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Electromagnetic duality

Maxwell’s equations in vacuum (c = 1):

∇ · E = 0

∇ · B = 0

∇× B =
∂E
∂t

∇× E = −∂B
∂t

Duality of order 4: (E,B) 7→ (−B,E)

The duality still holds if both electric and magnetic charges are included.



Phase space duality

Harmonic oscillator:

H =
k
2

x2 +
1

2m
p2

Duality of order 4:

(x , p) 7→ (p,−x)

(m, k) 7→ (
1
k
,

1
m

)

These are examples of S-duality.



T-duality: a toy example

Topological T-duality arose in the study of string theory compactifications.

Let V be a real n-dimensional vector space with basis {vk}k=1,...,n.

Let V ∗ be the dual space with basis {wk}k=1,...,n.

Fix a volume form on V and V ∗.

The Fourier-Mukai transform is an isomorphism

FM : ∧• V ∗ → ∧•V , FM(φ)(v) =

∫
φ(w)e

∑n
k=1 wk∧vk



Geometric formulation of FM

Let Λ ⊂ V be a lattice and Λ∗ ⊂ V ∗ the dual lattice.

Define the torus T n = V/Λ and the dual torus T̂ n = V ∗/Λ∗.

Note that π1(T n) = Λ = Irrep(T̂ n) and π1(T̂ n) = Λ∗ = Irrep(T n).

In particular, T̂ n = Hom(π1(T n),S1), so it parametrizes flat S1-bundles on
T n.

T n × T̂ n carries a universal S1-bundle P called the Poincaré line bundle:

P|T n×w ∼= flat S1-bundle on T n associated to w

P|v×T̂ n
∼= flat S1-bundle on T̂ n associated to v



Geometric formulation of FM

Now we have

H•(T n,R) = ∧•V ∗, H•(T̂ n,R) = ∧•V

and

ch(P) = e
∑n

k=1 wk∧vk ∈ H•(T n × T̂ n,R)

The Fourier-Mukai transform is an isomorphism

FM : H•(T n,R)→ H•−n(T̂ n,R), FM(φ) = p̂!

(
p∗(φ) ∧ ch(P)

)
T n × T̂ n

p

{{

p̂

##
T n T̂ n



Topological T-duality

Idea: Replace T n by a family of tori.

Possibilities include:

- X = M × T n

- X → M a principal T n-bundle

- X → M an affine T n-bundle

- X a T n-space (non-free action)

- singular fibrations (e.g. the Hitchin fibration, CY manifolds)

We shall consider the case when X → M is a principal torus bundle.

It turns out that an additional structure is needed on X , namely a bundle
gerbe classified by its Dixmier-Douady class [H] ∈ H3(X ,Z).



Topological T-duality

Theorem (Bouwknegt–Evslin–Mathai (2004), Bunke-Schick (2005))

There exists a commutative diagram

(X ×M X̂ , p∗H − p̂∗Ĥ)

p

ww

p̂

''
(X ,H)

π

((

(X̂ , Ĥ)

π̂

vvM

and

FM : (Ω•(X )T n
, dH)→ (Ω•−n(X̂ )T̂ n

, dĤ), FM(ω) =

∫
T n

eF ∧ ω

is an isomorphism of the differential complexes, where p∗H − p̂∗Ĥ = dF and
F = 〈p∗θ ∧ p̂∗θ̂〉 for connections θ and θ̂ on X and X̂ respectively.



Remarks

I As a corollary, we have an isomorphism in twisted cohomology

H•(X ,H) ∼= H•−n(X̂ , Ĥ)

I This can be refined to an isomorphism in twisted K-theory,

K •(X ,H) ∼= K •−n(X̂ , Ĥ)

I For circle bundles, the T-dual is unique up to isomorphism.

I For higher rank torus bundles, an additional condition on H is needed
and the T-dual is not unique.



Example: Lens spaces Lp

Consider the action of Zp on S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} given by

e
2πi

p (z1, z2) 7→ (z1, e
2πi

p z2)

The quotient Lp = S3/Zp is an S1-bundle over S2 with the Chern class

c1(Lp) = p ∈ H2(S2,Z) ∼= Z

Let H = q ∈ H3(Lp,Z) ∼= Z, then the T-dual pair is (Lq , p).

In particular L0 = S2 × S1, so

(S3, 0)⇐⇒ (S2 × S1, 1)

Note that
K 0(S3) = K 1(S3) = Z

K 0(S2 × S1, 1) = K 1(S2 × S1, 1) = Z

while
K 0(S2 × S1) = K 1(S2 × S1) = Z⊕ Z



Courant algebroids

A Courant algebroid on a smooth manifold X consists of a vector bundle
E → X equipped with

- a bundle map ρ : E → TX called the anchor,

- a non-degenerate symmetric bilinear form 〈 , 〉 : E ⊗ E → R,

- an R-bilinear operation [ , ] : Γ(E)⊗ Γ(E)→ Γ(E),

satisfying the following properties

- [a, [b, c]] = [[a, b], c] + [b, [a, c]]

- [a, b] + [b, a] = d〈a, b〉
- ρ(a)〈b, c〉 = 〈[a, b], c〉+ 〈b, [a, c]〉

- [a, fb] = f [a, b] + ρ(a)(f )b

- ρ[a, b] = [ρ(a), ρ(b)]



Exact Courant algebroids

A Courant algebroid E is transitive if the anchor ρ is surjective.

E is exact if it fits into an exact sequence

0→ T ∗X → E → TX → 0

Exact Courant algebroids are classified by their Ševera class H ∈ H3(X ,R).

An isotropic splitting s : TX → E fixes an isomorphism

E ∼= TX ⊕ T ∗X

where
〈X + ξ,Y + η〉 =

1
2

(η(X ) + ξ(Y ))

[X + ξ,Y + η]H = [X ,Y ] + LXη − iY dξ + iY iX H

with
H(X ,Y ,Z ) = 〈[s(X ), s(Y )], s(Z )〉.



Symmetries and generalised metric

Spin module Ω•(X ): (X + ξ) · ω = ιXω + ξ ∧ ω.

Abelian extension: Aut(E) = Diff(X ) n Ω2
cl (X )

eB(X + ξ) = X + ξ + ιX B

Extension class: c(X ,Y ) = dιX ιY H

A generalised Riemannian metric is a self-adjoint orthogonal bundle map
G ∈ End(TX ⊕ T ∗X ) for which 〈Gv , v〉 is positive definite.

G2 = Id determines an orthogonal decomposition

TX ⊕ T ∗X = G+ ⊕G−

where G± = {X + B(X , ·)± g(X , ·) | X ∈ TX}.



Simple reduction

Consider a Lie group K acting freely on X .

Suppose the action lifts to a Courant algebroid E on X .

The simple reduction E/K is a vector bundle on X/K , which inherits the
Courant algebroid structure on E .

E/K is not an exact Courant algebroid.



Buscher rules

Theorem (Cavalcanti-Gualtieri)

The map

φ : (TX ⊕ T ∗X )/T n → (TX̂ ⊕ T ∗X̂ )/T̂ n

X + ξ 7→ p̂∗(X̂ ) + p∗(ξ)−F(X̂ )

is an isomorphism of Courant algebroids.

The Buscher rules for (g,B) are given by

Ĝ = φ(G)



Heterotic string theory

Conceived by the Princeton String Quartet in 1985.

Combines 26-dimensional bosonic left-moving strings with 10-dimensional
right-moving superstrings.

The theory includes a principal G-bundle P → X equipped with a connection.

The Green-Schwarz anomaly cancellation:

dH =
1
2

p1(TX )− 1
2

p1(P)



String structures

A spin structure on an oriented manifold X is a lift: BSpin(n)

��
X //

s
;;

BSO(n)

A string structure on a spin manifold X is a lift: BString(n)

��
X //

S
::

BSpin(n)

A string structure exists if and only if
[ 1

2 p1(S)
]

= 0.

Equivalently, a string structure is [H] ∈ H3(P,Z), where P → X is the spin
structure, such that the restriction of [H] to any fiber of P is the generator of
H3(Spin(n),Z) ∼= Z.

String classes H are intimately related to extended actions and certain
transitive Courant algebroids.



Heterotic Courant algebroids

Let G be a compact connected simple Lie group and P → X a principal
G-bundle.

The Atiyah algebroid A := TP/G→ TX is a quadratic Lie algebroid,

〈x , y〉 = −k(x , y)

where k denotes the Killing form on g.

A transitive Courant algebroid H is a heterotic Courant algebroid if

H/T ∗X ∼= A

is an isomorphism of quadratic Lie algebroids, where A is the Atiyah
algebroid of some principal G-bundle P.



Classification of heterotic Courant algebroids

The obstruction for the Atiyah algebroid of P to arise from a transitive
Courant algebroid H is the first Pontryagin class p1(P) ∈ H4(X ,R).

Theorem
Let P → X be a principal G-bundle and A a connection on P with curvature
F . Let H0 be a 3-form on X satisfying

dH0 + k(F ,F ) = 0.

Any heterotic Courant algebroid is isomorphic to one of the form

H = TX ⊕ gP ⊕ T ∗X ,

where
〈(X , s, ξ), (Y , t , η)〉 =

1
2

(iXη + iY ξ) + 〈s, t〉

[X + s + ξ,Y + t + η]H = [X ,Y ] +∇X t −∇Y s − [s, t ]− F (X ,Y )

+ LXη − iY dξ + iY iX H0

+ 2〈t , iX F 〉 − 2〈s, iY F 〉+ 2〈∇s, t〉,



Extended action on Courant algebroids

Let E be an exact Courant algebroid on a G-manifold X and assume that the
action lifts G→ Aut(E).

If the infinitesimal action g→ Der(E) on E is by inner derivations, we could
consider a lift g→ Γ(E).

A trivially extended action is a map α : g→ Γ(E) such that

I α is a homomorphism of Courant algebras,

I ρ ◦ α = ψ, where ψ : g→ Γ(TX ) denotes the infinitesimal G-action on X ,

I the induced adjoint action of g on E integrates to a G-action on E .



Reduction by extended action

For an exact Courant algebroid E ∼= TX ⊕ T ∗X with a G-invariant Ševera
class H, the extended action

α : g→ Γ(E), v 7→ ψ(v) + ξ(v)

corresponds to solutions to dG(H + ξ) = c, with the non-degenerate form
c(·, ·) = −〈α(·), α(·)〉 ∈ Ω0(X ,S2g∗)G.

Two extended actions ξ, ξ′ are equivalent if there exists an equivariant
function f : M → g∗ such that ξ′ = ξ + df

Changing the invariant splitting of E corresponds to

H ′ + ξ′ = H + ξ + dG(B)

where B ∈ Ω2(X )G is the invariant 2-form relating the splittings.

The reduced Courant algebroid on X/G is defined by Ered = Im(α)⊥/G.



Heterotic Courant algebroids by reduction

Let σ : P → X be a G-bundle equipped with a G-invariant closed 3-form H on
P and E = TP ⊕ T ∗P with the H-twisted Dorfman bracket.

Since g comes with a natural pairing, it is natural to consider c = −k .

Proposition

Equivalence classes of solutions to dG(H + ξ) = −k are represented by pairs
(H0,A) satisfying

dH0 + k(F ,F ) = 0.

The corresponding pair (H, ξ) is given by

H = σ∗(H0) + CS3(A), ξ = kA.

Hence, every heterotic Courant algebroid is obtained from an exact Courant
algebroid via a trivially extended action.



Relation to string structures

The restriction of H = σ∗(H0) + CS3(A) to any fibre of P is given by

ω3 = −1
6

k(ω, [ω, ω])

where ω ∈ Ω1(G, g) is the left Maurer-Cartan form.

A real string class is a class H ∈ H3(P,R) such that the restriction of H to
any fibre of P coincides with ω3. Imposing integrality, (P,H) defines a string
structure on X .

Let EA(P) and SC(P) denote the sets of equivalence classes of trivially
extended actions and string classes on P respectively. The map

(H, ξ)→ [H]

is an isomorphism of H3(X ,R)-torsors.



Heterotic T-duality

Consider a T n-bundle X → M equipped with a string structure (P,H).

We assume that the T n-action on X lifts to a T n-action on P by principal
bundle automorphisms, so we can view P as a principal T n ×G-bundle over
M. Then P0 = P/T n is a principal G-bundle over M.

Choose H to be a T n ×G-invariant representative for the string class.



Strategy

I Since P → P0 is a principal T n-bundle, we can apply ordinary T-duality to
the pair (P,H) to obtain a dual pair (P̂, Ĥ).

I The existence of a T-dual imposes the usual constraints on H.

I However, there is no guaranty that the G-action on P0 lifts to an action
on P̂ commuting with the T̂ n-action.

I The restriction of H to the G × T n-fibres of P → M defines a class in
H2(G,H1(T n,Z)), which is the obstruction to P̂ → P0 being a pullback
under σ0 : P0 → M of a T̂ n-bundle X̂ → M.



T-duality commutes with reduction

Proposition

For commuting group actions, the simple reduction and reduction by
extended action commute.

Theorem

The T-duality isomorphism

φ : (TP ⊕ T ∗P)/T n → (TP̂ ⊕ T ∗P̂)/T̂ n

exchanges extended actions (H, ξ) and (Ĥ, ξ̂), and we have the desired
isomorphism

H/T n ∼= ((TP ⊕ T ∗P)/T n)red ∼= ((T P̂ ⊕ T ∗P̂)/T̂ n)red ∼= Ĥ/T̂ n

The proof hinges on establishing the following identity,

Ĥ + ξ̂ = H + ξ + dG〈θ, θ̂〉

where Â− A = −ι〈θ, θ̂〉.



Remarks

I T-duality can be adapted to incorporate:
I String structures
I Trivially extended actions
I Heterotic Courant algebroids

I Heterotic Buscher rules are recovered via generalised metrics.

I The Pontryagin class 1
2 p1(TX ) can be included.

I The heterotic Einstein equations are preserved under T-duality.

I String structures allow for more flexibility in the possible changes in
topology under T-duality.



Examples

Proposition

Let c ∈ H2(M,H1(T̂ n,Z)) and ĉ ∈ H2(M,H1(T n,Z)) be the Chern classes of
X → M and X̂ → M. Then the following holds in H4(M,R):

〈c, ĉ〉 = p1(P0).

Ordinary T-duality corresponds to 〈c, ĉ〉 = 0.

I Higher dimensional Lens spaces.
I Homogeneous spaces G→ G/H.


