String Structures, Reductions and T-duality

Pedram Hekmati

University of Adelaide

Infinite-dimensional Structures in Higher Geometry and Representation Theory, University of Hamburg

16 February 2015

Outline

1. Topological T-duality and Courant algebroids
2. String structures and reduction of Courant algebroids
3. T-duality of string structures and heterotic Courant algebroids

Joint work with David Baraglia.

```
arXiv:1308.5159, to appear in ATMP.
```


Electromagnetic duality

Maxwell's equations in vacuum ($c=1$):

$$
\begin{aligned}
\nabla \cdot \mathbf{E} & =0 \\
\nabla \cdot \mathbf{B} & =0 \\
\nabla \times \mathbf{B} & =\frac{\partial \mathbf{E}}{\partial t} \\
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t}
\end{aligned}
$$

Duality of order 4:
$(\mathbf{E}, \mathbf{B}) \mapsto(-\mathbf{B}, \mathbf{E})$

The duality still holds if both electric and magnetic charges are included.

Phase space duality

Harmonic oscillator:

$$
H=\frac{k}{2} x^{2}+\frac{1}{2 m} p^{2}
$$

Duality of order 4:

$$
\begin{aligned}
(x, p) & \mapsto(p,-x) \\
(m, k) & \mapsto\left(\frac{1}{k}, \frac{1}{m}\right)
\end{aligned}
$$

These are examples of S-duality.

T-duality: a toy example

Topological T-duality arose in the study of string theory compactifications.

Let V be a real n-dimensional vector space with basis $\left\{v_{k}\right\}_{k=1, \ldots, n}$.

Let V^{*} be the dual space with basis $\left\{w_{k}\right\}_{k=1, \ldots, n}$.

Fix a volume form on V and V^{*}.

The Fourier-Mukai transform is an isomorphism

$$
\mathcal{F M}: \wedge^{\bullet} V^{*} \rightarrow \wedge^{\bullet} V, \quad \mathcal{F M}(\phi)(v)=\int \phi(w) e^{\sum_{k=1}^{n} w_{k} \wedge v_{k}}
$$

Geometric formulation of $\mathcal{F M}$

Let $\Lambda \subset V$ be a lattice and $\wedge^{*} \subset V^{*}$ the dual lattice.

Define the torus $T^{n}=V / \Lambda$ and the dual torus $\widehat{T}^{n}=V^{*} / \Lambda^{*}$.

Note that $\pi_{1}\left(T^{n}\right)=\Lambda=\operatorname{Irrep}\left(\widehat{T^{n}}\right)$ and $\pi_{1}\left(\widehat{T^{n}}\right)=\Lambda^{*}=\operatorname{Irrep}\left(T^{n}\right)$.

In particular, $\widehat{T}^{n}=\operatorname{Hom}\left(\pi_{1}\left(T^{n}\right), S^{1}\right)$, so it parametrizes flat S^{1}-bundles on T^{n}.
$T^{n} \times \widehat{T}^{n}$ carries a universal S^{1}-bundle \mathcal{P} called the Poincaré line bundle:

$$
\begin{aligned}
& \left.\mathcal{P}\right|_{T^{n} \times w} \cong \text { flat } S^{1} \text {-bundle on } T^{n} \text { associated to } w \\
& \left.\mathcal{P}\right|_{v \times \widehat{T}^{n}} \cong \text { flat } S^{1} \text {-bundle on } \widehat{T^{n}} \text { associated to } v
\end{aligned}
$$

Geometric formulation of $\mathcal{F M}$

Now we have

$$
H^{\bullet}\left(T^{n}, \mathbb{R}\right)=\Lambda^{\bullet} V^{*}, \quad H^{\bullet}\left(\widehat{T}^{n}, \mathbb{R}\right)=\Lambda^{\bullet} V
$$

and

$$
\operatorname{ch}(\mathcal{P})=e^{\sum_{k=1}^{n} w_{k} \wedge v_{k}} \in H^{\bullet}\left(T^{n} \times \widehat{T}^{n}, \mathbb{R}\right)
$$

The Fourier-Mukai transform is an isomorphism

$$
\mathcal{F M}: H^{\bullet}\left(T^{n}, \mathbb{R}\right) \rightarrow H^{\bullet-n}\left(\widehat{T}^{n}, \mathbb{R}\right), \quad \mathcal{F} \mathcal{M}(\phi)=\hat{p}_{!}\left(p^{*}(\phi) \wedge \operatorname{ch}(\mathcal{P})\right)
$$

Topological T-duality

Idea: Replace T^{n} by a family of tori.
Possibilities include:

- $X=M \times T^{n}$
- $X \rightarrow M$ a principal T^{n}-bundle
- $X \rightarrow M$ an affine T^{n}-bundle
- X a T^{n}-space (non-free action)
- singular fibrations (e.g. the Hitchin fibration, CY manifolds)

We shall consider the case when $X \rightarrow M$ is a principal torus bundle.
It turns out that an additional structure is needed on X, namely a bundle gerbe classified by its Dixmier-Douady class $[H] \in H^{3}(X, \mathbb{Z})$.

Topological T-duality

Theorem (Bouwknegt-Evslin-Mathai (2004), Bunke-Schick (2005))

There exists a commutative diagram

and

$$
\mathcal{F M}:\left(\Omega^{\bullet}(X)^{T^{n}}, d_{H}\right) \rightarrow\left(\Omega^{\bullet-n}(\widehat{X})^{\hat{T}^{n}}, d_{\widehat{H}}\right), \quad \mathcal{F} \mathcal{M}(\omega)=\int_{T^{n}} e^{\mathcal{F}} \wedge \omega
$$

is an isomorphism of the differential complexes, where $p^{*} H-\hat{p}^{*} \widehat{H}=d \mathcal{F}$ and $\mathcal{F}=\left\langle p^{*} \theta \wedge \widehat{p}^{*} \widehat{\theta}\right\rangle$ for connections θ and $\widehat{\theta}$ on X and \widehat{X} respectively.

Remarks

- As a corollary, we have an isomorphism in twisted cohomology

$$
H^{\bullet}(X, H) \cong H^{\bullet-n}(\widehat{X}, \widehat{H})
$$

- This can be refined to an isomorphism in twisted K-theory,

$$
K^{\bullet}(X, H) \cong K^{\bullet-n}(\widehat{X}, \widehat{H})
$$

- For circle bundles, the T-dual is unique up to isomorphism.
- For higher rank torus bundles, an additional condition on H is needed and the T-dual is not unique.

Example: Lens spaces L_{p}

Consider the action of \mathbb{Z}_{p} on $S^{3}=\left\{\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$ given by

$$
e^{\frac{2 \pi i}{p}}\left(z_{1}, z_{2}\right) \mapsto\left(z_{1}, e^{\frac{2 \pi i}{p}} z_{2}\right)
$$

The quotient $L_{p}=S^{3} / \mathbb{Z}_{p}$ is an S^{1}-bundle over S^{2} with the Chern class

$$
c_{1}\left(L_{p}\right)=p \in H^{2}\left(S^{2}, \mathbb{Z}\right) \cong \mathbb{Z}
$$

Let $H=q \in H^{3}\left(L_{p}, \mathbb{Z}\right) \cong \mathbb{Z}$, then the T-dual pair is $\left(L_{q}, p\right)$.
In particular $L_{0}=S^{2} \times S^{1}$, so

$$
\left(S^{3}, 0\right) \Longleftrightarrow\left(S^{2} \times S^{1}, 1\right)
$$

Note that

$$
\begin{aligned}
K^{0}\left(S^{3}\right) & =K^{1}\left(S^{3}\right)=\mathbb{Z} \\
K^{0}\left(S^{2} \times S^{1}, 1\right) & =K^{1}\left(S^{2} \times S^{1}, 1\right)=\mathbb{Z}
\end{aligned}
$$

while

$$
K^{0}\left(S^{2} \times S^{1}\right)=K^{1}\left(S^{2} \times S^{1}\right)=\mathbb{Z} \oplus \mathbb{Z}
$$

Courant algebroids

A Courant algebroid on a smooth manifold X consists of a vector bundle $E \rightarrow X$ equipped with

- a bundle map $\rho: E \rightarrow T X$ called the anchor,
- a non-degenerate symmetric bilinear form $\langle\rangle:, E \otimes E \rightarrow \mathbb{R}$,
- an \mathbb{R}-bilinear operation $[]:, \Gamma(E) \otimes \Gamma(E) \rightarrow \Gamma(E)$,
satisfying the following properties
$-[a,[b, c]]=[[a, b], c]+[b,[a, c]]$
- $[a, b]+[b, a]=d\langle a, b\rangle$
- $\rho(a)\langle b, c\rangle=\langle[a, b], c\rangle+\langle b,[a, c]\rangle$
$-[a, f b]=f[a, b]+\rho(a)(f) b$
- $\rho[a, b]=[\rho(a), \rho(b)]$

Exact Courant algebroids

A Courant algebroid E is transitive if the anchor ρ is surjective.
E is exact if it fits into an exact sequence

$$
0 \rightarrow T^{*} X \rightarrow E \rightarrow T X \rightarrow 0
$$

Exact Courant algebroids are classified by their Ševera class $H \in H^{3}(X, \mathbb{R})$.

An isotropic splitting $s: T X \rightarrow E$ fixes an isomorphism

$$
E \cong T X \oplus T^{*} X
$$

where

$$
\begin{gathered}
\langle X+\xi, Y+\eta\rangle=\frac{1}{2}(\eta(X)+\xi(Y)) \\
{[X+\xi, Y+\eta]_{H}=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} d \xi+i_{Y} i_{X} H}
\end{gathered}
$$

with

$$
H(X, Y, Z)=\langle[s(X), s(Y)], s(Z)\rangle
$$

Symmetries and generalised metric

Spin module $\Omega^{\bullet}(X): \quad(X+\xi) \cdot \omega=\iota x \omega+\xi \wedge \omega$.

Abelian extension:

$$
\begin{aligned}
& \operatorname{Aut}(E)=\operatorname{Diff}(X) \ltimes \Omega_{c l}^{2}(X) \\
& e^{B}(X+\xi)=X+\xi+\iota \times B
\end{aligned}
$$

Extension class: $\quad c(X, Y)=d \iota_{X \iota_{Y} H}$

A generalised Riemannian metric is a self-adjoint orthogonal bundle map $G \in \operatorname{End}\left(T X \oplus T^{*} X\right)$ for which $\langle G v, v\rangle$ is positive definite.
$G^{2}=I d$ determines an orthogonal decomposition

$$
T X \oplus T^{*} X=G_{+} \oplus G_{-}
$$

where $G_{ \pm}=\{X+B(X, \cdot) \pm g(X, \cdot) \mid X \in T X\}$.

Simple reduction

Consider a Lie group K acting freely on X.

Suppose the action lifts to a Courant algebroid E on X.

The simple reduction E / K is a vector bundle on X / K, which inherits the Courant algebroid structure on E.
E / K is not an exact Courant algebroid.

Buscher rules

Theorem (Cavalcanti-Gualtieri)
The map

$$
\begin{gathered}
\phi:\left(T X \oplus T^{*} X\right) / T^{n} \rightarrow\left(T \widehat{X} \oplus T^{*} \widehat{X}\right) / \widehat{T}^{n} \\
X+\xi \quad \mapsto \quad \hat{p}_{*}(\hat{X})+p^{*}(\xi)-\mathcal{F}(\hat{X})
\end{gathered}
$$

is an isomorphism of Courant algebroids.

The Buscher rules for (g, B) are given by

$$
\widehat{G}=\phi(G)
$$

Heterotic string theory

Conceived by the Princeton String Quartet in 1985.

Combines 26 -dimensional bosonic left-moving strings with 10 -dimensional right-moving superstrings.

The theory includes a principal G-bundle $P \rightarrow X$ equipped with a connection.

The Green-Schwarz anomaly cancellation:

$$
d H=\frac{1}{2} p_{1}(T X)-\frac{1}{2} p_{1}(P)
$$

String structures

A spin structure on an oriented manifold X is a lift:

A string structure on a spin manifold X is a lift:

A string structure exists if and only if $\left[\frac{1}{2} p_{1}(S)\right]=0$.
Equivalently, a string structure is $[H] \in H^{3}(P, \mathbb{Z})$, where $P \rightarrow X$ is the spin structure, such that the restriction of $[H]$ to any fiber of P is the generator of $H^{3}(\operatorname{Spin}(n), \mathbb{Z}) \cong \mathbb{Z}$.

String classes H are intimately related to extended actions and certain transitive Courant algebroids.

Heterotic Courant algebroids

Let G be a compact connected simple Lie group and $P \rightarrow X$ a principal G-bundle.

The Atiyah algebroid $\mathcal{A}:=T P / G \rightarrow T X$ is a quadratic Lie algebroid,

$$
\langle x, y\rangle=-k(x, y)
$$

where k denotes the Killing form on \mathfrak{g}.

A transitive Courant algebroid \mathcal{H} is a heterotic Courant algebroid if

$$
\mathcal{H} / T^{*} X \cong \mathcal{A}
$$

is an isomorphism of quadratic Lie algebroids, where \mathcal{A} is the Atiyah algebroid of some principal G-bundle P.

Classification of heterotic Courant algebroids

The obstruction for the Atiyah algebroid of P to arise from a transitive Courant algebroid \mathcal{H} is the first Pontryagin class $p_{1}(\mathcal{P}) \in H^{4}(X, \mathbb{R})$.

Theorem

Let $P \rightarrow X$ be a principal G-bundle and A a connection on P with curvature F. Let H^{0} be a 3 -form on X satisfying

$$
d H^{0}+k(F, F)=0 .
$$

Any heterotic Courant algebroid is isomorphic to one of the form

$$
\mathcal{H}=T X \oplus \mathfrak{g p} \oplus T^{*} X,
$$

where

$$
\begin{aligned}
\langle(X, s, \xi),(Y, t, \eta)\rangle & =\frac{1}{2}\left(i_{X} \eta+i_{Y} \xi\right)+\langle s, t\rangle \\
{[X+s+\xi, Y+t+\eta]_{\mathcal{H}}=} & {[X, Y]+\nabla_{X} t-\nabla_{Y} s-[s, t]-F(X, Y) } \\
& +\mathcal{L}_{X} \eta-i_{Y} d \xi+i_{Y} i_{X} H^{0} \\
& +2\left\langle t, i_{X} F\right\rangle-2\left\langle s, i_{Y} F\right\rangle+2\langle\nabla s, t\rangle,
\end{aligned}
$$

Extended action on Courant algebroids

Let E be an exact Courant algebroid on a G-manifold X and assume that the action lifts $G \rightarrow \operatorname{Aut}(E)$.

If the infinitesimal action $\mathfrak{g} \rightarrow \operatorname{Der}(E)$ on E is by inner derivations, we could consider a lift $\mathfrak{g} \rightarrow \Gamma(E)$.

A trivially extended action is a map $\alpha: \mathfrak{g} \rightarrow \Gamma(E)$ such that

- α is a homomorphism of Courant algebras,
- $\rho \circ \alpha=\psi$, where $\psi: \mathfrak{g} \rightarrow \Gamma(T X)$ denotes the infinitesimal G-action on X,
- the induced adjoint action of \mathfrak{g} on E integrates to a G-action on E.

Reduction by extended action

For an exact Courant algebroid $E \cong T X \oplus T^{*} X$ with a G-invariant Ševera class H, the extended action

$$
\alpha: \mathfrak{g} \rightarrow \Gamma(E), \quad v \mapsto \psi(v)+\xi(v)
$$

corresponds to solutions to $d_{G}(H+\xi)=c$, with the non-degenerate form $c(\cdot, \cdot)=-\langle\alpha(\cdot), \alpha(\cdot)\rangle \in \Omega^{0}\left(X, S^{2} \mathfrak{g}^{*}\right)^{G}$.

Two extended actions ξ, ξ^{\prime} are equivalent if there exists an equivariant function $f: M \rightarrow \mathfrak{g}^{*}$ such that $\xi^{\prime}=\xi+d f$

Changing the invariant splitting of E corresponds to

$$
H^{\prime}+\xi^{\prime}=H+\xi+d_{G}(B)
$$

where $B \in \Omega^{2}(X)^{G}$ is the invariant 2-form relating the splittings.
The reduced Courant algebroid on X / G is defined by $E_{\text {red }}=\operatorname{Im}(\alpha)^{\perp} / G$.

Heterotic Courant algebroids by reduction

Let $\sigma: P \rightarrow X$ be a G-bundle equipped with a G-invariant closed 3-form H on P and $E=T P \oplus T^{*} P$ with the H-twisted Dorfman bracket.

Since \mathfrak{g} comes with a natural pairing, it is natural to consider $c=-k$.

Proposition

Equivalence classes of solutions to $d_{G}(H+\xi)=-k$ are represented by pairs $\left(H^{0}, A\right)$ satisfying

$$
d H^{0}+k(F, F)=0
$$

The corresponding pair (H, ξ) is given by

$$
H=\sigma^{*}\left(H^{0}\right)+C S_{3}(A), \quad \xi=k A
$$

Hence, every heterotic Courant algebroid is obtained from an exact Courant algebroid via a trivially extended action.

Relation to string structures

The restriction of $H=\sigma^{*}\left(H^{0}\right)+$ CS $_{3}(A)$ to any fibre of P is given by

$$
\omega_{3}=-\frac{1}{6} k(\omega,[\omega, \omega])
$$

where $\omega \in \Omega^{1}(G, \mathfrak{g})$ is the left Maurer-Cartan form.

A real string class is a class $H \in H^{3}(P, \mathbb{R})$ such that the restriction of H to any fibre of P coincides with ω_{3}. Imposing integrality, (P, H) defines a string structure on X.

Let $\mathcal{E A}(P)$ and $\mathcal{S C}(P)$ denote the sets of equivalence classes of trivially extended actions and string classes on P respectively. The map

$$
(H, \xi) \rightarrow[H]
$$

is an isomorphism of $H^{3}(X, \mathbb{R})$-torsors.

Heterotic T-duality

Consider a T^{n}-bundle $X \rightarrow M$ equipped with a string structure (P, H).

We assume that the T^{n}-action on X lifts to a T^{n}-action on P by principal bundle automorphisms, so we can view P as a principal $T^{n} \times G$-bundle over M. Then $P_{0}=P / T^{n}$ is a principal G-bundle over M.

Choose H to be a $T^{n} \times G$-invariant representative for the string class.

Strategy

- Since $P \rightarrow P_{0}$ is a principal T^{n}-bundle, we can apply ordinary T-duality to the pair (P, H) to obtain a dual pair $(\widehat{P}, \widehat{H})$.
- The existence of a T-dual imposes the usual constraints on H.
- However, there is no guaranty that the G-action on P_{0} lifts to an action on \widehat{P} commuting with the \widehat{T}^{n}-action.
- The restriction of H to the $G \times T^{n}$-fibres of $P \rightarrow M$ defines a class in $H^{2}\left(G, H^{1}\left(T^{n}, \mathbb{Z}\right)\right)$, which is the obstruction to $\widehat{P} \rightarrow P_{0}$ being a pullback under $\sigma_{0}: P_{0} \rightarrow M$ of a \widehat{T}^{n}-bundle $\widehat{X} \rightarrow M$.

T-duality commutes with reduction

Proposition

For commuting group actions, the simple reduction and reduction by extended action commute.

Theorem

The T-duality isomorphism

$$
\phi:\left(T P \oplus T^{*} P\right) / T^{n} \rightarrow\left(T \widehat{P} \oplus T^{*} \widehat{P}\right) / \widehat{T}^{n}
$$

exchanges extended actions (H, ξ) and $(\widehat{H}, \widehat{\xi})$, and we have the desired isomorphism

$$
\mathcal{H} / T^{n} \cong\left(\left(T P \oplus T^{*} P\right) / T^{n}\right)_{\text {red }} \cong\left(\left(T \widehat{P} \oplus T^{*} \widehat{P}\right) / \widehat{T}^{n}\right)_{\text {red }} \cong \widehat{\mathcal{H}} / \widehat{T}^{n}
$$

The proof hinges on establishing the following identity,

$$
\widehat{H}+\widehat{\xi}=H+\xi+d_{G}\langle\theta, \hat{\theta}\rangle
$$

where $\widehat{A}-A=-\iota\langle\theta, \hat{\theta}\rangle$.

Remarks

- T-duality can be adapted to incorporate:
- String structures
- Trivially extended actions
- Heterotic Courant algebroids
- Heterotic Buscher rules are recovered via generalised metrics.
- The Pontryagin class $\frac{1}{2} p_{1}(T X)$ can be included.
- The heterotic Einstein equations are preserved under T-duality.
- String structures allow for more flexibility in the possible changes in topology under T-duality.

Examples

Proposition

Let $c \in H^{2}\left(M, H^{1}\left(\hat{T}^{n}, \mathbb{Z}\right)\right)$ and $\hat{c} \in H^{2}\left(M, H^{1}\left(T^{n}, \mathbb{Z}\right)\right)$ be the Chern classes of $X \rightarrow M$ and $\hat{X} \rightarrow M$. Then the following holds in $H^{4}(M, \mathbb{R})$:

$$
\langle c, \hat{c}\rangle=p_{1}\left(P_{0}\right) .
$$

Ordinary T-duality corresponds to $\langle c, \hat{c}\rangle=0$.

- Higher dimensional Lens spaces.
- Homogeneous spaces $G \rightarrow G / H$.

