Transgression of gauge group cocycles Locally smooth 3-cocycles, gerbes, category of CAR representations

Jouko Mickelsson

Department of Mathematics and Statistics University of Helsinki

Hamburg, February 16 - 20, 2015, "Infinite-Dimensional Structures in Higher Geometry and Representation Theory"

Jouko Mickelsson and Stefan Wagner: Third group cohomology and gerbes over Lie groups (in preparation)

Friedrich Wagemann and Christoph Wockel: A cocycle model for topological and Lie group cohomology. Trans. Amer. Math. Soc. 367 (2015), no. 3, 1871 - 1909.

Saunders Mac Lane: *Homology.* Die Grundlehren der Mathematischen Wissenschaften, Band 114. Springer Verlag (1963)

Jouko Mickelsson: From gauge anomalies to gerbes and gerbal actions. arXiv:0812.1640. Proceedings of "Motives, Quantum Field Theory, and Pseudodifferential Operators", Boston University, June 2 13, 2008. Clay Math. Inst. Publ. vol. 12

- 13, 2008. Clay Math. Inst. Publ. vol. 12.

・ロト ・ 理 ト ・ ヨ ト ・

 L^2 condition on the curvature form of a Yang-Mills connection: The connection form at infinity in \mathbb{R}^n is a pure gauge mod terms of order $1/r^{n/2+\epsilon}$. Denote by \mathcal{G}_n the group of smooth based maps $S^n \to G$. Up to homotopy,the moduli space $\mathcal{A}/\mathcal{G}_n$ is then parametrized by $Map(S^{n-1}, G)$. Up to homotopy, the bundle $\mathcal{G}_n \to \mathcal{A} \to \mathcal{A}/\mathcal{G}_n$ is then the bundle

$$\mathcal{G}_n \to \mathcal{P} \to Map(S^{n-1}, G)$$

where *P* is contractible and \mathcal{G}_0 acts freely on *P*; restricting everything to based maps we can take *P* as the group of paths f(t) in \mathcal{G}_{n-1} with f(0) = id and we get the fibration

$$\mathcal{G}_n \to \mathcal{P}_n \to \mathcal{G}_{n-1}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

In particular, for n = 1 we have $\mathcal{G}_1 \rightarrow P_1 \rightarrow G$ a fibaration over the finite dimensional group G, the fiber $\mathcal{G}_1 = \Omega G$ the based loop group.

When *G* is simple compact Lie group ΩG has up to isomorphism a unique central extension $\hat{\Omega}_k G$ for each **level** $k \in \mathbb{Z}$. The extension can be given as a **locally smooth** 2-cocycle $c_2 : \Omega G \times \Omega G \to S^1$. This cocycle is obtained from a class $\omega_3 \in H^3(G, \mathbb{Z})$ which corresponds to a Lie algebra cohomology class in $H^3(\mathfrak{g})$.

So one can ask whether there is a corresponding cocycle in third group cohomology of G. The answer is yes if one considers again the locally smooth cohomology. About the meaning of the 3-cocycle later....

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Relation to the BRS complex

Anomalies in quantized gauge theory can be computed from the BRS double complex. It starts from an even form $\omega^{2n,0}$ which is a characteristic class of a vector bundle over the physical space-time *M*. Locally, we have $\omega^{2n,0} = d\omega^{2n-1,0}$ where $\omega^{2n-1,0}$ is a Chern-Simons form. One continues

$$\delta\omega^{2n-1,0} = d\omega^{2n-2,1}$$

where δ is the coboundary operator in Lie algebra cohomology, here the Lie algebra is the algebra of infinitesimal gauge transformations. Next

$$\delta\omega^{2n-2,1} = d\omega^{2n-3,2}$$

and so on; the second index is the Lie algebra cohomology degree. In particular $\omega^{2n-2,1}$ is the (infinitesimal) gauge anomaly and $\omega^{2n-3,2}$ is the commutator anomaly (in space dimension 2n - 3). Here we want to address the same problem on the level of locally smooth group cocycles.

Jouko Mickelsson

Transgression of gauge group cocycles

C an abelian category, *G* a group $g \in G$, F_g a functor in *C* $i_{g,h} : F_g \circ F_h \to F_{gh}$ an isomorphism $i_{g,hk} \circ i_{h,k}$ and $i_{gh,k} \circ i_{g,h}$ isomorphisms $F_g \circ F_h \circ F_k \to F_{ghk}$ They are not necessarily equal; one can have a *central extension*

 $i_{g,hk} \circ i_{h,k} = \alpha(g,h,k)i_{gh,k} \circ i_{g,h}$ with $\alpha(g,h,k) \in \mathbf{C}^{\times}$ a 3-cocycle

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Let \mathcal{B} be an associative algebra and G a group. Assume that we have a group homomorphism $s : G \to Out(\mathcal{B})$ where $Out(\mathcal{B})$ is the group of outer automorphims of \mathcal{B} , that is, $Out(\mathcal{B}) = Aut(\mathcal{B})/In(\mathcal{B})$, all automorphims modulo the normal subgroup of inner automorphisms.

If one chooses any lift $\tilde{s}: G \to Aut(\mathcal{B})$ then we can write

$$\tilde{s}(g)\tilde{s}(g') = \sigma(g,g')\cdot \tilde{s}(gg')$$

for some $\sigma(g, g') \in In(\mathcal{B})$. From the definition follows immediately the cocycle property

$$\sigma(g,g')\sigma(gg',g'') = [\tilde{s}(g)\sigma(g',g'')\tilde{s}(g)^{-1}]\sigma(g,g'g'')$$

ヘロン 人間 とくほ とくほ とう

Let next *H* be any central extension of In(B) by an abelian group *a*. That is, we have an exact sequence of groups,

$$1 \rightarrow a \rightarrow H \rightarrow \ln(\mathcal{B}) \rightarrow 1.$$

Let $\hat{\sigma}$ be a lift of the map $\sigma : G \times G \to \ln(\mathcal{B})$ to a map $\hat{\sigma} : G \times G \to H$ (by a choice of section $\ln(\mathcal{B}) \to H$). We have then

$$\hat{\sigma}(\boldsymbol{g}, \boldsymbol{g}')\hat{\sigma}(\boldsymbol{g}\boldsymbol{g}', \boldsymbol{g}'') = [\tilde{\boldsymbol{s}}(\boldsymbol{g})\hat{\sigma}(\boldsymbol{g}', \boldsymbol{g}'')\tilde{\boldsymbol{s}}(\boldsymbol{g})^{-1}]$$

 $imes\hat{\sigma}(\boldsymbol{g}, \boldsymbol{g}'\boldsymbol{g}'') \cdot lpha(\boldsymbol{g}, \boldsymbol{g}', \boldsymbol{g}'') ext{ for all } \boldsymbol{g}, \boldsymbol{g}', \boldsymbol{g}'' \in \boldsymbol{G}$

where $\alpha : \mathbf{G} \times \mathbf{G} \times \mathbf{G} \rightarrow \mathbf{a}$.

Here the action of the outer automorphism s(g) on $\hat{\sigma}(*)$ is defined by $s(g)\hat{\sigma}(*)s(g)^{-1}$ = the lift of $s(g)\sigma(*)s(g)^{-1} \in \ln(\mathcal{B})$ to an element in *H*. One can show that α is a 3-cocycle

$$\alpha(g_2, g_3, g_4) \alpha(g_1g_2, g_3, g_4)^{-1} \alpha(g_1, g_2g_3, g_4) \\ \times \alpha(g_1, g_2, g_3g_4)^{-1} \alpha(g_1, g_2, g_3) = 1.$$

< 回 > < 回 > < 回 > … 回

Remark If we work in the category of topological groups (or Lie groups) the lifts above are in general discontinuous; normally, we can require continuity (or smoothness) only in an open neighborhood of the unit element.

Next we construct an example from quantum field theory. Let *G* be a compact simply connected Lie group and *P* the space of smooth paths $f : [0, 1] \rightarrow G$ with initial point f(0) = e, the neutral element, and quasiperiodicity condition $f^{-1}df$ a smooth function.

P is a group under point-wise multiplication but it is also a principal ΩG bundle over *G*. Here $\Omega G \subset P$ is the loop group with f(0) = f(1) = e and $\pi : P \to G$ is the projection to the end point f(1). Fix an unitary representation ρ of *G* in \mathbb{C}^N and denote $H = L^2(S^1, \mathbb{C}^N)$.

・ロト ・回 ト ・ヨト ・ヨト … ヨ

For each polarization $H = H_- \oplus H_+$ we have a vacuum representation of the CAR algebra $\mathcal{B}(H)$ in a Hilbert space $\mathcal{F}(H_+)$. Denote by \mathcal{C} the category of these representations. Denote by $a(v), a^*(v)$ the generators of $\mathcal{B}(H)$ corresponding to a vector $v \in H$,

$$a^*(u)a(v) + a(v)a^*(u) = 2 < v, u > 0$$

and all the other anticommutators equal to zero.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Any element $f \in P$ defines a unique automorphism of $\mathcal{B}(H)$ with $\phi_f(a^*(v)) = a^*(f \cdot v)$, where $f \cdot v$ is the function on the circle defined by $\rho(f(x))v(x)$. These automorphims are in general not inner except when *f* is periodic.

We have now a map $s : G \to Aut(\mathcal{B})/In(\mathcal{B})$ given by $g \mapsto F(g)$ where F(g) is an arbitrary smooth quasiperiodic function on [0, 1] such that F(g)(1) = g.

Any two such functions F(g), F'(g) differ by an element σ of ΩG , $F(g)(x) = F'(g)(x)\sigma(x)$. Now σ is an inner automorphism through a projective representation of the loop group ΩG in $\mathcal{F}(H_+)$.

<ロ> (四) (四) (三) (三) (三)

In an open neighborhood U of the neutral element e in G we can fix in a smooth way for any $g \in U$ a path F(g) with F(g)(0) = e and F(g)(1) = g.

Of course, for a connected group G we can make this choice globally on G but then the dependence of the path F(g) would not be a continuous function of the end point. For a pair $g_1, g_2 \in G$ we have

$$\sigma(g_1,g_2)F(g_1g_2)=F(g_1)F(g_2)$$

with $\sigma(g_1, g_1) \in \Omega G$.

< 回 > < 回 > < 回 > … 回

For a triple of elements g_1, g_2, g_3 we have now

$$F(g_1)F(g_2)F(g_3) = \sigma(g_1,g_2)F(g_1g_2)F(g_3) = \sigma(g_1,g_2)\sigma(g_1g_2,g_3)F(g_1g_2g_3).$$

In the same way,

$$F(g_1)F(g_2)F(g_3) = F(g_1)\sigma(g_2,g_3)F(g_2g_3)$$

= $[g_1\sigma(g_2,g_3)g_1^{-1}]F(g_1)F(g_2g_3)$
= $[g_1\sigma(g_2,g_3)g_1^{-1}]\sigma(g_1,g_2g_3)F(g_1g_2g_3)$

which proves the 2-cocycle relation for σ .

通 とくほ とくほ とう

э

Lifting the loop group elements σ to inner automorphims $\hat{\sigma}$ through a projective representation of ΩG we can write

 $\hat{\sigma}(g_1, g_2)\hat{\sigma}(g_1g_2, g_3) = \operatorname{Aut}(g_1)[\hat{\sigma}(g_2, g_3)]\hat{\sigma}(g_1, g_2g_3)\alpha(g_1, g_2, g_3),$

where $\alpha : G \times G \times G \to S^1$ is some phase function arising from the fact that the projective lift is not necessarily a group homomorphism.

Since (in the case of a Lie group) the function $F(\cdot)$ is smooth only in a neighborhood of the neutral element, the same is true also for σ and finally for the 3-cocycle α .

イロン 不良 とくほう 不良 とうほ

An equivalent point of view to the construction of the 3-cocycle α is this: We are trying to construct a central extension \hat{P} of the group P of paths in G (with initial point $e \in G$) as an extension of the central extension over the subgroup ΩG . The failure of this central extension is measured by the cocycle α , as an obstruction to associativity of \hat{P} .

On the Lie algebra level, we have a corresponding cocycle $c_3 = d\alpha$ which is easily computed. The cocycle *c* of Ωg extends to the path Lie algebra Pg as

$$c(X, Y) = \frac{1}{4\pi i} \int_{[0,2\pi]} \operatorname{tr} \left(X dY - Y dX \right).$$

This is an antisymmetric bilinear form on P_{g} but it fails to be a Lie algebra 2-cocycle. The coboundary is given by

$$(\delta c)(X, Y, Z) = c(X, [Y, Z]) + c(Y, [Z, X]) + c(Z, [X, Y])$$

= $-\frac{1}{4\pi i} \text{tr } X[Y, Z]|_{2\pi} = d\alpha(X, Y, Z).$

Thus δc reduces to a 3-cocycle of the Lie algebra g of *G* on the boundary $x = 2\pi$. This cocycle defines by left translations on *G* the left-invariant de Rham form $-\frac{1}{12\pi i}$ tr $(g^{-1}dg)^3$; this is normalized as $2\pi i$ times an integral 3-form on *G*.

Transgression

Let ω_3 represent a class in the singular cohomology $H^3(H, \mathbb{Z})$. We shall now make the following assumptions: 1) The pull-back $\pi^*(\omega_3) = d\theta_2$ is trivial on G. 2) H and G are simply connected and $H_2(G, \mathbf{Z}) = H_2(H, \mathbf{Z}) = 0$. Using the exact homotopy sequence from the fibration $N \rightarrow G \rightarrow H$ we conclude that N is connected and $\pi_1(N) = 0$ and thus also $H_1(N, \mathbb{Z}) = 0$. For each $q \in G$ we select a path q(t) with end points $g(0) = 1 \in G$ and g(1) = g. We can make the choice $g \rightarrow g(t)$ in a locally smooth manner close to the neutral element $1 \in G$. In addition, since also N is connected, we may assume that $g(t) \in N$ if $g \in N$. For a triple $g, g_1, g_2 \in G$ we make a choice of a singular 2-simplex $\Delta(q; q_1, q_2)$ such that its boundary is given by the union of the 1-simplices $gg_1(t), gg_1(1)g_2(t)$ and $g(g_1g_2)(1-t)$. All this can be made in a locally smooth manner since locally the Lie groups are open contractible sets in a vector space.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

 $c_2(g;g_1,g_2)=\exp 2\pi i<\Delta(g;g_1,g_2), heta_2>$

using the duality pairing of singular 2-simplices and 2-cochains. This formula does not in general define a group cocycle for *G* but it gives a 2-cocycle for the group *N* with the right action of *N* on *G* and the corresponding action of *N* on $A = Map(G, S^1)$. To prove that indeed

$$\begin{array}{ll} (\delta c)_2(g; n_1, n_2, n_3) & = \\ c_2(g; n_1, n_2) c_2(g; n_1 n_2, n_3) c_2(g; n_1, n_2 n_3)^{-1} c_2(g n_1; n_2, n_3)^{-1} \\ & = & 1 \end{array}$$

< 回 > < 回 > < 回 > … 回

we just need to observe that the product is given through pairing the cochain θ_2 with the singular cycle defined as the union of the singular 2-simplices involved in the above formula. All these 2-simplices are in the same *N* orbit *gN* and since $d\theta_2 = \pi^* \omega_3$ the cochain θ_2 is actually an integral cocycle on the *N* orbits and the pairing gives an integer *k* and exp $2\pi ik = 1$. For arbitrary $g_i \in G$ the coboundary δc_2 does not vanish but its value

$$(\delta c_2)(g;g_1,g_2,g_3) = \exp 2\pi i < \Delta(g;g_1,g_2,g_3), d heta_2 >$$

is given by pairing $d\theta_2 = \pi^* \omega_3$ with the singular 3-simplex *V* with the boundary consisting of the sum of the faces $\Delta(g; g_1, g_2), \Delta(g; g_1g_2, g_3), \Delta(g; g_1, g_2g_3), \Delta(gg_1; g_2, g_3)$. But this is the same as $\exp 2\pi i < \pi(V), \omega_3 >$ and therefore it depends only on the projections $\pi(g), \pi(g_i) \in H$. Denote by $c_3 = c_3(h; h_1, h_2, h_3)$ this locally smooth 3-cocycle on *H*. (This construction can be extended to higher cocycles under appropriate conditions on the homology groups of *H*.)

We may think of the cohomology class $[c_3]$ as an obstruction to prolonging the principal *N* bundle *G* over *H* to a bundle \hat{G} with the structure group \hat{N} . Namely, if such a prolongation exists then there is a 2-cocycle c_2 on *G* which when restricted to *N* orbits in *G* is equal to $c_2(g; n_1, n_2)$. If c'_2 is another such a 2-cocycle then $(\delta c'_2)(\delta c_2)^{-1}$ projects to a a trivial 3-cocycle on *H*. Conversely, if c_3 on *H* is a coboundary of some ξ_2 then $c'_2 = c_2(\pi^*\xi)^{-1}$ agrees with c_2 on the *N* orbits and so the obstruction depends only on the cohomology class $[c_3]$.

< 回 > < 回 > < 回 > … 回

Wagemann and Wockel defined a map from the locally smooth cohomology of a Lie group *H* to its Čech cohomology. There is also a map from the locally smooth group cohomology $H_s^2(N, A)$ to the Čech cohomology $\check{H}^2(H, A)$ by the formula

$$c_{ijk}(x) = \hat{\eta}_{ij}(x)\hat{\eta}_{jk}(x)\hat{\eta}_{ki}(x)$$

where $\psi_i(x)\eta_{ij}(x) = \psi_j(x)$, $\psi_i : U_i \to G$ are local smooth sections for an open good cover $\{U_i\}$ of H and the $\hat{\eta}_{ij}$'s are lifts of the transition functions $\eta_{ij} : U_i \cap U_j \to N$ to the extension \hat{N} ; the product on the right is determined by an element in $H_s^2(N, A)$. Although these Čech cocycles have values in A they correspond to a cocycle in $H^3(H, \mathbb{Z})$ by the usual way, taking differences of logarithms log $c_{ijk}/2\pi i$ on intersections U_{ijkl} which must be integer constants for a good cover.

・ロト ・ 理 ト ・ ヨ ト ・