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Motivation from gauge theory

L2 condition on the curvature form of a Yang-Mills connection:
The connection form at infinity in Rn is a pure gauge mod terms
of order 1/rn/2+ε. Denote by Gn the group of smooth based
maps Sn → G. Up to homotopy,the moduli space A/Gn is then
parametrized by Map(Sn−1,G). Up to homotopy, the bundle
Gn → A→ A/Gn is then the bundle

Gn → P → Map(Sn−1,G)

where P is contractible and G0 acts freely on P; restricting
everything to based maps we can take P as the group of paths
f (t) in Gn−1 with f (0) = id and we get the fibration

Gn → Pn → Gn−1.
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Motivation from gauge theory

In particular, for n = 1 we have G1 → P1 → G a fibaration over
the finite dimensional group G, the fiber G1 = ΩG the based
loop group.
When G is simple compact Lie group ΩG has up to
isomorphism a unique central extension Ω̂kG for each level
k ∈ Z. The extension can be given as a locally smooth 2-cocycle
c2 : ΩG × ΩG→ S1. This cocycle is obtained from a class
ω3 ∈ H3(G,Z) which corresponds to a Lie algebra cohomology class
in H3(g).
So one can ask whether there is a corresponding cocycle in third
group cohomology of G. The answer is yes if one considers again the
locally smooth cohomology. About the meaning of the 3-cocycle
later.....
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Relation to the BRS complex

Anomalies in quantized gauge theory can be computed from
the BRS double complex. It starts from an even form ω2n,0

which is a characteristic class of a vector bundle over the
physical space-time M. Locally, we have ω2n,0 = dω2n−1,0

where ω2n−1,0 is a Chern-Simons form. One continues

δω2n−1,0 = dω2n−2,1

where δ is the coboundary operator in Lie algebra cohomology,
here the Lie algebra is the algebra of infinitesimal gauge
transformations. Next

δω2n−2,1 = dω2n−3,2

and so on; the second index is the Lie algebra cohomology
degree. In particular ω2n−2,1 is the (infinitesimal) gauge
anomaly and ω2n−3,2 is the commutator anomaly (in space
dimension 2n − 3).
Here we want to address the same problem on the level of
locally smooth group cocycles.
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The 3-cocycle: categorical representation

C an abelian category, G a group
g ∈ G, Fg a functor in C
ig,h : Fg ◦ Fh → Fgh an isomorphism
ig,hk ◦ ih,k and igh,k ◦ ig,h isomorphisms Fg ◦ Fh ◦ Fk → Fghk
They are not necessarily equal; one can have a central
extension
ig,hk ◦ ih,k = α(g,h, k)igh,k ◦ ig,h with α(g,h, k) ∈ C× a 3-cocycle
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3-cocycles

Let B be an associative algebra and G a group. Assume that
we have a group homomorphism s : G→ Out(B) where Out(B)
is the group of outer automorphims of B, that is,
Out(B) = Aut(B)/In(B), all automorphims modulo the normal
subgroup of inner automorphisms.

If one chooses any lift s̃ : G→ Aut(B) then we can write

s̃(g)s̃(g′) = σ(g,g′) · s̃(gg′)

for some σ(g,g′) ∈ In(B). From the definition follows
immediately the cocycle property

σ(g,g′)σ(gg′,g′′) = [s̃(g)σ(g′,g′′)s̃(g)−1]σ(g,g′g′′)
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Prolongation by central extension

Let next H be any central extension of In(B) by an abelian
group a. That is, we have an exact sequence of groups,

1→ a→ H → In(B)→ 1.

Let σ̂ be a lift of the map σ : G ×G→ In(B) to a map
σ̂ : G ×G→ H (by a choice of section In(B)→ H). We have
then

σ̂(g,g′)σ̂(gg′,g′′) = [s̃(g)σ̂(g′,g′′)s̃(g)−1]

×σ̂(g,g′g′′) · α(g,g′,g′′) for all g,g′,g′′ ∈ G

where α : G ×G ×G→ a.
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The 3-cocycle condition

Here the action of the outer automorphism s(g) on σ̂(∗) is
defined by s(g)σ̂(∗)s(g)−1 = the lift of s(g)σ(∗)s(g)−1 ∈ In(B)
to an element in H. One can show that α is a 3-cocycle

α(g2,g3,g4)α(g1g2,g3,g4)−1α(g1,g2g3,g4)

×α(g1,g2,g3g4)−1α(g1,g2,g3) = 1.
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A QFT example

Remark If we work in the category of topological groups (or Lie
groups) the lifts above are in general discontinuous; normally, we can
require continuity (or smoothness) only in an open neighborhood of
the unit element.

Next we construct an example from quantum field theory. Let G be a
compact simply connected Lie group and P the space of smooth paths
f : [0,1]→ G with initial point f (0) = e, the neutral element, and
quasiperiodicity condition f−1df a smooth function.

P is a group under point-wise multiplication but it is also a principal
ΩG bundle over G. Here ΩG ⊂ P is the loop group with
f (0) = f (1) = e and π : P → G is the projection to the end point
f (1). Fix an unitary representation ρ of G in CN and denote
H = L2(S1,CN).
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CAR representations

For each polarization H = H− ⊕ H+ we have a vacuum
representation of the CAR algebra B(H) in a Hilbert space
F(H+). Denote by C the category of these representations.
Denote by a(v),a∗(v) the generators of B(H) corresponding to
a vector v ∈ H,

a∗(u)a(v) + a(v)a∗(u) = 2 < v ,u >

and all the other anticommutators equal to zero.
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Outer automorhisms

Any element f ∈ P defines a unique automorphism of B(H) with
φf (a∗(v)) = a∗(f · v), where f · v is the function on the circle
defined by ρ(f (x))v(x). These automorphims are in general not
inner except when f is periodic.

We have now a map s : G→ Aut(B)/In(B) given by g 7→ F (g)
where F (g) is an arbitrary smooth quasiperiodic function on
[0,1] such that F (g)(1) = g.

Any two such functions F (g),F ′(g) differ by an element σ of
ΩG, F (g)(x) = F ′(g)(x)σ(x). Now σ is an inner automorphism
through a projective representation of the loop group ΩG in
F(H+).

Jouko Mickelsson Transgression of gauge group cocycles



3-cocycle

In an open neighborhood U of the neutral element e in G we
can fix in a smooth way for any g ∈ U a path F (g) with
F (g)(0) = e and F (g)(1) = g.

Of course, for a connected group G we can make this choice
globally on G but then the dependence of the path F (g) would
not be a continuous function of the end point. For a pair
g1,g2 ∈ G we have

σ(g1,g2)F (g1g2) = F (g1)F (g2)

with σ(g1,g1) ∈ ΩG.
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LG valued 2-cocycle

For a triple of elements g1,g2,g3 we have now

F (g1)F (g2)F (g3) = σ(g1,g2)F (g1g2)F (g3)

= σ(g1,g2)σ(g1g2,g3)F (g1g2g3).

In the same way,

F (g1)F (g2)F (g3) = F (g1)σ(g2,g3)F (g2g3)

= [g1σ(g2,g3)g−1
1 ]F (g1)F (g2g3)

= [g1σ(g2,g3)g−1
1 ]σ(g1,g2g3)F (g1g2g3)

which proves the 2-cocycle relation for σ.
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3-cocycle α for G

Lifting the loop group elements σ to inner automorphims σ̂
through a projective representation of ΩG we can write

σ̂(g1,g2)σ̂(g1g2,g3) = Aut(g1)[σ̂(g2,g3)]σ̂(g1,g2g3)α(g1,g2,g3),

where α : G ×G ×G→ S1 is some phase function arising from
the fact that the projective lift is not necessarily a group
homomorphism.

Since (in the case of a Lie group) the function F (·) is smooth
only in a neighborhood of the neutral element, the same is true
also for σ and finally for the 3-cocycle α.
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The Lie algebra 3-cocycle

An equivalent point of view to the construction of the 3-cocycle
α is this: We are trying to construct a central extension P̂ of the
group P of paths in G (with initial point e ∈ G) as an extension
of the central extension over the subgroup ΩG. The failure of
this central extension is measured by the cocycle α, as an
obstruction to associativity of P̂.

On the Lie algebra level, we have a corresponding cocycle
c3 = dα which is easily computed. The cocycle c of Ωg extends
to the path Lie algebra Pg as

c(X ,Y ) =
1

4πi

∫
[0,2π]

tr (XdY − YdX ).

This is an antisymmetric bilinear form on Pg but it fails to be a
Lie algebra 2-cocycle. The coboundary is given by
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The Lie algebra 3-cocycle

(δc)(X ,Y ,Z ) = c(X , [Y ,Z ]) + c(Y , [Z ,X ]) + c(Z , [X ,Y ])

= − 1
4πi

tr X [Y ,Z ]|2π = dα(X ,Y ,Z ).

Thus δc reduces to a 3-cocycle of the Lie algebra g of G on the
boundary x = 2π. This cocycle defines by left translations on G
the left-invariant de Rham form − 1

12πi tr (g−1dg)3; this is
normalized as 2πi times an integral 3-form on G.
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Transgression

Let ω3 represent a class in the singular cohomology H3(H,Z).
We shall now make the following assumptions: 1) The pull-back
π∗(ω3) = dθ2 is trivial on G. 2) H and G are simply connected
and H2(G,Z) = H2(H,Z) = 0. Using the exact homotopy
sequence from the fibration N → G→ H we conclude that N is
connected and π1(N) = 0 and thus also H1(N,Z) = 0.
For each g ∈ G we select a path g(t) with end points
g(0) = 1 ∈ G and g(1) = g. We can make the choice g → g(t)
in a locally smooth manner close to the neutral element 1 ∈ G.
In addition, since also N is connected, we may assume that
g(t) ∈ N if g ∈ N. For a triple g,g1,g2 ∈ G we make a choice of
a singular 2-simplex ∆(g; g1,g2) such that its boundary is given
by the union of the 1-simplices gg1(t),gg1(1)g2(t) and
g(g1g2)(1− t). All this can be made in a locally smooth manner
since locally the Lie groups are open contractible sets in a
vector space.
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c2(g; g1,g2) = exp 2πi < ∆(g; g1,g2), θ2 >

using the duality pairing of singular 2-simplices and 2-cochains.
This formula does not in general define a group cocycle for G
but it gives a 2-cocycle for the group N with the right action of N
on G and the corresponding action of N on A = Map(G,S1). To
prove that indeed

(δc)2(g; n1,n2,n3) =

c2(g; n1,n2)c2(g; n1n2, n3)c2(g; n1,n2n3)−1c2(gn1; n2,n3)−1

= 1
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we just need to observe that the product is given through
pairing the cochain θ2 with the singular cycle defined as the
union of the singular 2-simplices involved in the above formula.
All these 2-simplices are in the same N orbit gN and since
dθ2 = π∗ω3 the cochain θ2 is actually an integral cocycle on the
N orbits and the pairing gives an integer k and exp 2πik = 1.
For arbitrary gi ∈ G the coboundary δc2 does not vanish but its
value

(δc2)(g; g1,g2,g3) = exp 2πi < ∆(g; g1,g2,g3),dθ2 >

is given by pairing dθ2 = π∗ω3 with the singular 3-simplex V
with the boundary consisting of the sum of the faces
∆(g; g1,g2),∆(g; g1g2,g3),∆(g; g1,g2g3),
∆(gg1; g2,g3). But this is the same as exp 2πi < π(V ), ω3 > and
therefore it depends only on the projections π(g), π(gi) ∈ H.
Denote by c3 = c3(h; h1,h2,h3) this locally smooth 3-cocycle on
H. (This construction can be extended to higher cocycles under
appropriate conditions on the homology groups of H. )
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We may think of the cohomology class [c3] as an obstruction to
prolonging the principal N bundle G over H to a bundle Ĝ with
the structure group N̂. Namely, if such a prolongation exists
then there is a 2-cocycle c2 on G which when restricted to N
orbits in G is equal to c2(g; n1,n2). If c′2 is another such a
2-cocycle then (δc′2)(δc2)−1 projects to a a trivial 3-cocycle on
H. Conversely, if c3 on H is a coboundary of some ξ2 then
c′2 = c2(π∗ξ)−1 agrees with c2 on the N orbits and so the
obstruction depends only on the cohomology class [c3].
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Wagemann and Wockel defined a map from the locally smooth
cohomology of a Lie group H to its Čech cohomology. There is
also a map from the locally smooth group cohomology H2

s(N,A)
to the Čech cohomology Ȟ2(H,A) by the formula

cijk (x) = η̂ij(x)η̂jk (x)η̂ki(x)

where ψi(x)ηij(x) = ψj(x), ψi : Ui → G are local smooth
sections for an open good cover {Ui} of H and the η̂ij ’s are lifts
of the transition functions ηij : Ui ∩ Uj → N to the extension N̂;
the product on the right is determined by an element in
H2

s(N,A). Although these Čech cocycles have values in A they
correspond to a cocycle in H3(H,Z) by the usual way, taking
differences of logarithms log cijk/2πi on intersections Uijkl which
must be integer constants for a good cover.
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