000000	Ausblick 000
Differentiate-th	en-Discretize				
Glieder	ung				

- Einleitung Adjungiertenmethode
- 2 Modellierung Navier-Stokes-Gleichungen Schwache Formulierung

Optimalsteuerung Differentiate-then-Discretize

 Numerische Simulation Zeitdiskretisierung Ortsdiskretisierung

5 Beispiele

Numerische Simulation Optimale Steuerung Steuerung über lange Zeitinte

6 Ausblick

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
		000000000			
Differentiate-then-Discretize					

Welche Gestalt hat die Adjungiertengleichung

 $\mathbf{e}_{\mathbf{y}}^{*}(\mathbf{y}, u)\lambda + J_{\mathbf{y}}(\mathbf{y}, u) = 0?$

 \rightsquigarrow Steuereinflüsse?

 \rightsquigarrow Wie ist das Zielfunktional $J(\mathbf{y}, u)$ definiert?

Strömungsbeeinflussung: Überblick

Zielsetzungen:

• Tracking-Type-Zielfunktionen

Steuerung der Strömung, so dass sie "möglichst gleich" einem Strömungsfeld $\mathbf{z}(\mathbf{x}, t)$ / Temperaturfeld $\theta_d(\mathbf{x}, t)$ ist. \sim Parameteridentifikation

 \rightsquigarrow Vermeidung heißer Zonen

- Minimierung des Strömungswiderstandes eines angeströmten Körpers
- Minimierung der Wirbelstärke als Ansatz zur Vermeidung von Turbulenz

Einleitung 00000	Modellierung 00000000000	Optimalsteuerung 000●0000000	Numerische Simulation	Beispiele 00000000	Ausblick	
Differentiate-t	hen-Discretize					
Steuereinflüsse						

Verteilte Steuerung:

i. Verteilte Kraft:

Vorgabe eines Kraftterms u_F in den Impulsgleichungen.

- ii. Wärmequellen: Vorgabe eines Quellterms u_Q in der Energiegleichung. Randsteuerung:
- iii. Vorgabe von Geschwindigkeiten am Rand $\mathsf{F}\times(0,T)$

$$\mathbf{y}(\mathbf{x},t) = u(\mathbf{x},t) \quad \text{für } (\mathbf{x},t) \in \mathbf{\Gamma} \times (0,T).$$

iv. Heizung / Kühlung am Randstück $\Gamma \times (0, T)$:

$$-\kappa\eta\nabla\theta = q \quad \text{oder} \quad \theta = \theta_c \quad \forall (\mathbf{x}, t) \in \Gamma \times (0, T)$$

 v. Sonstige Steuereinflüsse: Steuerung durch Schubspannungen am Rand; Veränderung der Geometrie.

00000 Differentiate-then	0000000000000000	000000000	00000000000	00000000	000
Steuerei	nflüsse				

Verteilte Steuerung:

i. Verteilte Kraft:

Vorgabe eines Kraftterms u_F in den Impulsgleichungen.

ii. Wärmequellen: Vorgabe eines Quellterm
s u_Q in der Energiegleichung. Randsteuerung:

iii. Vorgabe von Geschwindigkeiten am Rand $\mathsf{F}\times(0,T)$

 $\mathbf{y}(\mathbf{x},t) = u(\mathbf{x},t) \quad \text{für } (\mathbf{x},t) \in \Gamma \times (0,T).$

iv. Heizung / Kühlung am Randstück $\Gamma \times (0, T)$:

 $-\kappa\eta\nabla\theta = q \quad \text{oder} \quad \theta = \theta_c \quad \forall (\mathbf{x}, t) \in \Gamma \times (0, T)$

v. Sonstige Steuereinflüsse:
 Steuerung durch Schubspannungen am Rand;
 Veränderung der Geometrie.

Tracking-Type-Zielfunktional

Tracking-Type-Problem mit Steuerung durch verteilte Kraft und Wärmequellen

Minimiere das Zielfunktional

$$J(\mathbf{y}, p, \theta, u_F, u_Q) := \frac{\alpha_1}{2} \int_Q \|\mathbf{y} - \mathbf{z}\|_2^2 \, d\mathbf{x} \, dt + \frac{\alpha_2}{2} \int_Q \|\theta - \theta_d\|_2^2 \, d\mathbf{x} \, dt \\ + \frac{\alpha_3}{2} \|u_F\|_{L^2(Q)}^2 + \frac{\alpha_4}{2} \|u_Q\|_{L^2(Q)}^2$$

unter Beachtung der Zustandsgleichungen

$$\mathbf{y}_{t} + (\mathbf{y} \cdot \nabla)\mathbf{y} - \frac{1}{Re}\Delta\mathbf{y} + \nabla p = -\gamma \mathbf{g}\theta + \mathbf{u}_{F}$$

div $\mathbf{y} = 0$
 $\theta_{t} + (\mathbf{y} \cdot \nabla)\theta - \frac{1}{Re}\frac{1}{Pr}\Delta\theta = \mathbf{u}_{Q}$

Berechnung der Adjungiertengleichung

 $\mathbf{e}_{\mathbf{y}}^{*}(\mathbf{y}, u)\lambda + J_{\mathbf{y}}(\mathbf{y}, u) = 0.$

- Der Term $\mathbf{e}^*_{\mathbf{v}}$ wird mittels (PI) berechnet.
- Die Adjungiertengleichung kann wieder als semilineare parabolische PDgl. betrachtet werden.
- Lösung rückwärts in der Zeit.
- Diskretisierung analog zu den Navier-Stokes-Gleichungen.

Einleitung 00000	Modellierung 00000000000	Optimalsteuerung 000000000000	Numerische Simulation	Beispiele Ausblick
Differentiate-then	-Discretize			
Optimal	itätssysten	n		
		Zustar	ndsgleichungen	
	$\mathbf{y}_t - Re^{-1}\Delta \mathbf{z}$	$\mathbf{y} + (\mathbf{y} \cdot abla) \mathbf{y} +$	$+\nabla p - u_F + \gamma \mathbf{g}\theta =$	= 0
			$-\operatorname{div} \mathbf{y} =$	= 0
	$\theta_t +$	$(\mathbf{y}\cdot\nabla)\theta-Re$	$e^{-1}Pr^{-1}\Delta\theta - u_Q =$	= 0
	Anfar	ngs- und Rar	ndbedingungen	
$\mathbf{y}(0)$ =	$=\mathbf{y}_0, \theta(0) = \theta$	θ_0 in Ω ;	$\mathbf{y} = 0$, $\theta = \theta_d$ at	If $\Gamma \times (0, T)$
	Adjung	gierte Zustai	ndsgleichungen	
$-\mu_t - Re^-$	$^{-1}\Delta\mu - (\mathbf{y}\cdot\nabla$	$^{7}) \mu + (\nabla \mathbf{y})^{T} \mu$	$u + abla \xi + (abla heta) \mu_{ heta} =$	$= - \alpha_1 \left(\mathbf{y} - \mathbf{z} \right)$
			$-\operatorname{div}\mu =$	= 0
	$\gamma \mathbf{g} \mu - (\mu_{ heta})$	$t - Re^{-1}Pr^{-1}$	$\Delta \mu_{ heta} + (\mathbf{y} \cdot \nabla) \mu_{ heta} =$	$= - \alpha_2 \left(\theta - \theta_d \right)$
	Anfar	ngs- und Rar	ndbedingungen	

 $\mu(T) = 0$, $\mu_{\theta}(T) = 0$ in Ω ; $\mu = 0$, $\mu_{\theta} = 0$ auf $\Gamma \times (0, T)$

Einleitung 00000	Modellierung 00000000000	Optimalsteuerung 000000●0000	Numerische Simulation	Beispiele Ausblick
Differentiate-th	en-Discretize			
Optima	alitätssyster	n		
		Zusta	ndsgleichungen	
	$\mathbf{y}_t - Re^{-1}\Delta$	$\mathbf{y} + (\mathbf{y} \cdot abla) \mathbf{y} +$	$+\nabla p - u_F + \gamma \mathbf{g} \theta =$	= 0
			$-\operatorname{div} \mathbf{y} =$	= 0
	$ heta_t$ +	$-(\mathbf{y}\cdot\nabla)\theta-R$	$e^{-1}Pr^{-1}\Delta\theta - u_Q =$	= 0
	Anfa	ngs- und Ra	ndbedingungen	
$\mathbf{y}(0)$	$= \mathbf{y}_0, \theta(0) =$	$ heta_0 \ ext{ in } \Omega$;	$\mathbf{y} = 0$, $\theta = \theta_d$ at	uf $\Gamma \times (0, T)$
	Adjun	gierte Zusta	ndsgleichungen	
$-\mu_t - Re$	$e^{-1}\Delta\mu - (\mathbf{y}\cdot\mathbf{y})$	$\nabla (\mathbf{\mu}) \mu + (\nabla \mathbf{y})^T \mu$	$\mu + abla \xi + (abla heta) \mu_{ heta} =$	$= - \alpha_1 \left(\mathbf{y} - \mathbf{z} \right)$
			$-\operatorname{div}\mu$ =	= 0
	$\gamma \mathbf{g} \mu - (\mu_{\theta}$	$)_t - Re^{-1}Pr^{-1}$	$\Delta \mu_{ heta} + (\mathbf{y} \cdot abla) \mu_{ heta} =$	$= - lpha_2 \left(heta - heta_d ight)$
	Anfa	ngs- und Ra	ndbedingungen	
$\mu(T) =$	$=0, \mu_{\theta}(T) =$	0 in Ω ;	$\mu = 0$, $\mu_{\theta} = 0$ a	uf $\Gamma \times (0, T)$
Einleitung 00000	Modellierung 00000000000	Optimalsteuerung 00000000000	Numerische Simulation	Beispiele Ausblick 00000000000
---------------------	---	--	---	--
Differentiate-th	en-Discretize			
Optima	alitätssyster	n		
		Zusta	ndsgleichungen	
	$\mathbf{y}_t - Re^{-1}\Delta$	$\mathbf{x} \mathbf{y} + (\mathbf{y} \cdot abla) \mathbf{y} + \mathbf{y} \cdot \nabla \mathbf{y}$	$+\nabla p - u_F + \gamma \mathbf{g} \theta =$	= 0
			$-\operatorname{div} \mathbf{y}$ =	= 0
	$ heta_t$ +	$-(\mathbf{y}\cdot abla) \theta - R$	$e^{-1}Pr^{-1}\Delta\theta - u_Q =$	= 0
	Anfa	ngs- und Rai	ndbedingungen	
$\mathbf{y}(0)$	$= \mathbf{y}_0, \theta(0) =$	$ heta_0$ in Ω ;	$\mathbf{y} = 0$, $\theta = \theta_d$ a	uf $\Gamma \times (0, T)$
	Adjun	gierte Zusta	ndsgleichungen	
$-\mu_t - Re$	$e^{-1}\Delta\mu - (\mathbf{y}\cdot\mathbf{y})$	$ abla) \mu + \left(abla \mathbf{y} ight)^T ho$	$\mu + abla \xi + (abla heta) \mu_{ heta} =$	$= -\alpha_1 (\mathbf{y} - \mathbf{z})$
			$-\operatorname{div}\mu$ =	= 0
	$\gamma \mathbf{g} \mu - (\mu_{ heta}$	$)_t - Re^{-1}Pr^{-1}$	$\Delta \mu_{ heta} + (\mathbf{y} \cdot abla) \mu_{ heta} =$	$= -\alpha_2 \left(\theta - \theta_d \right)$
	Anfa	ngs- und Rai	ndbedingungen	
$\mu(T) =$	$= 0$, $\mu_{\theta}(T) =$	$= 0 \text{in } \Omega ;$	$\mu = 0$, $\mu_{\theta} = 0$ a	uf $\Gamma \times (0, T)$

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
		00000000000			
Differentiate-th	en-Discretize				
Berech	nung des G	radienten			

Die Gleichung

$$\hat{J}'(u)(\delta u) = (J_u(\mathbf{y}, u), \delta u)_{U^*, U} + (\mathbf{e}^*_u(\mathbf{y}, u)\lambda, \delta u)_{U^*, U}$$

reduziert sich zu

$$\hat{J}'(u_F, u_Q)(v_F, v_Q) = (-\mu + \alpha_3 u_F, v_F)_{L^2(0, T; L^2(\Omega))} + (-\mu_\theta + \alpha_4 u_Q, v_Q)_{L^2(0, T; L^2(\Omega))}.$$

 $\rightsquigarrow \textit{Diskretisierung?}$

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
		00000000000			
Differentiate-then-I	Discretize				

Diskretisierung des Optimalsteuerungsproblems

1. Parametrisierung der Steuerung:

Die Steuerung u wird durch eine Funktion u_h ersetzt, die nur von endlich vielen Parametern abhängt: u_{Fh} , u_{Qh} : stückweise konstante Gitterfunktionen.

2. Diskretisierungsverfahren für die Differentialgleichungen:

Z.B. mit staggered grid, Differenzenverfahren.

3. Optimierer:

Diskretisierung des Zielfunktionals: $\hat{J}_h(u_{Fh}, u_{Qh})$. $\rightsquigarrow diskretes L^2$ -Skalarprodukt!

Diskretisierung der Gradientendarstellung.

 $\rightsquigarrow "differentiate-then-discretize"$

Das entstandene nichtlineare Optimierungsproblem wird mit einem geeigneten Verfahren gelöst.

Optimi	erungsverfa	hren			
Differentiate-th	nen-Discretize				
		00000000000			
Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick

Unrestringiertes Optimierungsproblem

Finde Gitterfunktionen (u_{Fh}, u_{Qh}) , so dass die Zielfunktion

$$\widehat{J}_h(u_{Fh}, u_{Qh}) := J_h\left(\left(\mathbf{y}_i, p_i, heta_i
ight) \left(u_{Fh}, u_{Qh}
ight), u_{Fh}, u_{Qh}
ight)$$

minimal wird.

Mögliche Lösungsverfahren:

- Gradientenverfahren
- Inverses LBFGS-Verfahren

Optimi	ierungsverfa	hren			
Differentiate-th	hen-Discretize				
		00000000000000		00000000	
Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick

Unrestringiertes Optimierungsproblem

Finde Gitterfunktionen (u_{Fh}, u_{Qh}) , so dass die Zielfunktion

$$\widehat{J}_h(u_{Fh}, u_{Qh}) \coloneqq J_h\left(\left(\mathbf{y}_i, p_i, heta_i
ight) \left(u_{Fh}, u_{Qh}
ight), u_{Fh}, u_{Qh}
ight)$$

minimal wird.

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
		0000000000			
Differentiate-th	en-Discretize				
Schritt	weitensteue	erung			

Optimale Schrittweite in Richtung d:

$$s^* = \arg \min_{s>0} I(s)$$
, $I(s) := \hat{J}_h(\mathbf{x}^k + s\mathbf{d})$

Approximation durch ein quadratisches Modell

$$I_2: \ \mathbb{R} o \mathbb{R} \ , \quad I_2(s) := \hat{J}_h(\mathbf{x}^k) + as + bs^2$$

Berechnung der Koeffizienten durch einen Probeschritt.

Minimum der Modellfunktion bei

$$s^* = -rac{(
abla \hat{J}_h(\mathbf{x}^k), \mathbf{d})}{2(\hat{J}_h(\mathbf{x}^k+\mathbf{d}) - \hat{J}_h(\mathbf{x}^k) - (
abla \hat{J}_h(\mathbf{x}^k), \mathbf{d}))}$$

Einleitung 00000	Modellierung 00000000000	Optimalsteuerung 00000000000	Numerische Simulation ●0000000000000	Beispiele 000000000	Ausblick 000
Zeitdiskretisieru	Ing				
Glieder	ung				

- Einleitung Adjungiertenmethode
- 2 Modellierung Navier-Stokes-Gleichungen Schwache Formulierung
- 3 Optimalsteuerung Differentiate-then-Discretize
- 4 Numerische Simulation
 - Zeitdiskretisierung
 - Ortsdiskretisierung
- **5** Beispiele
 - Numerische Simulation
 - Optimale Steuerung
 - Steuerung über lange Zeitintervalle
- 6 Ausblick

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
			000000000000		
Zeitdiskretisierung					

Diskretisierung der Zustandsgleichungen in der klassischen Formulierung mit den Variablen \mathbf{u} , p, θ

Adjungierte Zustandsgleichung: Diskretisierung auf analoge Weise.

Die Diskretisierung b
zgl. der Zeitvariablen terfolgt durch ein Euler-Verfahren.

• Eulersches Polygonzugverfahren:

$$\mathbf{y}_t \approx rac{1}{\delta t} \left(\mathbf{y}(\mathbf{x}, t + \delta t) - \mathbf{y}(\mathbf{x}, t)
ight)$$

• Semi-implizites Verfahren:

$$\frac{\mathbf{y}^{n+1} - \mathbf{y}^n}{\delta t} - Re^{-1} \Delta \mathbf{y}^{n+1} + (\mathbf{y}^n \cdot \nabla) \mathbf{y}^n + \nabla p^{n+1} = -\gamma \mathbf{g} \theta^{n+1}$$

Die semi-implizite Zeitdiskretisierung ergibt

$$(I - \delta t R e^{-1} \Delta) \mathbf{y}^{n+1} = -\delta t \nabla p^{n+1} + \mathbf{g} \quad \text{mit } \nabla \cdot \mathbf{y}^{n+1} = 0$$

mit der Hilfsvariablen

$$\mathbf{g} := \mathbf{y}^n - \delta t (\mathbf{y}^n \cdot \nabla) \mathbf{y}^n - \delta t \gamma \mathbf{g} \theta^{n+1}.$$

Der Term \mathbf{g} enthält nur bekannte Größen, wenn zuerst die Energiegleichung

$$\left(I - \delta t \frac{1}{Re} \frac{1}{Pr} \Delta\right) \theta^{n+1} = \theta^n - \delta t \left(\mathbf{y}^n \cdot \nabla\right) \theta^n$$

gelöst wird.

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
			0000000000000000		
Zeitdiskretisierun	g				
C I I	1 I I I	A .			

Schurkomplement-Ansatz

Räumliche Diskretisierung: Δ_h : Laplace-Operator $S := I - \delta t R e^{-1} \Delta_h$ $B := \nabla_h$: Gradient

 $-B^T = (\nabla_h \cdot)$: Divergenzoperator

Das Problem lautet also

$$\left(\begin{array}{cc} S & B \\ B^T & 0 \end{array}\right) \left(\begin{array}{c} \mathbf{y}^{n+1} \\ \delta t \ p^{n+1} \end{array}\right) = \left(\begin{array}{c} \mathbf{g} \\ 0 \end{array}\right).$$

Äquivalent dazu ist die Schurkomplement-Formulierung:

Löse
$$B^T S^{-1} \left(\mathbf{g} - \delta t B p^{n+1} \right) = 0$$

und $\mathbf{y}^{n+1} = S^{-1} \left(\mathbf{g} - \delta t B p^{n+1} \right).$

Die in jedem Zeitschritt neu zu berechnende Gleichung

$$\delta t B^T S^{-1} B p^{n+1} = B^T S^{-1} \mathbf{g}$$

wird mit einem vorkonditionierten CG-Verfahren gelöst.

Vorkonditionierer für $B^T S^{-1} B$

Randbedingungen:

$$\mathbf{y} = \mathbf{g}_0 \quad \text{auf } \mathsf{\Gamma}_0 \subseteq \partial \Omega$$
$$\bar{\nu} \frac{\partial \mathbf{y}}{\partial \eta} = \mathbf{g}_1 + \eta \cdot \delta t \cdot p \quad \text{auf } \mathsf{\Gamma}_1 = \partial \Omega \setminus \mathsf{\Gamma}_0$$
$$M \mathbf{r}_0 := \bar{\nu} \mathbf{r}_0 + \bar{\alpha} \varphi_0$$

mit dem Vektor φ_0 berechnet durch

$$-\Delta_h \varphi_0 = \mathbf{r}_0 \quad \text{in } \Omega$$
$$\frac{\partial \varphi_0}{\partial \eta} = \mathbf{0} \quad \text{auf } \Gamma_0 \ , \ \varphi_0 = \mathbf{0} \quad \text{auf } \Gamma_1.$$

Effekt des Vorkonditionierers

Parameter: Gittergröße 20×20 , Nischenströmung mit Re = 100, $\bar{u} = 1$

Abb.: Entwicklung des Residuums $\|\mathbf{r}\|_2^2$.

Einleitung 00000	Modellierung 00000000000	Optimalsteuerung 00000000000	Numerische Simulation	Beispiele 00000000	Ausblick
Ortsdiskretisieru	ng				
Glieder	inσ				

 Einleitung Adjungiertenmethode

Б

- 2 Modellierung Navier-Stokes-Gleichungen Schwache Formulierung
- 3 Optimalsteuerung Differentiate-then-Discretize
- Output State And A State A
 - Zeitdiskretisierung Ortsdiskretisierung
- **5** Beispiele
 - Numerische Simulation Optimale Steuerung Steuerung über lange Zeitinterva
- 6 Ausblick

Approximation der Differentialoperatoren

• Diskreter Gradient $\nabla_h :$ Vorwärtsdifferenz

$$\nabla_{h}: \quad p \mapsto \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} \\
u_{ij} = \frac{1}{\delta x} (p_{i+1,j} - p_{ij}) \quad \text{für } i = 1, ..., n_{x} - 1 , \ j = 1, ..., n_{y} \\
v_{ij} = \frac{1}{\delta y} (p_{i,j+1} - p_{ij}) \quad \text{für } i = 1, ..., n_{x} , \ j = 1, ..., n_{y} - 1.$$

- Divergenz div_h: Rückwärtsdifferenz.
- Diskreter Laplace-Operator Δ_h :

$$\begin{split} \tilde{u}_{ij} &= \left[\frac{\partial^2 \mathbf{u}}{\partial x^2}\right]_{ij} + \left[\frac{\partial^2 \mathbf{u}}{\partial y^2}\right]_{ij} & \text{für } i = 1, ..., n_x - 1 \ , \ j = 1, ..., n_y \\ \tilde{v}_{ij} &= \left[\frac{\partial^2 \mathbf{v}}{\partial x^2}\right]_{ij} + \left[\frac{\partial^2 \mathbf{v}}{\partial y^2}\right]_{ij} & \text{für } i = 1, ..., n_x \ , \ j = 1, ..., n_y - 1 \end{split}$$

 Einleitung
 Modellierung
 Optimalsteuerung
 Numerische Simulation
 Beispiele
 Ausblick

 0000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000

 Ortsdiskretisierung
 0000000000
 0000000000
 0000000000
 0000000000

Diskretisierung auf versetzten Gittern

 n_x , n_y : Anzahl der Gitterpunkte in *x*und *y*-Richtung.

 $\mathbf{u} \in \mathbb{R}^{(n_x-1) \times n_y}$ $\mathbf{v} \in \mathbb{R}^{n_x \times (n_y-1)}$ $\mathbf{p}, \theta \in \mathbb{R}^{n_x \times n_y}$

UHI i1

Numer	ische Besor	derheiten			
Ortsdiskretisier	ung				
Einleitung 00000	Modellierung 00000000000	Optimalsteuerung 00000000000	Numerische Simulation	Beispiele 000000000	Ausblick

- Numerische Behandlung des konvektiven Terms
- Neumann-Bedingungen
- Zulässige Zeitschrittweiten

Gesamtalgorithmus : Simulation

Gegeben : Anfangswerte \mathbf{y}_0 , θ_0 . Iterationszahl N.

```
 \begin{array}{l} p^0 \leftarrow \mathbf{0}, \ t \leftarrow 0. \\ \mathbf{for} \ i := 0, 1, 2, ..., N \ \mathbf{do} \\ \end{array} \\ \begin{array}{l} \text{Prüfe die Gültigkeit der Schrittweite } \delta t, \\ \text{ggf. STOP mit Fehlermeldung.} \\ \text{Berechne } \theta^{n+1}. \\ \text{Berechne rechte Seite der Impulsgleichungen } \mathbf{g}. \\ \text{Löse die Schurkomplement-Gleichung} \end{array}
```

$$\delta t B^T S^{-1} B p^{n+1} = B^T S^{-1} \mathbf{g}$$

mit dem PCG-Algorithmus und berechne damit den neuen Geschwindigkeitsvektor \mathbf{y}^{n+1} . $t \leftarrow t + \delta t$. end

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
				• 0 0000000	
Numerische Sir	mulation				
Glieder	ung				

- Einleitung Adjungiertenmethode
- 2 Modellierung Navier-Stokes-Gleichungen Schwache Formulierung
- 3 Optimalsteuerung Differentiate-then-Discretize
- A Numerische Simulation
 Zeitdiskretisierung
 Ortsdiskretisierung

6 Beispiele

Numerische Simulation

Optimale Steuerung Steuerung über lange Zeitintervalle

6 Ausblick

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
				0000000000000000	
Numerische Simulation					

Testrechnung: Nischenströmung

Abb.: Nischenexperiment, Gittergröße 128×128 .

Parameter:

$$\Omega = [0, 1]^2$$
, $Re = 1000$, $\mathbf{g} = \mathbf{0}$, $\bar{u} = 2$.

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick		
				00000000			
Optimale Steuerung							
Glieder	ันทฐ						

- Einleitung Adjungiertenmethode
- 2 Modellierung Navier-Stokes-Gleichungen Schwache Formulierung
- 3 Optimalsteuerung Differentiate-then-Discretize
- A Numerische Simulation Zeitdiskretisierung Ortsdiskretisierung

6 Beispiele

Numerische Simulation Optimale Steuerung

Steuerung über lange Zeitintervalle

6 Ausblick

Berechnung des Gradienten

Vergleich des Adjungierten-Ansatzes mit einer Approximation durch finite Differenzen: Wahl einer Testrichtung δu :

$$\delta u(\mathbf{x}) = e^{\frac{1}{4t^2 - 1}}, \quad t := \|\mathbf{x} - \left(\frac{1}{2}, \frac{1}{2}\right)\|_2.$$

 $\Rightarrow \text{Berechnung von } \nabla \hat{J}(k \cdot \delta u) \cdot \delta u, \ k = 1, 2, \dots$

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick			
				000000000				
Optimale Steue	Optimale Steuerung							
Parameteridentifikation								
Steuerungsmechanismus: Verteilte Kraft								

Daten des Strömungsfeldes:

$$Re = 10$$
 ; $T = 2$; $\Omega = [0, 1]^2$

Gesucht: Steuereinfluss $\bar{u}_F((0.75, 0.5)^T, \cdot) = (10, 0)^T$

Energiegleichung bleibt unberücksichtigt:

$$J(\mathbf{y}, p, u_Q) := \frac{\alpha_1}{2} \int_Q \|\mathbf{y} - \mathbf{z}\|_2^2 \, d\mathbf{x} \, dt + \frac{\alpha_3}{2} \|u_F\|_{L^2(Q)}^2, \quad \alpha_1 = 10, \ \alpha_3 := 1$$

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick				
				000000000					
Optimale Steue	Optimale Steuerung								
Parameteridentifikation									

Daten des Strömungsfeldes:

$$Re = 10$$
 ; $T = 2$; $\Omega = [0, 1]^2$

Gesucht: Steuereinfluss $\bar{u}_F((0.75, 0.5)^T, \cdot) = (10, 0)^T$

Energiegleichung bleibt unberücksichtigt:

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick			
				000000000	000			
Optimale Steue	Optimale Steuerung							
Parameteridentifikation								
Steuerungsmechanismus: Verteilte Kraft								

Daten des Strömungsfeldes:

$$Re = 10$$
 ; $T = 2$; $\Omega = [0, 1]^2$

Gesucht: Steuereinfluss $\bar{u}_F((0.75, 0.5)^T, \cdot) = (10, 0)^T$

Energiegleichung bleibt unberücksichtigt:

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
				000000000000	
Optimale Steuer	ing				
	_				

Umkehrung eines Wirbels

Optimalsteuerung des Strömungsfeldes:

$$Re=10$$
 ; $Pr=7$; $\gamma=0.02$; $T=2$; $\Omega=[0,1]^2$

Gewünschte Strömung $\mathbf{z}(\mathbf{x}, t)$ im Zielfunktional:

$$egin{aligned} z(\mathbf{x},t) := \left[egin{aligned} -arphi_{x_2}(t,x_1,x_2) \ arphi_{x_1}(t,x_1,x_2) \end{array}
ight] \end{aligned}$$

mit der Stromfunktion φ

$$\varphi(t, x_1, x_2) := \theta(t, x_1)\theta(t, x_2) , \quad \theta(t, y) := (1 - y)^2 (1 - \cos 2\pi y t)$$

Einleitung Modellierung Optimalsteuerung Oversiehe Simulation Optimalsteuerung Optimalsteuerung Oversiehe Simulation Oversiehe Ausblick Oversiehe Steuerung Optimale Steuerung Optimale Steuerung Eines Wirbels Steuerungsmechanismus: Heizung / Kühlung

Zielfunktional:

$$J(\mathbf{y}, p, \theta, u_Q) := \frac{\alpha_1}{2} \int_Q \|\mathbf{y} - \mathbf{z}\|_2^2 \, d\mathbf{x} \, dt + \frac{\alpha_4}{2} \|u_Q\|_{L^2(Q)}^2,$$
$$\alpha_1 = 10, \ \alpha_4 := 1$$

Einleitung Modellierung Optimalsteuerung Numerische Simulation Optimale Steuerung Optimalsteuerung Optimalsteuerung Optimale Steuerung Optimale Steuerung Eines Wirbels Steuerungsmechanismus: Heizung / Kühlung

Zielfunktional:

$$J(\mathbf{y}, p, \theta, u_Q) := \frac{\alpha_1}{2} \int_Q \|\mathbf{y} - \mathbf{z}\|_2^2 \, d\mathbf{x} \, dt + \frac{\alpha_4}{2} \|u_Q\|_{L^2(Q)}^2,$$
$$\alpha_1 = 10, \ \alpha_4 := 1$$

Einleitung Modellierung Optimalsteuerung Numerische Simulation Optimalsteuerung Optis Optimalsteuerung Optimalsteuerung Optimalsteuerung Optim

Steuerungsmechanismus: Heizung / Kühlung

Zielfunktional:

$$J(\mathbf{y}, p, \theta, u_Q) := \frac{\alpha_1}{2} \int_Q \|\mathbf{y} - \mathbf{z}\|_2^2 \, d\mathbf{x} \, dt + \frac{\alpha_4}{2} \|u_Q\|_{L^2(Q)}^2,$$
$$\alpha_1 = 10, \ \alpha_4 := 1$$

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
				000000000000000000000000000000000000000	
Optimale Steuerun	g				

Vermeidung heißer Zonen

Geometrie des Nischenproblems: $\Omega = [0, 1]^2$, Re = 10.

$$J(\mathbf{y}, p, \theta, u_F, u_Q) := \frac{\alpha_3}{2} \int_Q \|\theta - \theta_d\|_2^2 \, d\mathbf{x} \, dt + \frac{\alpha_6}{2} \|u_Q\|_{L^2(Q)}^2$$

mit $\alpha_3 = 1000, \, \alpha_6 = 0.01, \, \theta_d \equiv \mathbf{0}.$

(a) ohne Steuerung.

Vermeidung heißer Zonen

Geometrie des Nischenproblems: $\Omega = [0, 1]^2$, Re = 10.

$$J(\mathbf{y}, p, \theta, u_F, u_Q) := \frac{\alpha_3}{2} \int_Q \|\theta - \theta_d\|_2^2 \, d\mathbf{x} \, dt + \frac{\alpha_6}{2} \|u_Q\|_{L^2(Q)}^2$$

mit $\alpha_3 = 1000, \ \alpha_6 = 0.01, \ \theta_d \equiv \mathbf{0}.$

Abb.: Plot des Temperaturfeldes (t = 2.0).

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
				00000000	000
Steuerung über	lange Zeitintervalle				
Glieder	ung				
	1.*/				

- Einleitung Adjungiertenmethode
- 2 Modellierung Navier-Stokes-Gleichungen Schwache Formulierung
- 3 Optimalsteuerung Differentiate-then-Discretize
- A Numerische Simulation
 Zeitdiskretisierung
 Ortsdiskretisierung

6 Beispiele

- Numerische Simulation Optimale Steuerung Steuerung über lange Zeitintervalle
- 6 Ausblick

Nachteil des Optimierungsverfahrens:

• Für die Berechnung der adjungierten Gleichung müssen sämtliche Ergebnisse der Zustandsgleichungen im Speicher gehalten werden!

Lösungsansätze:

- *checkpointing*-Strategie
- Betrachtung als *closed loop*-Problem ⇒ *Receding Horizon Control.*

Einleitung Modellierung 00000 000000000 Optimalsteuerung

Numerische Simulation

Beispiele Ausblick

Steuerung über lange Zeitintervalle

Testrechnung: Vermeidung heißer Stellen

Abb.: Vergleich zwischen der Optimalsteuerung nach 30 und 60 Iterationen und *receding horizon control.* Oben: Abweichung vom Temperaturfeld θ_d , unten: Verlauf der Steuerung u_Q (t = 1.9).

Zusammenfassung und Ausblick

In diesem Vortrag:

- Modellierung + Simulation der inkompressiblen NSE.
- Optimalsteuerung.

...nicht erwähnt:

- Allgemeineres Zielfunktional.
- Randsteuerung.
- Existenzaussagen für optimale Steuerung.

Weitere Untersuchungen:

- Numerisches Verfahren: Fehler + Stabilität?
- Zusätzliche physikalische Effekte: 3D, Kompressibilität, ...

Einleitung	Modellierung	Optimalsteuerung	Numerische Simulation	Beispiele	Ausblick
00000	0000000000	0000000000	000000000000	000000000000	

