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1. Setting - Crossed products

Start with a:-

Definition (C*-dynamical system)

• i.e. a triple (A, G , α) consisting of a
C*-algebra A, and a locally compact group G , and
• a strongly continuous action

α : G → AutA , (1)

i.e. a group homomorphism such that g 7→ αg (A) is continuous for each
A ∈ A.

Such actions occur naturally, e.g. in studying time evolutions or
symmetries of quantum systems.

Hendrik Grundling (UNSW) Singular actions Hamburg 2 / 33



Covariant representations

The natural class of representations of such a system respects the action:

Definition (Covariant representations)

A covariant representation of (A,G , α) is a pair (π,U), where
• π : A → B(H) is a nondegenerate representation of A on the Hilbert
space H and
• U : G → U(H) is a continuous unitary representation satisfying

U(g)π(A)U(g)∗ = π(αg (A)) for g ∈ G , a ∈ A. (2)

We write Rep(α,H) for the set of covariant representations (π,U) of
(A,G , α) on H.

It is a fundamental fact that the covariant representation theory of
(A,G , α) corresponds to the representation theory of a C*-algebra C,
hence can be analyzed with the usual C*-tools.
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The crossed product

The correspondence between Rep(α,H) and Rep(C,H) takes the
following form.

• There is a *-homomorphism ηA : A → M(C) ≡ multiplier algebra of A,
• a unitary homomorphism ηG : G → UM(C) such that

ηG (g)ηA(A)ηG (g)∗ = ηA(αg (A)) for g ∈ G ,A ∈ A. (3)

• Every representation ρ ∈ Rep(C,H) has a unique extension
ρ̃ : M(C) → B(H) such that the pair (ρ̃ ◦ ηA, ρ̃ ◦ ηG ) ∈ Rep(α,H).

This bijective correspondence ρ ↔ (π,U) preserves direct sums,
subrepresentations and irreducibility
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Crossed product

The function of this C*-algebra C is to carry the covariant representation
theory of (A,G , α).

It is called the crossed product of (A,G , α), usually denoted by A oα G ,
and it is constructed as a (C*-completion of a) skew convolution algebra
of L1(G ,A) with convolution product

(f ∗ h)(t) =

∫

G

f (s)αs(h(s−1t)) ds .

In the case that A = C, this is just the usual group algebra C ∗(G ) =: L
and ηG just becomes the usual η : G → UM(L) acting by left translations
on L1(G ,A).There is a bijection between continuous representations of G
and nondegenerate representations of L, given by
UL(f ) :=

∫
G

f (s)U(s) ds for f ∈ L1(G ).

A more useful characterization of C = A oα G is as follows.
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Crossed product

Definition (Crossed product - Raeburn)

Given a C*-dynamical system (A,G , α), then the crossed product of
(A,G , α) is the unique C*-algebra C such that

• there are C*-algebra morphisms ηA : A → M(C), ηL : L → M(C) where
• ηL is non-degenerate i.e. span(ηL(L)C) is dense in C,
• The multiplier extension η̃L : M(L) → M(C) satisfies in M(C) the
relations

η̃L(η(g))ηA(A)η̃L(η(g))∗ = ηA(αg (A)) for all A ∈ A, and g ∈ G .

• ηA(A)ηL(L) ⊆ C and C is generated by this set as a C ∗-algebra.
• For every covariant representation (π,U) ∈ Rep(α,H) there exists a
unique representation ρ ∈ Rep(C,H) with

ρ(ηA(A)ηL(L)) = π(A)UL(L) for A ∈ A, L ∈ L.

Hendrik Grundling (UNSW) Singular actions Hamburg 6 / 33



2. Singular actions.

Above we assumed for (A, G , α) that

• the map α : G → AutA is strongly continuous,

• the topological group G is locally compact, and

• we want to model the whole covariant representation theory for
α : G → AutA
Unfortunately many natural systems, both in physics and mathematics fail
to satisfy these assumptions.

Failure in the first two cases, means the construction of a crossed product
fails, and in the last case its representation theory is not the correct one
we are interested in.

Example

On C∞
c (R) ⊂ L2(R) define (Qf )(x) = xf (x) and Pf = if ′. Let

A = C ∗{e itQ , e itP | t ∈ R} ⊂ B(L2(R)) and define α : R → AutA by
αt = Ad exp(itP2). Then ‖e iQ − αt(e

iQ)‖ = 2 if t 6= 0.
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3. Host algebras.

To construct a C*-algebra C which can play the role of the crossed
product A oα G for such systems, we use Raeburn’s approach.

As C ∗(G ) will not exist if G is not locally compact, we generalize:

Definition (Host algebra)

A host algebra for a topological group G is a pair (L, η), where L is a
C ∗-algebra and η : G → UM(L) is a group homomorphism such that:

• For each non-degenerate representation (π,H) of L, the
representation π̃ ◦ η =: η∗(π) of G is continuous.

• For each complex Hilbert space H, the map

η∗ : Rep(L,H) → Rep(G ,H), π 7→ π̃ ◦ η

is injective.

We write Rep(G ,H)η for the range of η∗, and its elements are called
L-representations of G .
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We call (L, η) a full host algebra if, in addition, we have:

• Rep(G ,H)η = Rep(G ,H) for each Hilbert space H.

A full host algebra, carries precisely the continuous unitary representation
theory of G , and if it is not full, it carries some subtheory of the
continuous unitary representations of G . If we want to impose additional
restrictions, e.g. a spectral condition, then we will specify a host algebra
which is not full.

Host algebras need not exist, as there are topological groups with
continuous unitary representations, but without irreducible ones, and η∗

preserves irreducibility.

The existence of a host algebra for a fixed subclass of representations of G
implies that this class of representations is “isomorphic” to the
representation theory of a C ∗-algebra.

If G is locally compact, then L = C ∗(G ) with the canonical map
η : G → UM(C ∗(G )) is a full host algebra.
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4. Crossed product hosts

Based on Raeburn’s approach we define:

Definition (Crossed product hosts)

Let G be a topological group, let (L, η) be a host algebra for G and
(A,G , α) be a C ∗-action (not necessarily cont.). A triple (C, ηA, ηL) is a
crossed product host for (α,L) if

• ηA : A → M(C) and ηL : L → M(C) are morphisms of
C ∗-algebras.

• ηL is non-degenerate.

• We have in M(C):

η̃L◦η(g) ηA(A) η̃L◦η(g)∗ = ηA(αg (A)) for A ∈ A, g ∈ G

where η̃L : M(L) → M(C) is the multiplier extension.

• ηA(A)ηL(L) ⊆ C and C is generated by this set as a
C ∗-algebra.
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A full crossed product host for (α,L) satisfies in addition:

• For every covariant representation (π,U) of (A, α) on H for
which U is an L-representation of G , there exists a unique
representation ρ : C → B(H) with

ρ(ηA(A)ηL(L)) = π(A)UL(L) for A ∈ A, L ∈ L.

Two crossed product hosts (C(i), η
(i)
A

, η
(i)
L

), i = 1, 2, are isomorphic if
there is an isomorphism Φ : C(1) → C(2) such that(
Φ(C(1)), Φ̃ ◦ η

(1)
A

, Φ̃ ◦ η
(1)
L

)
= (C(2), η

(2)
A

, η
(2)
L

).

In the usual case, where α : G → Aut(A) is strongly continuous, and G is
locally compact with L = C ∗(G ), then the crossed product algebra
A oα G is a full crossed product host for (α,L).

However we have many examples beyond this.

In general a crossed product host need not exist.
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This definition generalizes crossed products in four directions:

The group G need not be locally compact,

the action α need not be strongly continuous,

the host algebra L does not have to coincide with C ∗(G ) when G is
locally compact,

for a non-full crossed product host, we restrict to a subtheory of the
covariant L–representations:

Theorem

Let (C, ηA, ηL) be a crossed product host for (α,L), and define the
homomorphism ηG := η̃L ◦ η : G → UM(C). Then for each Hilbert space
H the map

η∗× : Rep(C,H) → Rep(α,H), given by η∗
×(ρ) :=

(
ρ̃ ◦ ηA, ρ̃ ◦ ηG

)

is injective, and its range
Rep(α,H)η× ⊆ RepL(α,H) ≡ L-representations of (A,G , α), i.e.
covariant representations (π,U) for which U is an L-representation of G .
If C is full, then we have equality: Rep(α,H)η× = RepL(α,H).
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Theorem (Uniqueness Theorem)

Given a C ∗-action (A,G , α) and a host algebra (L, η) for G ,

let (C, ηA, ηL) and (C], η]
A

, η]
L
) be crossed product hosts for (α,L), such

that Rep(α,H)η× = Rep(α,H)
η

]
×

for any Hilbert space H.

Then there exists a unique isomorphism ϕ : C → C ] with

ϕ̃ ◦ ηA = η]
A

and ϕ̃ ◦ ηL = η]
L
.

In particular, full crossed product hosts for (α,L) are isomorphic.

Thus if two crossed product hosts carry the same covariant representation
theory for (A,G , α) and use the same host L, they are isomorphic.

We now consider the more involved question of existence.
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5. Existence of crossed product hosts

Given a C ∗-action (A,G , α) and a host algebra (L, η) for G ,

observe that if we have a crossed product host (C, ηA, ηL) for (α,L), then
for the universal representation (ρu ,Hu) of C, the corresponding covariant
L-representation (π,U) =

(
ρ̃u ◦ ηA, ρ̃u ◦ ηG

)
= η∗×(ρu) satisfies

ρu(ηA(A)ηL(L)) = π(A)UL(L) for A ∈ A, L ∈ L,

and C ∼= ρu(C) = C ∗
(
π(A)UL(L)

)
.

We can try to construct C in a similar way in any other covariant
representation (π,U) ∈ RepL(α,H) and ask when this is a crossed
product host:
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Theorem (Existence Theorem for crossed product hosts)

Given a C ∗-action (A,G , α) and a host algebra (L, η) for G , let
(π,U) ∈ RepL(α,H). Define

C := C ∗
(
π(A)UL(L)

)
⊂ B(H) .

Then π(A) ∪ UL(L) ⊂ M(C) ⊂ B(H), and we obtain morphisms

ηA : A → M(C) and ηL : L → M(C)

determined by ηA(A)C := π(A)C and ηL(L)C := UL(L)C for A ∈ A,
L ∈ L and C ∈ C.

Then the following are equivalent:

(i) (C, ηA, ηL) is a crossed product host.

(ii) π(A)UL(L) ⊆ UL(L)B(H).

(iii) There exists an approximate identity (Ej )j∈J of L such that

‖UL(Ej )π(A)UL(L) − π(A)UL(L)‖ → 0 for A ∈ A, L ∈ L.
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This theorem shows how crossed product hosts can be constructed. It also
isolates a distinguished class of representations:

Definition

A covariant L-representation (π,U) ∈ RepL(α,H) is called a cross

representation for (α,L) if any of the equivalent conditions (i)-(iii) hold.
Let Rep×

L
(α,H) denote the set of cross representations for (α,L) on H.

We have examples beyond the usual case where Rep×

L
(α,H) is nonempty,

and hence for which there exist crossed product hosts.

Example

Let H be an infinite-dimensional separable Hilbert space, A := B(H),
G := R, L = C ∗(R), H be a selfadjoint operator, Ut := e itH and
αt(A) := UtAU∗

t . Now α is strongly continuous iff H is bounded. Assume
that H is unbounded, hence α : R → Aut(B(H)) is not strongly
continuous. As U is strong operator continuous, (π,U) ∈ RepL(α,H)
where π is the identical representation π(A) = A of A. Then we have that
(π,U) ∈ Rep×

L
(α,H) if and only if (i1 − H)−1 ∈ K(H).
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In the case that G = R and L = C ∗(R) we can rephrase the cross
condition as follows.

A given covariant representation (π,U) is a cross representation
iff for all A ∈ A we have

lim
t→0

(
Ut − 1

)
π(B)UL(L) = 0 for all L ∈ L and B ∈ {A, A∗}

lim
t→∞

(
P [−t, t] − 1

)
π(B)UL(L) = 0 for all L ∈ L and B ∈ {A, A∗}

where P is the spectral projector of the generator H = H ∗ of
t 7→ Ut = exp(itH).

These conditions are easier to use, and it is e.g. obvious that if
UL(L) ⊆ K(H) then they are satisfied.
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The class of cross representations for (α,L) satisfies a range of
permanence properties, e.g. it is closed w.r.t.

taking of subrepresentations,

taking arbitrary multiples,

restriction to α–invariant subalgebras of A and

forming finite direct sums (but NOT infinite ones).

Theorem (Stability of cross representations w.r.t. bounded
perturbations)

α : R → Aut(A) be a C ∗-action, let L = C ∗(R) and let
(π,U) ∈ Rep×

L
(α,H) be a given cross representation.

Let B = B∗ ∈ B(H) and define UB
t := exp(it(H + B)) where

Ut = exp(itH) has generator H = H∗ (not necessarily bounded).

Assume that AdUB
t preserves π(A), hence define the perturbed action

αB : R → Aut(π(A)) by αB
t := AdUB

t .

Then (π,UB ) is a cross representation of αB .
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Theorem (Existence Theorem for full crossed product hosts)

Let (L, η) be a host algebra for the topological group G and
α : G → Aut(A) be a C ∗-action. Then the following are equivalent:

(i) There exists a full crossed product host (C, ηA, ηL) for (α,L).

(ii) RepL(α,H) = Rep×

L
(α,H) for all Hilbert spaces H.

If C is a full crossed product host, then all crossed product hosts are factor
algebras of C.
It is possible that there are crossed product hosts, but no full ones.
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6. Special cases.

Theorem (Cross representations via compact operators)

Let (A,G , α) be a C ∗-action and (L, η) be a host algebra for G . If
(π,U) ∈ RepL(α,H) satisfies π(A)UL(L) ⊆ K(H), then (π,U) is a cross
representation for (α,L). This holds in particular if UL(L) ⊆ K(H).

Example

Let H = L2(Rn), On C∞
c (Rn) define (Qj f )(x) = xj f (x) and

Pj f = i∂f
/
∂xj . This defines a representation of the Heisenberg group

Hn(R) by U(q,p, t) = exp(iQ(q)) exp(iP(p))e it where Q(q) =
∑n

j qjQj

and P(p) =
∑n

j pjPj . Let A = B(L2(Rn)), and define α : Hn(R) → AutA
by αg = AdU(g). Then α is not strongly continuous. However if we take
L = C ∗(Hn(R)), then UL(L) = K(H) and hence the defining
representation (π,U), π(A) = A, is a cross representation.
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Theorem (Compact group actions)

Let (U,H) be a continuous unitary representation of the compact group
G. Then the following are equivalent:

(i) For the identical representation π of A = B(H) on H,
αg (A) = UgAU∗

g and L = C ∗(G ), the pair (π,U) is a cross
representation of (α,L).

(ii) Spec(U) is finite or U is of finite multiplicity.

If (A,G , α) is a C ∗-action where G is compact with host chosen as
L = C ∗(G ), and if for a covariant representation (π,U) ∈ RepL(α,H), U
satisfies property (ii), then (π,U) is a cross representation.

The converse is not true, i.e. a cross representation (π,U) need not satisfy
(ii), as can be seen by taking an infinite multiple of a cross representation
for which Spec(U) is infinite.
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We have numerous examples, many relevant for physics. For example

Example (The Fock representation for a bosonic quantum field.)

For a nonzero complex Hilbert space H, the bosonic Fock space is

F(H) :=

∞⊕

n=0

⊗n
sH , ⊗n

sH ≡ symmetrized n-fold tensor product

with a convention ⊗0
sH := C. The (dense) finite particle space is

F0(H) := span{⊗n
sH | n = 0, 1, · · · }.

For f ∈ H, define on F0(H) a (closable) creation operator a∗(f ) by

a∗(f )
(
v1 ⊗s · · · ⊗s vn

)
:=

√
n + 1 f ⊗s v1 ⊗s · · · ⊗s vn,

and an essentially selfadjoint operator by ϕ(f ) :=
(
a∗(f ) + a(f )

)
/
√

2
where a(f ) is the adjoint of a∗(f ).
Let W (f ) := exp(iϕ(f )), then the simple C*-algebra
A := C ∗{W (f ) | f ∈ H} is the Weyl algebra (in Fock representation πF ).
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Example (continued)

Define an automorphic action α : U(H) → Aut(A) by
αU(W (f )) := W (Uf ).
Let H be selfadjoint, and consider the one-parameter group
t → Ut = exp(itH) ∈ U(H).
Define the (strong operator continuous) unitary group
t → Γ(Ut) ⊂ U

(
F(H)

)
by

Γ(Ut)
(
v1 ⊗s · · · ⊗s vn

)
:=

(
Utv1 ⊗s · · · ⊗s Utvn

)
.

Then AdΓ(Ut) preserves A, and we have covariance
αUt

(A) = Γ(Ut)AΓ(Ut)
∗ for all A ∈ A.

If H 6= 0 then t → αUt
in not strongly continuous.

We have proven that if H ≥ 0, then (πF , Γ(U)) is a cross representation
for (α,C ∗(R)).
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7. Spectral conditions.

In physics we often have additional spectral conditions for the unitary
implementers Ug , of a covariant pair (π,U), e.g. in the case that
α : R → Aut(A) gives time evolution, then the self-adjoint generator of
t 7→ Ut = exp(itH) must be non-negative. We will call such covariant
representations positive.
To obtain such covariant representations we should choose the host algebra

L = C ∗
+(R) := C ∗{f ∈ L1(R) | supp(f̂ ) ⊆ [0,∞)} ∼= C0([0,∞)).

We already have examples above of positive cross representations. We
want to investigate the connection between the cross property and spectral
conditions.
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Positive covariant representations have a number of special features of
which the Borchers-Arveson Theorem lists a few:

Theorem (Borchers-Arveson)

Let (M, R, α) be a W ∗-dynamical system on a von Neumann algebra
M ⊆ B(H). Then the following are equivalent:

(i) There is a positive strong operator continuous unitary one-parameter
group U : R → U(H) such that αt = AdUt on M.

(ii) There is a positive strong operator continuous unitary one-parameter
group U : R → M such that αt = AdUt on M.

If these conditions hold, then there is a unique implementing positive
unitary group U : R → M which is minimal in the sense that if
Ũ : R → U(H) is any other implementing positive unitary group, then
t 7→ ŨtU

∗
t is positive. (That is, H̃ ≥ H for the generators)

Thus given a positive covariant representation, we can find another one
(with the same π) for which U is inner, and there is a special minimal one
amongst these.
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Theorem

Let (M, R, α) be a W ∗-dynamical system on a von Neumann algebra
M ⊆ B(H) and let U : R → U(H) be a positive unitary one-parameter
group such that αt = AdUt on M.
Let V : R → M be the minimal positive one-parameter unitary group
given by the Borchers–Arveson Theorem. Choose L = C ∗

+(R), then:

(i) If (M,V ) is a cross representation then (M,U) is a cross
representation.

(ii) Let (A,G , α) be a C ∗-action and let π : A → B(H) be a
representation such that π(A) ⊆ M, and
π ◦ αt = AdUt ◦ π = AdVt ◦ π, with U, V , M as above. If (π,V ) is
a cross representation then (π,U) is a cross representation.

Thus if the minimal positive covariant representation is cross, all other
positive covariant representations are cross.
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7. Understanding the cross condition.

Recall that for any covariant L-representation (π,U) we can construct a
precursor C for our crossed product host, but only for the cross
representations is it an actual cross product host:-

Given a C ∗-action (A,G , α) and a host algebra (L, η) for G , let
(π,U) ∈ RepL(α,H). Define

C := C ∗
(
π(A)UL(L)

)
.

Then π(A) ∪ UL(L) ⊂ M(C) ⊂ B(H), and we obtain morphisms

ηA : A → M(C) and ηL : L → M(C)

determined by ηA(A)C := π(A)C and ηL(L)C := UL(L)C for A ∈ A,
L ∈ L and C ∈ C. We examine the structure of C.
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Fix a (π,U) ∈ RepL(α,H), L, C and ηA, ηL as above.

Definition

• A (nondegenerate) representation ρ ∈ Rep(C,H) is an L-representation
if ρ̃ ◦ ηL : L → B(H) is a nondegenerate representation of L. Write
RepL(C,H) for the set of L-representations of C on H.

• Define CL := ηL(L)CηL(L) ⊂ C.

• An L-representation ρ ∈ RepL(C,H) determines a unitary
L-representation, Uρ : G → U(H) uniquely specified by
Uρ(g) · (ρ̃ ◦ ηL)(L) = (ρ̃ ◦ ηL)(η(g)L) for all g ∈ G , L ∈ L.

Moreover we have covariance, i.e. (ρ̃ ◦ ηA, Uρ) ∈ RepL(α,H).

• Then CL is a (hereditary) C*-subalgebra with the property that an
L-representation ρ of C is uniquely determined by its restriction to
ηL(L)CηL(L) via the relation

ρ(C ) = s-lim
i

s-lim
j

ρ(ηL(Ei )CηL(Ej ))

for any approximate identity (Ej ) of L.

Hendrik Grundling (UNSW) Singular actions Hamburg 28 / 33



Thus CL carries the information of the L-representation ρ of C, and can
reproduce the unitaries of the covariant pairs. It can produce the other part
π of the covariant pair for those A ∈ A which are in its relative multiplier:

Definition

For CL as above, let

AL :=
{
A ∈ A | ηA(A)CL ⊆ CL and ηA(A∗)CL ⊆ CL

}
.

Theorem

Given (C, ηA, ηL) and AL as above;-

(i) AL =
{

A ∈ A
∣∣∣ ηA(A)ηL(L) ⊆ ηL(L)C and

ηA(A∗)ηL(L) ⊆ ηL(L)C
}

,

(ii) For any (hence all) approximate identities {Ej} of L we have

AL =
{

A ∈ A
∣∣∣
∥∥(

ηL(Ej) − 1
)
ηA(B)ηL(L)

∥∥ → 0

for B = A and A∗, and for all L ∈ L
}
.
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We recognize in properties (i), (ii) the defining property for a cross
representation. In fact we have:

Corollary

Given (C, ηA, ηL) and AL as above;-

(i) AL = A iff CL = C iff (π,U) ∈ Rep×

L
(α,H).

(ii) If (C, ηA, ηL) is constructed from the universal covariant
L-representation of (A,G , α), then a full crossed product host exists
if and only if AL = A.

The universal covariant L-representation (πu,Uu) ∈ RepL(α,Hu) is the
direct sum of all cyclic covariant L-representations.
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For the special case of a locally compact group G acting by a
discontinuous action α : G → AutA, with chosen host L = C ∗(G ) we
have the following:-

Proposition

Let G be locally compact, L = C ∗(G ) and (C, ηA, ηL) and AL as above;-

AL =
{

A ∈ A
∣∣∣ lim

g→1
ηA(αg (B))ηL(L) = ηA(B)ηL(L)

for all L ∈ L and B ∈ {A, A∗}
}

,

Thus we can specify the cross property in terms of a continuity property of
the action.
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Theorem

Let G be locally compact, L = C ∗(G ), and let (C, ηA, ηL) be constructed
from the universal covariant L-representation of (A,G , α), then the
following are equivalent:

(i) A full crossed product host exists.

(ii) lim
g→1

ηA(αg (A))ηL(L) = ηA(A)ηL(L) for A ∈ A and L ∈ L.

(iii) The conjugation action of G on C is strongly continuous.

This implies that the maps G → M(C), g → ηA(αg (A)) are continuous
w.r.t. the strict topology of C for all A ∈ A.
If A is unital, then there is a converse, i.e. (i)-(iii) are equivalent to

(iv) For every A ∈ A, the map G → M(C), g 7→ ηA(αg (A)) is
strictly continuous.

Construction of a crossed product in the conventional sense, requires
strong continuity of the action, i.e. lim

g→1
αg (A) = A for all A ∈ A.

For a full crossed product host, we simply replace this by continuity
condition (ii), or by (iv) for unital A.
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For more information, consult:-

Journal of Functional Analysis 266 (2014) 5199-5269

http://xxx.lanl.gov/abs/1210.3409

Thank you!
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