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51 Basics of oco-dim calculus

Defn. E, F locally convex spaces, U C E open.
A map f: U — Fis called Cl if it is continuous,
the directional derivatives

UF(ay) = D@ = 5| fa+t)

exist for all x € U, y € E, and the map
df : UXx FE — F

is continuous. The map f is called CF with k €
Ng U {oco} if the iterated directional derivatives

djf(iU,y]_, <o 7y]) .= (Dy] ©e Dylf)(x)

exist for all 5 € Ng such that 7 < k£ and define
continuous functions

df:UxE —F

Rem fis CkT1iff fisclanddf: UXE —» F
is Ck.

C°-maps are also called smooth.



Basic facts
(a) df(x,.): E — F is linear

(b) The Chain Rule holds: If f: U — V and
g:V — F are C¥, then also go f: U — F is C¥,
with

d(go f)(z,y) = dg(f(x),df (z,y)).

Defn. Smooth manifolds modelled on locally
convex TVS FE are defined as usual:

Hausdorff topological space M with an atlas of
homeomorphisms ¢: M DU — V C E (" charts")
between open sets such that the chart changes
are smooth.

Defn. Lie group = group G, equipped with
a smooth manifold structure modelled on a
locally convex space such that the group
operations are smooth maps.

L(G) := T.G, with Lie bracket arising from the
identification of y € L(G) with the correspond-
ing left invariant vector field.



Comparison with other approaches to
differential calculus

The approach to oco-dimensional calculus pre-
sented here goes back to A. Bastiani and is also
known under the name of Keller's Ck-theory.

Classical calculus in Banach spaces

A map f: E DO U — F between Banach spaces
is called continuously Fréchet differentiable (FC1)
if it is totally differentiable and

iU = (L(E,F), ||.llop)

is continuous. If fis FC and f’ is FC¥, then
f is called FCk+1,

Fact: fis Ckt1l = fis FCk = fis C*k

Convenient differential calculus

If £ is a Fréchet space, then a map f: E D
U— Fis C®iff foy: R — F is C° for each
C°°-curve v: R — U, i.e., iff f is smooth in
the sense of the convenient differential calculus
(developed by Frolicher, Kriegl and Michor).



Likewise if E is a Silva space (or (DFS)-space),
i.e., a locally convex direct limit

of Banach spaces FE1 € E> C ... such that
all inclusion maps E,, — E,41 are compact
operators.

Beyond metrizable or Silva domains, the smooth
maps of convenient differential calculus need
not be C° in the sense used here (they need
not even be continuous).

Diffeological spaces

If £ is a Fréchet space or a Silva space, then
a map f: E D U — F is C° if and only if
fo~vy:R" — F is C° for each n € N and C°°-
map v: R" — U (and it suffices to take n =1
as already mentioned).



Main classes of oco-dim Lie groups

Linear Lie groups

G < AX
Mapping groups Diffeomorphism groups
e.g. C°(M,H) Diff(M) M compact

Direct limit groups
G1 < Go <--- fin-dim

Here A is a Banach algebra or a continuous
inverse algebra (CIA)

A* is open and AX — A, x — z~1 is continuous



Elementary facts for f:. E DO U — F.

(a) If f(U) C Fy for a closed vector subspace
Fo C F, then f is CF iff f|f0 is CF

(b) If F = [ljes Fj, then f is C* iff each of its
components f; is C*.

(c) If FF = 'LL” F,, for a projective sequence

e Fy — P,

then f is CF iff w0 f is CF for each n € N,
where m,: F' — F}, is the limit map.

E.g. C*°([0,1],R) = Ii<Ln C"([0,1],R) for n € N;
c*t1([o,1],R) — C([0, 1],R) x C*([0, 1], E),
v = (1,7)

linear topological embedding, closed image.
Hence a map f to C*([0, 1], R) is smooth iff it is smooth

as a map to C*([0, 1],R) for each finite k.

A map to C*t1([0,1],R) is smooth iff it is smooth as a
map to C([0,1],R) and = — f(x)’ is smooth as a map
to C*([0,1],R)

~simple inductive proofs for smoothness of maps to
function spaces



Mean Value Theorem. If f. E DU — F is
Cl and z,y € U such that x4+ [0,1](y —z) C U,
then

1
F(y) — fz) = /O df(x + t(y — z),y — ) dt.

Defn. Let E be a locally convex space. A
(nec. unique) element z € FE is called the weak
integral of a continuous path v: [a,b] — E if

b
A(2) =/ A(v(£))dt  for all A e E'.

a

Write fé’y(t) dt .= z.

Mappings on non-open sets: Let U C E be
a subset with dense interior which is locally
convex, i.e., each x € U has a relatively open,
convex neighbourhood in U. Say that a con-
tinuous map f: U — F is C¥ if f|;0 is C* and

& (fl0): U x ) — F

extends to a continuous map &/f: U x EJ — F
for each 5 € N such that 5 < k.



If f. E DU — F, then the directional difference

quotients — f(z +ty) — f(=)
t
make sense for all (x,y,t) in the set
Ul .= {(z,y,t) e UXx ExXR: x4ty € U}
such that ¢ # 0.

Fact. A continuous map f is C1 if and only if
there is a continuous map f[l]: Ulll 5 F with

(g 1) = f(z + tyt) — f(z)

or all (z,y,t) € Ul such that ¢ =+ 0.

Indeed, df (z,y) = lim; 0 [ (2, y,8) = fltl(z,y,0)
in this case and thus f is C1. If fis C1, define

fletty)—f(z) .
(@, y,1) = t TLE0;
df (x,vy) if t =0.

By the Mean Value Theorem, for |t| small have

1
(@, y,t) = /O df (x + sty,y) ds.

Since weak integrals depend continuously on
parameters, f[l] is continuous.



First application of f[l]: Very easy proof of the
Chain Rule.

Another application, with a view towards the
commutator formula:

If G is a Lie group and ~1,v> € CY([0,7], Q)

with v1(0) = v2(0) = e, then n: [0,7%] — G,
n(t) = (VOO (V) (V)T

is C1.

Proof. n is C1 on ]0,72]. We show (1ly0.727)"

has a continuous extension to [O,rz].

Let U C G, V C U be open identity neighbour-
hoods with VVV~1v—1 C U. Identify U with
an open set in £ using a chart, such that e = 0.
The map

f:VxV-=U f(x,y):= :Uy:c_ly_l
is smooth with df(0,0,v,w) = 0 and

d?f(0,0; z,y; z,y) = 2[z,y].



The assertion now follows with a lemma by K.-H. Neeb:

Lemma IfU C E is open, ~: [0,1] — U is C1
and f: U — F a C?%-map with df(~(0),.) = 0,
then

n:[0,1] = U, t— f(v(V1))
is C1 with o/ (0) = 3d2f(~(0),~(0),~/(0)).

Proof: We may assume that +(0) = 0 and

f(0) = 0. Noting that
=0

/—\/’%
7(\/7?):\/%7(\/%)\_/%’7( O) :\/i,y[l](o71’\/i)’
we get for ¢t > 0O
n'(t) = ——=df(y(Vt);~ (\f))——df(O,v (\f))

\/ 2Vt

O
= ~NM0,7 (V)4 1(0,1,v0), 0; Vi)

The right-hand-side makes sense also for¢t =0
and is continuous on [0, 1]. Hence n is C1, with

7(0) = _(HM(0,7(0);7(0),0;0)

= %de(O,v’(O)m’(O))-



Literature for §1:

e A. Bastiani, Applications difféerentiables et
variétés differentiables de dimension infinie,
1964.

o \W. Bertram, HG, and K.-H. Neeb, Differ-
ential calculus over general base fields and
rings, 2004.

e Cartan, H., “Calcul différentiel,” 1967.

e HG, Infinite-dimensional Lie groups with-
out completeness restrictions, 2002.

e HG and K.-H. Neeb, "Infinite-Dimensional
Lie Groups,” book in preparation.

o H. H. Keller, “Differential Calculus in Lo-
cally Convex Spaces,” 1974.

e A. Kriegl and P.W. Michor, “The Conve-
nient Setting of Global Analysis,” 1997.

e J. Milnor, Remarks on infinite-dimensional
Lie groups, 1984.

e K.-H. Neeb, Towards a Lie theory of locally
convex groups, 2006.



52 Inverse functions and implicit functions

Implicit Function Theorem (HG'05) Let E

be a locally convex space, F be a Banach

space, G C E x F be open, (pg,yo) € G and
f:G—F

be a Ck-map such that f(pg,yg) = 0 and

fro:y— f(po,y)

has invertible differential at yq. If F' has finite
dimension, assume k > 1; otherwise, assume
that kK > 2. Then there exist open neighbour-
hood P C E of pg and V C F' of yg such that

{(p,y) € PxV: f(p,y) = 0} = graph(¢)
for a Ck-function ¢: P — V.

(Compare Hiltunen 1999, Teichmann 2001 for related

results in other settings of oco-dim calculus)



Some ideas of the proof.

Let F be a locally convex space, (F,||.||) be a
Banach space, P C E and V C F' be open sets.
We say that a map

fiPXV = F

defines a uniform family of contractions if there
is @ € [0, 1] such that

| f(p,y2) — F(p,y1)ll <Olly2 — y1
forall pe P, y1,yp € V.

Fact (HG'05) If f: UxV — F is C* and defines
a uniform family of contractions, then the set
Q of all p € P such that f(p,.): V — F has a
fixed point yp is open in P, and the map

Q_>V7 p'_>yp
is CF.

T his implies:



Inverse Functions with Parameters (HG'05)
Let E be a locally convex space, F' be a Banach
space, P C E and V C F be open sets, pg € P
and f: PxV — F be a Ck-map such that

fro i= f(po,.): V= F
has invertible differential at some yg € V. If F
has finite dimension, assume k > 1, otherwise,
assume that k > 2. Then, after shrinking P
and V if necessary, we may assume that, for
each pe P,

fp: V — fip(V)
has open image and is a Ck-diffeomorphism.
Moreover, the map

0: PxV — (J{p} x p(V), (p,v) = (0, fr(¥))
peP

is a C’f-diffeomorphism onto an open set (2.

The inverse map is 2 — PxV, (p,z) — (p, f, 1(2)). Thus

(p, z) — (f,)~1(2) is defined on an open set and is C*.

Application: Submersions, regular value the-
orem, pre-images of submanifolds etc (Neeb
and Wagemann 2008, HG 2015).

Another application:



Stimulated by related work by Hiltunen (2000)
and Teichmann (2001), Eyni recently used the
inverse function theorem with parameters to
obtain Frobenius theorems on the integrabilty of
vector distributions (Dp),cps On infinite dimen-
sional manifolds M (see Eyni 2014 and the ref-
erences therein). Three cases were discussed:

e Finite-dimensional vector spaces Dy, C Ty M;
e Banach spaces Dy, C TpM;

e D, is complemented in T,M and Tp,M/Dy, is
a Banach space.

As a consequence, a Lie subalgebra h C L(G)
integrates to an immersed Lie subgroup of a
Lie grop G if b is co-Banach or h is Banach
and G has (at least on ) a smooth exponential
function. That is, there is a smooth function

expg: h—G

such that t — expg(ty) is a one-parameter
group with derivativey att =0 in G (Eyni'14).



Eyni actually constructs foliated charts around
each point, which shows that H locally has a
smooth transversal. As a consequence,

G/H
iIs a manifold whenever the leaf H just de-
scribed is a submanifold of G (see HG'15)

Literature on §2

e J. M. Evyni, The Frobenius theorem for Ba-
nach distributions on infinite dimensional
manifolds and applications in infinite di-
mensional Lie theory, preprint, 2014;
arXiv:1407.3166.

e HG, Finite order differentiability properties,
fixed points and implicit functions over val-
ued fields, preprint, 2005; arXiv:math/0511218.
Improves:

e HG, Implicit functions from topological vec-
tor spaces to Banach spaces, 2006.

e HG, Fundamentals of submersions and im-
mersions between infinite-dimensional man-
ifolds, preprint, 2015; arXiv:1502.05795.

e S. Hiltunen, Implicit functions from locally
convex spaces to Banach spaces, 1999.



e S. Hiltunen, A Frobenius theorem for |lo-
cally convex global analysis, 2000.

e K.-H. Neeb and F. Wagemann, Lie group
structures on groups of smooth and ana-
lytic maps on non-compact manifolds, 2008

e J. Teichmann, A Frobenius theorem on con-
venient manifolds, 2001.



3 Exponential laws for function spaces

Following Alzaareer 2013, we consider func-
tions on products with different orders of dif-
ferentiability in the two factors:

Defn. Let Eq, E», F belocally convex, U C F;4
and V C FE, be open, and r,s € NgU {c0}. A
map f: U xV — F is called C™?° if the iterated
directional derivatives

dz,]f(xaylv ceey Y, W1y - 7w]> L=

(D(y;,0) " P(y1,00P0,w,) * P0,wy) ) (w;v)

exist for all 7,7 € Ng such that : <r, 5 <s and
define continuous functions

dif:Ux By x B}, - F.

If U, V are locally convex with dense interior, again use

continuous extensions of differentials.



Endow C™%(U x V, F') with the initial topology
with respect to the maps

C™S(UXV, F) = C(UXVXEYXE) o, f s d .

Exponential law (Alzaareer 2013). If f €
C™3(U x V, F), then the map

fYiU—=C(V,F), [ (2)):= f(z,y)
is C" and the map

d: C"(U XV, F) — C"(U,C3(V,F)), fw f"
is a linear topological embedding.

If U xV x E1 X FEy is a k-space or V is locally
compact, then ® is an isomorphism of topo-
logical vector spaces.

Recall that a Hausdorff space X is called a k-space if
a subset A C X is closed iff AN K is closed for each
compact subset K C X. For example, every metrizable
topological space is a k-space, as well as every locally
compact topological space.

For an application to ODE's with C"* right
hand sides, see Alzaareer und Schmeding 2013



Application: regularity of mapping groups

If G is a Lie group modelled on a locally convex
space, then we obtain a smooth action

GxTG—TG, (g,v)—gv:=TX(v),

using the left translation A\g: G — G, = — gx by
g. Abbreviate g := L(G).

Defn. Let £ € Ng U {c0o}. The Lie group
G is called Ck-semiregular if, for each ~ €
Ck([0,1],g), there exists a (necessarily unique)
Evol(~y) :=n € Ck¥t1([0,1], @) such that

n'(t) =n(t)~y() and n(0) =e.
If, moreover, Evol: C*([0,1],g) — CFT1([0,1],GR)
[or, equivalently, the map

evol: C¥([0,1],9) = G, ~+ Evol(y)(1)]

is smooth, then G is called Ck-regular. If G is
C*°-regular, then G is called regular (cf. Milnor
1984). This is the weakest regularity property:
If G is Ck-regular and ¢ > k, then G is also C*-
regular.



Regularity is important to retain familiar facts
in infinite dimensions. E.g.

Theorem. (Milnor 1984). Let G be a 1-
connected Lie group and H be a regular Lie
group (modelled on locally convex spaces). If
. L(G) — L(H) is a continuous Lie algebra
homomorphism, then there is a unique smooth
group homomorphism: G — H with L(vy) = ¢.

If both U and V are locally compact (e.g.),
then the exponential law entails that

C"(U,C°(V,F)) = C°(V,C"(U, F)).

The isomorphism is the composition
C"(UC*(V,F)) —C"(U x V, F)

— C>"(VxU,F)— C°(V,C"(U, F))
of isomorphisms.

Here is a typical application of the exponential
law:



Prop. Let r,s € NgU{oo}. If H is a C"-regular
Lie group and M a compact smooth manifold,
then also the mapping group G .= C*(M,H) is
C"-regular.

Sketch. Identify g := L(G) with C%(M,h), where

h := L(H). The main point is to get a candiate

for Evol(v) ify € C"([0,1],g) = C"([0, 1],C%(M,b)).
We try to construct the evolution pointwise:

Evol(v)(t)(z) := Evolg(s — v(s)(z)) ().
Let us write W(~v) for the right-hand-side. We

can obtain W as the composition of isomor-
phisms and the smooth map f +— Evolg o f:

c'([0,1],C%(M, b)) — C°(M,C"([0,1],h))

— C5(M,C"T1([0,1], H)) — Cc"T1([0, 1], C5( M, H)).

Thus W takes its values in the desired Lie group
and is smooth. Testing with point evaluations
(which are smooth group homomorphisms and
separate points), we see that W(v) is the evo-
lution Evol(v).



Rem. In particular, exponential laws for spaces
of smooth functions are available (as C°*°
maps on products coincide with C*°-mps). This
special case was known longer. Moreover, ex-
ponential laws in the sense of bornological iSO-
morphisms play a key role in the Convenient
Differential Calculus of Frolicher, Kriegl and
Michor.

References for §3:
e H. Alzaareer, " Lie Groups of Mappings on

Non-Compact Spaces and Manifolds,” Ph.D.-

thesis, Paderborn 2013.

e H. Alzaareer and A. Schmeding, Differen-
tiable mappings on products with differ-
ent degrees of differentiability in the two
factors, 2013, to appear in Expo. Math.;
arXiv:1208.6510.

HG, Regularity properties of infinite-dimensional
Lie groups, and semiregularity, preprint, 2015;
arXiv:1208.0715.



34 Non-linear mappings on locally convex
direct limits

For example, consider the space E := CZ°(R)
of real-valued test functions. Then

E=|J En
neN
with the Fréchet spaces E, = f’f ](IR{) of

n,mn
smooth functions supported in [-n,n]. Thus

FEq1 CExC -
Moreover, £ = Ii_rp E,, as a locally convex space.
Hence a linear map
fiE—F
is continuous if and only if each restriction f|g_
is continuous. What about non-linear maps:

If f: E— F is a map such that f|g, is C* for
each n € N, will f be Ck?

The answer is no in general. For example,

fiCP(R) = CP(RxR),  f(v)(z,y) ;= v(z)v(y)

is discontinuous although f|g is a continuous
quadratic polynomial for all n (cf. Hirai et al’01)



Well-behaved situations:

(a) (HG'024-04) If f: CX(R) — C(R) is C*k
on each of the spaces C°  .(R) and f
is local in the sense that f(’y)(:c) only de-
pends on the germ of v at z, then f is Ck.

Likewise if f is almost local, and for maps between
spaces of sections in vector bundles

~»group operations on Diff.(M) are C* for oc-compact M.

Follows from:

(b) (HG'03) If (fn)nen IS @ sequence of Ck-
maps fn: En 2 Uyp — Fp on open O-neighbour-
hoods with f,(0) = 0, then also the map

neN neN

(Tn)neN — (fn(zn))nen is oL

(c) If each E, is a complex Banach space, the
inclusion maps do not increase norms and
flgEn o . BEn(0) — F is complex analytic
and bounded for all n € N, then

o U BEFn(0) - F
neN
is complex analytic (Dahmen 2011).

~»Lie group structures on unions of Banach-Lie groups



(d)

(e)

Let £ = Upeny En be a Silva space (i.e.,
each Ej, is a Banach space and the inclu-
sion map E, — En41 IS @ compact oper-
ator for each n € N). Then f: E — F is
CF iff f|p, is CF for each n € N (see. e.g.,
HG'07).
If £ is a Silva space and k € Np, then

ch([0,1], B) = |J C*([0,1], En)

neN

with the direct limit topology by Mujica's
T heorem.

However, the path space is not a Silva space.
One can show:

If f: C*([0,1], E) — F restricts to a Ct*-map
on each C*([0,1], Ey), then

f|0k+1([0,1],E)
is Ct (HG'15).

~Diffc. (M) is Cl-regular for each compact real an-
alytic manifold M.



A typical application of (b) (see, e.g., HG'15)

Prop. If M is a oc-compact smooth mani-
fold and H a C"-regular Lie group for some
r € Ng, then also Ci(M,H) is C"-regular for
each s € Ng U {o0o}.

Sketch. Let (Mpn),eny be a locally finite se-
quence of compact submanifolds of M whose
interiors cover M. We know that G, := C%(Mp, H)
is C"-regular for each n. Now the map

Co(M,H) — P C°(Mn, H), v+ (V|p,)nen
neN

co-restricts to an isomorphism onto the Lie
subgroup

{(mInen: V€ Mp N Mp) wm(z) = ym(x)}

of the weak direct product G on the right. As
this subgroup is an equalizer of smooth group
homomorphisms, we need only show that the
weak direct product is C"-regular. This is true
since evolg can be identified with @&, cnevolg,, :

@nEN CT([Oa 1]7 L(Gn)) — CT([C)? 1]7 @nENL(Gn))
— @nEN Gn=0GG.
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35 Measurable regularity properties of infinite-
dimensional Lie groups

Defn. If F is a Fréchet space, let L1([a,b], F)
be the space of equivalence classes of abso-
lutely integrable measurable mappings v: [a, b] —
F' with separable image.

Continuous paths n: [a,b] — F of the form

n(t) = [ (s)ds

a

with v € L1([a,b], F) are called absolutely con-
tinuous.

Defn. Let F' be a Fréchet space, G C Rx F' and
(to,y0) € G. A map n: I — F on an interval
containing tg is called a Caratheodory solution
to

v = f(t,y), y(to) =vo
if graph(n) C G, the map ¢t — f(¢t,n(t)) is in L1
and

n(t) = yo +/t:) f(s,n(s))ds for all t € I.



Rem. If n is absolutely continuous and ¢ is
smooth, then ¢ on is absolutely continuous.
Hence absolutely continuous mappings to man-
ifolds can be defined. Moreover,

AC(]0,1],G)

IS a Lie group for each Fréchet-Lie group G.

Defn. G is called Ll-regular if a Caratheodory
solution Evol(vy) € AC(]0,1],G) exists to

y'(t) = y(t)y(), y(0)=e
and Evol: L1([0,1],g) — AC([0, 1], G) is smooth.

Rem. (a) Replacing L! with LP yields LP-
regular Fréchet-Lie groups.

(b) LSS ([a, b], E) (v has metrizable compact clo-
sure) and ACps(la,b], E) even works for arbi-
trary locally convex spaces E which are inte-
gral complete in the sense that each continuous
curve has a weak integral. In there have space
R([a,b], EV) of classes of regulated functions.



Then Ll-regularity IS the strongest notion of
measurable regularity, regulated regularity the
weakest:

LP-regularity implies L9- regularity for all ¢ > p
L*°-regularity implies LZ2-regularity, which im-

plies regulated regularity.

Theorem. (HG) Every Banach-Lie group is
Ll-reqular.

Theorem. (HG) Diffe(M) is LS-regular for
each paracompact finite-dimensional smooth
manifold M .

Following a suggestion by K.-H. Neeb:

Theorem If G is regulated regular, then G has
the strong Trotter property, i.e.
(v(t/n))" — expa(ty/(0)) as n — oo

for each Ct-map ~: [0,1] — G, uniformly for t
in compact sets.



Prop. If G has the strong Trotter property,
then G also has the strong commutator prop-
erty, i.e.,

<71(\/%/n)VQ(\/’Z/”)Wl(ﬁ/n)_lvz(ﬁ/n)_l)n

— exp(t[v1(0),75(0)])
uniformly for t in compact sets.

Proof. Apply the nz—subsequence of the Trot-
ter formula to the Cl-map

v(#) =1 (V)R (VO (V) TV L.

Rem. (a) L?([a,b], E¥) can be defined not only for Fréchet
spaces, but at least for some more general locally convex
spaces, including spaces of compactly supported smooth
vector fields. Diff.(M) actually is Ll-regular.

(b) This section compiles material from HG 2015b.

(c) L%-regularity of Banach-Lie groups was first an-
nounced in HG 2013; the L-regularity of diffeomor-
phism groups was conjectured there.

(d) That evol: C°([0,1],g) — G is smooth with respect
to the L! topology on C°([0, 1],g) for each Banach-Lie
group G was already shown in HG 2015a.
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