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§1 Basics of ∞-dim calculus

Defn. E, F locally convex spaces, U ⊆ E open.

A map f : U → F is called C1 if it is continuous,

the directional derivatives

df(x, y) := (Dyf)(x) =
d

dt

∣∣∣∣
t=0

f(x+ ty)

exist for all x ∈ U , y ∈ E, and the map

df : U × E → F

is continuous. The map f is called Ck with k ∈
N0 ∪ {∞} if the iterated directional derivatives

djf(x, y1, . . . , yj) := (Dyj · · ·Dy1f)(x)

exist for all j ∈ N0 such that j ≤ k and define

continuous functions

djf : U × Ej → F.

Rem f is Ck+1 iff f is C1 and df : U × E → F

is Ck.

C∞-maps are also called smooth.



Basic facts

(a) df(x, .): E → F is linear

(b) The Chain Rule holds: If f : U → V and
g : V → F are Ck, then also g ◦ f : U → F is Ck,
with

d(g ◦ f)(x, y) = dg(f(x), df(x, y)).

Defn. Smooth manifolds modelled on locally
convex TVS E are defined as usual:

Hausdorff topological space M with an atlas of
homeomorphisms φ : M ⊇ U → V ⊆ E (”charts”)
between open sets such that the chart changes
are smooth.

Defn. Lie group = group G, equipped with
a smooth manifold structure modelled on a
locally convex space such that the group
operations are smooth maps.

L(G) := TeG, with Lie bracket arising from the
identification of y ∈ L(G) with the correspond-
ing left invariant vector field.



Comparison with other approaches to

differential calculus

The approach to ∞-dimensional calculus pre-

sented here goes back to A. Bastiani and is also

known under the name of Keller’s Ckc -theory.

Classical calculus in Banach spaces

A map f : E ⊇ U → F between Banach spaces

is called continuously Fréchet differentiable (FC1)

if it is totally differentiable and

f ′ : U → (L(E,F ), ‖.‖op)

is continuous. If f is FC1 and f ′ is FCk, then

f is called FCk+1.

Fact: f is Ck+1 ⇒ f is FCk ⇒ f is Ck

Convenient differential calculus

If E is a Fréchet space, then a map f : E ⊇
U → F is C∞ iff f ◦ γ : R → F is C∞ for each

C∞-curve γ : R → U , i.e., iff f is smooth in

the sense of the convenient differential calculus

(developed by Frölicher, Kriegl and Michor).



Likewise if E is a Silva space (or (DFS)-space),

i.e., a locally convex direct limit

E = lim→ En

of Banach spaces E1 ⊆ E2 ⊆ · · · such that

all inclusion maps En → En+1 are compact

operators.

Beyond metrizable or Silva domains, the smooth

maps of convenient differential calculus need

not be C∞ in the sense used here (they need

not even be continuous).

Diffeological spaces

If E is a Fréchet space or a Silva space, then

a map f : E ⊇ U → F is C∞ if and only if

f ◦ γ : Rn → F is C∞ for each n ∈ N and C∞-

map γ : Rn → U (and it suffices to take n = 1

as already mentioned).



Main classes of ∞-dim Lie groups

Linear Lie groups

G ≤ A×

Mapping groups Diffeomorphism groups

e.g. C∞(M,H) Diff(M) M compact

Direct limit groups

G =
⋃
n Gn with

G1 ≤ G2 ≤ · · · fin-dim

Here A is a Banach algebra or a continuous

inverse algebra (CIA)

A× is open and A× → A, x 7→ x−1 is continuous



Elementary facts for f : E ⊇ U → F .

(a) If f(U) ⊆ F0 for a closed vector subspace
F0 ⊆ F , then f is Ck iff f |F0 is Ck

(b) If F =
∏
j∈J Fj, then f is Ck iff each of its

components fj is Ck.

(c) If F = lim← Fn for a projective sequence

· · · → F2 → F1,

then f is Ck iff πn ◦ f is Ck for each n ∈ N,
where πn : F → Fn is the limit map.

E.g. C∞([0,1],R) = lim← Cn([0,1],R) for n ∈ N;

Ck+1([0,1],R)→ C([0,1],R)× Ck([0,1], E),
γ 7→ (γ, γ′)

linear topological embedding, closed image.

Hence a map f to C∞([0,1],R) is smooth iff it is smooth

as a map to Ck([0,1],R) for each finite k.

A map to Ck+1([0,1],R) is smooth iff it is smooth as a

map to C([0,1],R) and x 7→ f(x)′ is smooth as a map

to Ck([0,1],R)

;simple inductive proofs for smoothness of maps to

function spaces



Mean Value Theorem. If f : E ⊇ U → F is

C1 and x, y ∈ U such that x+ [0,1](y− x) ⊆ U ,

then

f(y)− f(x) =
∫ 1

0
df(x+ t(y − x), y − x) dt.

Defn. Let E be a locally convex space. A

(nec. unique) element z ∈ E is called the weak

integral of a continuous path γ : [a, b]→ E if

λ(z) =
∫ b
a
λ(γ(t)) dt for all λ ∈ E′.

Write
∫ b
a γ(t) dt := z.

Mappings on non-open sets: Let U ⊆ E be

a subset with dense interior which is locally

convex, i.e., each x ∈ U has a relatively open,

convex neighbourhood in U . Say that a con-

tinuous map f : U → F is Ck if f |U0 is Ck and

dj(f |U0): U0 × Ej → F

extends to a continuous map djf : U ×Ej → F

for each j ∈ N such that j ≤ k.



If f : E ⊇ U → F , then the directional difference
quotients f(x+ ty)− f(x)

t

make sense for all (x, y, t) in the set

U [1] := {(x, y, t) ∈ U × E × R : x+ ty ∈ U}
such that t 6= 0.

Fact. A continuous map f is C1 if and only if
there is a continuous map f [1] : U [1] → F with

f [1](x, y, t) =
f(x+ ty)− f(x)

t

or all (x, y, t) ∈ U [1] such that t 6= 0.

Indeed, df(x, y) = limt→0 f
[1](x, y, t) = f [1](x, y,0)

in this case and thus f is C1. If f is C1, define

f [1](x, y, t) :=

{
f(x+ty)−f(x)

t if t 6= 0;
df(x, y) if t = 0.

By the Mean Value Theorem, for |t| small have

f [1](x, y, t) =
∫ 1

0
df(x+ sty, y) ds.

Since weak integrals depend continuously on
parameters, f [1] is continuous.



First application of f [1]: Very easy proof of the
Chain Rule.

Another application, with a view towards the
commutator formula:

If G is a Lie group and γ1, γ2 ∈ C1([0, r], G)
with γ1(0) = γ2(0) = e, then η : [0, r2]→ G,

η(t) := γ1(
√
t)γ2(

√
t)γ1(

√
t)−1γ2(

√
t)−1

is C1.

Proof. η is C1 on ]0, r2]. We show (η|]0,r2])
′

has a continuous extension to [0, r2].

Let U ⊆ G, V ⊆ U be open identity neighbour-
hoods with V V V −1V −1 ⊆ U . Identify U with
an open set in E using a chart, such that e = 0.
The map

f : V × V → U, f(x, y) := xyx−1y−1

is smooth with df(0,0, v, w) = 0 and

d2f(0,0;x, y;x, y) = 2[x, y].



The assertion now follows with a lemma by K.-H. Neeb:

Lemma If U ⊆ E is open, γ : [0,1] → U is C1

and f : U → F a C2-map with df(γ(0), .) = 0,
then

η : [0,1]→ U, t 7→ f(γ(
√
t))

is C1 with η′(0) = 1
2d

2f(γ(0), γ′(0), γ′(0)).

Proof: We may assume that γ(0) = 0 and
f(0) = 0. Noting that

γ(
√
t) =

√
t
γ(
√
t)−

=0︷ ︸︸ ︷
γ(
√

0)√
t

=
√
t γ[1](0,1,

√
t),

we get for t > 0

η′(t) =
1

2
√
t
df(γ(

√
t); γ′(

√
t))−

1

2
√
t
df(0, γ′(

√
t))︸ ︷︷ ︸

=0

=
1

2
(df)[1](0, γ′(

√
t); γ[1](0,1,

√
t),0;

√
t)

The right-hand-side makes sense also for t = 0
and is continuous on [0,1]. Hence η is C1, with

η′(0) =
1

2
(df)[1](0, γ′(0); γ′(0),0; 0)

=
1

2
d2f(0, γ′(0), γ′(0)).
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§2 Inverse functions and implicit functions

Implicit Function Theorem (HG’05) Let E

be a locally convex space, F be a Banach

space, G ⊆ E × F be open, (p0, y0) ∈ G and

f : G→ F

be a Ck-map such that f(p0, y0) = 0 and

fp0 : y 7→ f(p0, y)

has invertible differential at y0. If F has finite

dimension, assume k ≥ 1; otherwise, assume

that k ≥ 2. Then there exist open neighbour-

hood P ⊆ E of p0 and V ⊆ F of y0 such that

{(p, y) ∈ P × V : f(p, y) = 0} = graph(φ)

for a Ck-function φ : P → V .

(Compare Hiltunen 1999, Teichmann 2001 for related

results in other settings of ∞-dim calculus)



Some ideas of the proof.

Let E be a locally convex space, (F, ‖.‖) be a

Banach space, P ⊆ E and V ⊆ F be open sets.

We say that a map

f : P × V → F

defines a uniform family of contractions if there

is θ ∈ [0,1[ such that

‖f(p, y2)− f(p, y1)‖ ≤ θ‖y2 − y1‖

for all p ∈ P , y1, y2 ∈ V .

Fact (HG’05) If f : U×V → F is Ck and defines

a uniform family of contractions, then the set

Q of all p ∈ P such that f(p, .): V → F has a

fixed point yp is open in P , and the map

Q→ V, p 7→ yp

is Ck.

This implies:



Inverse Functions with Parameters (HG’05)
Let E be a locally convex space, F be a Banach
space, P ⊆ E and V ⊆ F be open sets, p0 ∈ P
and f : P × V → F be a Ck-map such that

fp0 := f(p0, .): V → F

has invertible differential at some y0 ∈ V . If F
has finite dimension, assume k ≥ 1; otherwise,
assume that k ≥ 2. Then, after shrinking P
and V if necessary, we may assume that, for
each p ∈ P ,

fp : V → fp(V )

has open image and is a Ck-diffeomorphism.
Moreover, the map

θ : P × V →
⋃
p∈P
{p} × fp(V ), (p, y) 7→ (p, fp(y))

is a Ck-diffeomorphism onto an open set Ω.

The inverse map is Ω→ P×V , (p, z) 7→ (p, f−1
p (z)). Thus

(p, z) 7→ (fp)−1(z) is defined on an open set and is Ck.

Application: Submersions, regular value the-
orem, pre-images of submanifolds etc (Neeb
and Wagemann 2008, HG 2015).

Another application:



Stimulated by related work by Hiltunen (2000)

and Teichmann (2001), Eyni recently used the

inverse function theorem with parameters to

obtain Frobenius theorems on the integrabilty of

vector distributions (Dp)p∈M on infinite dimen-

sional manifolds M (see Eyni 2014 and the ref-

erences therein). Three cases were discussed:

• Finite-dimensional vector spaces Dp ⊆ TpM ;

• Banach spaces Dp ⊆ TpM ;

• Dp is complemented in TpM and TpM/Dp is

a Banach space.

As a consequence, a Lie subalgebra h ⊆ L(G)

integrates to an immersed Lie subgroup of a

Lie grop G if h is co-Banach or h is Banach

and G has (at least on h) a smooth exponential

function. That is, there is a smooth function

expG : h→ G

such that t 7→ expG(ty) is a one-parameter

group with derivative y at t = 0 in G (Eyni’14).



Eyni actually constructs foliated charts around

each point, which shows that H locally has a

smooth transversal. As a consequence,

G/H

is a manifold whenever the leaf H just de-

scribed is a submanifold of G (see HG’15)
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§3 Exponential laws for function spaces

Following Alzaareer 2013, we consider func-

tions on products with different orders of dif-

ferentiability in the two factors:

Defn. Let E1, E2, F be locally convex, U ⊆ E1

and V ⊆ E2 be open, and r, s ∈ N0 ∪ {∞}. A

map f : U × V → F is called Cr,s if the iterated

directional derivatives

di,jf(x, y1, . . . , yi, w1, . . . , wj) :=

(D(yi,0) · · ·D(y1,0)D(0,wj)
· · ·D(0,w1)f)(u, v)

exist for all i, j ∈ N0 such that i ≤ r, j ≤ s and

define continuous functions

di,jf : U × Ei1 × E
j
2 → F.

If U , V are locally convex with dense interior, again use

continuous extensions of differentials.



Endow Cr,s(U × V, F ) with the initial topology
with respect to the maps

Cr,s(U×V, F )→ C(U×V×Ei1×E
j
2)c.o., f 7→ di,jf.

Exponential law (Alzaareer 2013). If f ∈
Cr,s(U × V, F ), then the map

f∨ : U → Cs(V, F ), f∨(x)(y) := f(x, y)

is Cr and the map

Φ: Cr,s(U × V, F )→ Cr(U,Cs(V, F )), f 7→ f∨

is a linear topological embedding.

If U × V × E1 × E2 is a k-space or V is locally
compact, then Φ is an isomorphism of topo-
logical vector spaces.

Recall that a Hausdorff space X is called a k-space if

a subset A ⊆ X is closed iff A ∩ K is closed for each

compact subset K ⊆ X. For example, every metrizable

topological space is a k-space, as well as every locally

compact topological space.

For an application to ODE’s with Cr,s right
hand sides, see Alzaareer und Schmeding 2013



Application: regularity of mapping groups

If G is a Lie group modelled on a locally convex

space, then we obtain a smooth action

G× TG→ TG, (g, v) 7→ g.v := Tλg(v),

using the left translation λg : G→ G, x 7→ gx by

g. Abbreviate g := L(G).

Defn. Let k ∈ N0 ∪ {∞}. The Lie group

G is called Ck-semiregular if, for each γ ∈
Ck([0,1], g), there exists a (necessarily unique)

Evol(γ) := η ∈ Ck+1([0,1], G) such that

η′(t) = η(t).γ(t) and η(0) = e.

If, moreover, Evol : Ck([0,1], g)→ Ck+1([0,1], G)

[or, equivalently, the map

evol: Ck([0,1], g)→ G, γ 7→ Evol(γ)(1) ]

is smooth, then G is called Ck-regular. If G is

C∞-regular, then G is called regular (cf. Milnor

1984). This is the weakest regularity property:

If G is Ck-regular and ` ≥ k, then G is also C`-

regular.



Regularity is important to retain familiar facts

in infinite dimensions. E.g.

Theorem. (Milnor 1984). Let G be a 1-

connected Lie group and H be a regular Lie

group (modelled on locally convex spaces). If

φ : L(G) → L(H) is a continuous Lie algebra

homomorphism, then there is a unique smooth

group homomorphism ψ : G→ H with L(ψ) = φ.

If both U and V are locally compact (e.g.),

then the exponential law entails that

Cr(U,Cs(V, F )) ∼= Cs(V,Cr(U, F )).

The isomorphism is the composition

Cr(U,Cs(V, F ))→ Cr,s(U × V, F )

→ Cs,r(V × U, F )→ Cs(V,Cr(U, F ))

of isomorphisms.

Here is a typical application of the exponential

law:



Prop. Let r, s ∈ N0 ∪ {∞}. If H is a Cr-regular
Lie group and M a compact smooth manifold,
then also the mapping group G := Cs(M,H) is
Cr-regular.

Sketch. Identify g := L(G) with Cs(M, h), where
h := L(H). The main point is to get a candiate
for Evol(γ) if γ ∈ Cr([0,1], g) = Cr([0,1], Cs(M, h)).
We try to construct the evolution pointwise:

Evol(γ)(t)(x) := EvolH(s 7→ γ(s)(x))(t).

Let us write Ψ(γ) for the right-hand-side. We
can obtain Ψ as the composition of isomor-
phisms and the smooth map f 7→ EvolH ◦ f :

Cr([0,1], Cs(M, h))→ Cs(M,Cr([0,1], h))

→ Cs(M,Cr+1([0,1], H))→ Cr+1([0,1], Cs(M,H)).

Thus Ψ takes its values in the desired Lie group
and is smooth. Testing with point evaluations
(which are smooth group homomorphisms and
separate points), we see that Ψ(γ) is the evo-
lution Evol(γ).



Rem. In particular, exponential laws for spaces
of smooth functions are available (as C∞,∞

maps on products coincide with C∞-mps). This
special case was known longer. Moreover, ex-
ponential laws in the sense of bornological iso-
morphisms play a key role in the Convenient
Differential Calculus of Frölicher, Kriegl and
Michor.

References for §3:

• H. Alzaareer, ”Lie Groups of Mappings on
Non-Compact Spaces and Manifolds,” Ph.D.-
thesis, Paderborn 2013.
• H. Alzaareer and A. Schmeding, Differen-

tiable mappings on products with differ-
ent degrees of differentiability in the two
factors, 2013, to appear in Expo. Math.;
arXiv:1208.6510.
• HG, Regularity properties of infinite-dimensional

Lie groups, and semiregularity, preprint, 2015;
arXiv:1208.0715.



§4 Non-linear mappings on locally convex

direct limits

For example, consider the space E := C∞c (R)
of real-valued test functions. Then

E =
⋃
n∈N

En

with the Fréchet spaces En := C∞[−n,n](R) of
smooth functions supported in [−n, n]. Thus

E1 ⊆ E2 ⊆ · · ·
Moreover, E = lim→ En as a locally convex space.
Hence a linear map

f : E → F

is continuous if and only if each restriction f |En
is continuous. What about non-linear maps:

If f : E → F is a map such that f |En is Ck for
each n ∈ N, will f be Ck ?

The answer is no in general. For example,

f : C∞c (R)→ C∞c (R×R), f(γ)(x, y) := γ(x)γ(y)

is discontinuous although f |En is a continuous
quadratic polynomial for all n (cf. Hirai et al’01)



Well-behaved situations:

(a) (HG’02+04) If f : C∞c (R) → C∞c (R) is Ck

on each of the spaces C∞[−m,m](R) and f
is local in the sense that f(γ)(x) only de-
pends on the germ of γ at x, then f is Ck.

Likewise if f is almost local, and for maps between

spaces of sections in vector bundles

;group operations on Diffc(M) are C∞ for σ-compact M .

Follows from:

(b) (HG’03) If (fn)n∈N is a sequence of Ck-
maps fn : En ⊇ Un → Fn on open 0-neighbour-
hoods with fn(0) = 0, then also the map

⊕n∈Nfn :
⊕
n∈N

Un →
⊕
n∈N

Fn

(xn)n∈N 7→ (fn(xn))n∈N is Ck.
(c) If each En is a complex Banach space, the

inclusion maps do not increase norms and
f |
BEnr (0)

: BEnr (0) → F is complex analytic
and bounded for all n ∈ N, then

f :
⋃
n∈N

BEnr (0)→ F

is complex analytic (Dahmen 2011).

;Lie group structures on unions of Banach-Lie groups



(d) Let E =
⋃
n∈NEn be a Silva space (i.e.,

each En is a Banach space and the inclu-
sion map En → En+1 is a compact oper-
ator for each n ∈ N). Then f : E → F is
Ck iff f |En is Ck for each n ∈ N (see. e.g.,
HG’07).

(e) If E is a Silva space and k ∈ N0, then

Ck([0,1], E) =
⋃
n∈N

Ck([0,1], En)

with the direct limit topology by Mujica’s
Theorem.

However, the path space is not a Silva space.
One can show:

If f : Ck([0,1], E)→ F restricts to a C`-map
on each Ck([0,1], En), then

f |Ck+1([0,1],E)

is C` (HG’15).

;DiffCω(M) is C1-regular for each compact real an-

alytic manifold M .



A typical application of (b) (see, e.g., HG’15)

Prop. If M is a σ-compact smooth mani-
fold and H a Cr-regular Lie group for some
r ∈ N0, then also Csc(M,H) is Cr-regular for
each s ∈ N0 ∪ {∞}.

Sketch. Let (Mn)n∈N be a locally finite se-
quence of compact submanifolds of M whose
interiors cover M . We know that Gn := Cs(Mn, H)
is Cr-regular for each n. Now the map

Csc(M,H)→
⊕
n∈N

Cs(Mn, H), γ 7→ (γ|Mn)n∈N

co-restricts to an isomorphism onto the Lie
subgroup

{(γn)n∈N : (∀x ∈Mn ∩Mm) γn(x) = γm(x)}

of the weak direct product G on the right. As
this subgroup is an equalizer of smooth group
homomorphisms, we need only show that the
weak direct product is Cr-regular. This is true
since evolG can be identified with ⊕n∈NevolGn :⊕
n∈NC

r([0,1], L(Gn)) = Cr([0,1],
⊕
n∈NL(Gn))

→
⊕
n∈NGn = G.
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§5 Measurable regularity properties of infinite-
dimensional Lie groups

Defn. If F is a Fréchet space, let L1([a, b], F )
be the space of equivalence classes of abso-
lutely integrable measurable mappings γ : [a, b]→
F with separable image.

Continuous paths η : [a, b]→ F of the form

η(t) :=
∫ t
a
γ(s) ds

with γ ∈ L1([a, b], F ) are called absolutely con-

tinuous.

Defn. Let F be a Fréchet space, G ⊆ R×F and
(t0, y0) ∈ G. A map η : I → F on an interval
containing t0 is called a Caratheodory solution

to

y′ = f(t, y), y(t0) = y0

if graph(η) ⊆ G, the map t 7→ f(t, η(t)) is in L1

and

η(t) = y0 +
∫ t
t0
f(s, η(s)) ds for all t ∈ I.



Rem. If η is absolutely continuous and φ is

smooth, then φ ◦ η is absolutely continuous.

Hence absolutely continuous mappings to man-

ifolds can be defined. Moreover,

AC([0,1], G)

is a Lie group for each Fréchet-Lie group G.

Defn. G is called L1-regular if a Caratheodory

solution Evol(γ) ∈ AC([0,1], G) exists to

y′(t) = y(t).γ(t), y(0) = e

and Evol: L1([0,1], g)→ AC([0,1], G) is smooth.

Rem. (a) Replacing L1 with Lp yields Lp-

regular Fréchet-Lie groups.

(b) L∞rc([a, b], E) (γ has metrizable compact clo-

sure) and ACL∞rc([a, b], E) even works for arbi-

trary locally convex spaces E which are inte-

gral complete in the sense that each continuous

curve has a weak integral. In there have space

R([a, b], E) of classes of regulated functions.



Then L1-regularity is the strongest notion of

measurable regularity, regulated regularity the

weakest:

Lp-regularity implies Lq- regularity for all q ≥ p

L∞-regularity implies L∞rc-regularity, which im-

plies regulated regularity.

Theorem. (HG) Every Banach-Lie group is

L1-regular.

Theorem. (HG) Diffc(M) is L∞rc-regular for

each paracompact finite-dimensional smooth

manifold M .

Following a suggestion by K.-H. Neeb:

Theorem If G is regulated regular, then G has

the strong Trotter property, i.e.

(γ(t/n))n → expG(tγ′(0)) as n→∞

for each C1-map γ : [0,1] → G, uniformly for t

in compact sets.



Prop. If G has the strong Trotter property,
then G also has the strong commutator prop-
erty, i.e.,(
γ1(
√
t/n)γ2(

√
t/n)γ1(

√
t/n)−1γ2(

√
t/n)−1

)n2

→ expG(t[γ′1(0), γ′2(0)])

uniformly for t in compact sets.

Proof. Apply the n2-subsequence of the Trot-
ter formula to the C1-map

γ(t) := γ1(
√
t)γ2(

√
t)γ1(

√
t)−1γ2(

√
t)−1.

Rem. (a) Lp([a, b], E) can be defined not only for Fréchet

spaces, but at least for some more general locally convex

spaces, including spaces of compactly supported smooth

vector fields. Diffc(M) actually is L1-regular.

(b) This section compiles material from HG 2015b.

(c) L∞rc-regularity of Banach-Lie groups was first an-

nounced in HG 2013; the L∞rc-regularity of diffeomor-

phism groups was conjectured there.

(d) That evol : C0([0,1], g) → G is smooth with respect

to the L1 topology on C0([0,1], g) for each Banach-Lie

group G was already shown in HG 2015a.
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