Categorical tori and their representations

A report on work in progress

Nora Ganter

Workshop on Infinite-dimensional Structures in Higher Geometry and Representation Theory

Hamburg, February 2015

Crossed modules and categorical groups

following Noohi
(Strict) categorical groups are (strict) monoidal groupoids

$$
\begin{gathered}
G_{1} \\
s \downarrow \downarrow t \\
G_{0}
\end{gathered}
$$

with invertible objects (w.r.t. •).
A crossed module (G, A, ψ) encodes a strict categorical group

$$
\begin{gathered}
G \ltimes A \\
p r_{1} \downarrow \downarrow p r_{1} \cdot \psi \\
G
\end{gathered}
$$

group multiplication gives \bullet and $(g \psi(b), a) \circ(g, b)=(g, a b)$.

Crossed modules
consist of a group G, a right G module A and a homomorphism
$\psi: A \longrightarrow G$ with

$$
\psi\left(a^{g}\right)=g^{-1} \psi(a) g
$$

$$
\psi(a) \cdot b=a^{-1} b a .
$$

The crossed module of the categorical group \mathcal{G} above is

$$
\begin{aligned}
G & =G_{0} \\
A & =\operatorname{ker}(s) \\
a^{g} & =g^{-1} \bullet a \bullet g \\
\psi & =t .
\end{aligned}
$$

Example: the crossed module of a categorical torus

Two ingredients: A lattice Λ^{\vee} and a bilinear form J on Λ^{\vee}. From this, we form the crossed module

$$
\begin{aligned}
& \Lambda^{\vee} \times U(1) \xrightarrow{\psi} t:=\Lambda^{\vee} \otimes_{\mathbb{Z}} \mathbb{R} \\
&(m, z) \longmapsto
\end{aligned}
$$

where the action of $x \in \mathfrak{t}$ on $\Lambda^{\vee} \times U(1)$ is given by

$$
(m, z)^{x}=(m, z \cdot \exp (J(m, x)))
$$

Categorical tori

The categorical torus \mathcal{T} is the strict monoidal category with objects:
arrows: $\quad x \xrightarrow{z} x+m, \quad x \in \mathfrak{t}, m \in \Lambda^{\vee}, z \in U(1)$,
composition: the obvious one,
multiplication: addition on objects and on arrows

$$
(x \xrightarrow{z} x+m) \bullet(y \xrightarrow{w} y+n)=(x+y \xrightarrow{z w \exp (J(m, y))} x+y+m+n) .
$$

Classification

Schommer-Pries, Wagemann-Wockel, Carey-Johnson-Murray-Stevenson-Wang

Up to equivalence, the categorical torus \mathcal{T} only depends on the even symmetric bilinear form

$$
I(m, n)=J(m, n)+J(n, m)
$$

More precisely,

$$
-I \in \operatorname{Bil} l_{e v}\left(\Lambda^{\vee}, \mathbb{Z}\right)^{S_{2}}=H^{4}(B T ; \mathbb{Z}) \cong H_{g p}^{3}(T ; U(1))
$$

classifies the equivalence class of the extension

$$
p t / / U(1) \longrightarrow \mathcal{T} \longrightarrow T .
$$

Examples:

1. $T_{\max } \subset G$ maximal torus of a simple and simply connected compact Lie group, Λ^{\vee} coroot lattice, $I_{\text {bas }}$ basic bilinear form,
2. $\left(\Lambda_{\text {Leech }}, l\right)$ or another Niemeyer lattice.

Aussie-rules Lie group cohomology

$$
H_{g p}^{3}(T ; U(1))=\check{H}^{3}\left(B T_{\bullet} ; \underline{U(1)}\right)
$$

and -/ corresponds to the Čech-simplicial 3-cocycle

| | | | | |
| ---: | ---: | ---: | ---: | ---: | :--- |
| $T \times T \times T$ | 1 | | | |
| $T \times T$ | | $\exp (-J(m, y))$ | | |
| T | | | 1 | $d=2$ |
| | \mathfrak{t}^{d} | $\left(\mathfrak{t} \times \Lambda^{\vee}\right)^{d}$ | $\left(t \times \Lambda^{\vee} \times \Lambda^{\vee}\right)^{d}$ | |

where the non-trivial entry is short for

$$
((x, m),(y, n)) \longmapsto \exp (-J(m, y)) .
$$

Autoequivalences of the category of coherent sheaves

$$
\begin{aligned}
\widehat{T} & =\operatorname{Hom}(T, U(1)) \\
T_{\mathbb{C}} & =\operatorname{spec} \mathbb{C}[\widehat{T}] \\
\operatorname{Coh} T_{\mathbb{C}} & \simeq \mathbb{C}[\widehat{T}]-\bmod ^{\text {fin }} \\
1 \operatorname{Aut}\left(\operatorname{Coh} T_{\mathbb{C}}\right) & \simeq \operatorname{Bimod}_{\mathbb{C}[\widehat{T}]}^{\text {fin }} \quad \text { [Deligne]. }
\end{aligned}
$$

Inside $1 \operatorname{Aut}\left(\operatorname{Coh}\left(T_{\mathbb{C}}\right)\right)$, we have the full subcategory of direct image functors f_{*} of variety automorphisms f. This categorical group belongs to the crossed module

$$
\mathbb{C}[\widehat{T}]^{\times} \xrightarrow{1} \operatorname{Aut} t_{\text {var }}\left(T_{\mathbb{C}}\right),
$$

where f acts on $\mathbb{C}[\widehat{T}]^{\times}$by precomposition, $\varphi \mapsto \varphi \circ f$.

The basic representation of a categorical torus

The basic representation of \mathcal{T} is the strict monoidal functor

$$
\varrho_{\text {bas }}: \mathcal{T} \longrightarrow 1 \operatorname{Aut}\left(\operatorname{Coh}\left(T_{\mathbb{C}}\right)\right)
$$

induced by the map of crossed modules

$$
(m, z) \longmapsto z \cdot e^{2 \pi i J(m,-)}
$$

The involution ι

The involution ι of T, sending t to t^{-1} lifts to an involution of \mathcal{T}, given by the map of crossed modules

$$
(m, z) \longmapsto(-m, z)
$$

$$
x \longmapsto-x
$$

This gives rise to an action of the group $\{ \pm 1\}$ by (strict monoidal) functors on the category \mathcal{T}.

Extraspecial categorical 2-groups

The fixed points of ι on T form the elementary abelian 2-group

$$
T^{\{ \pm 1\}}=T[2] \cong \wedge^{\vee} / 2 \Lambda^{\vee} .
$$

The categorical fixed points (or equivariant objects) of ι on \mathcal{T} form an extension

$$
p t / / U(1) \longrightarrow \widetilde{\left.\mathcal{T}^{\{ } \pm 1\right\}} \longrightarrow \widetilde{T[2]}
$$

of the extraspecial 2-group T [2] with Arf invariant

$$
\phi(m)=\frac{1}{2} I(m, m) \quad \bmod 2 \Lambda^{\vee} .
$$

Example: In the example of the Leech lattice, $\widetilde{T[2]}$ is the subgroup of the Monster that is usually denoted 2^{1+24}.

1Automorphisms of the basic representation

Let $\mathcal{T}_{\mathbb{C}} \rtimes\{ \pm 1\}$ be the categorical group of the crossed module

$$
\begin{aligned}
\Lambda^{\vee} \times \mathbb{C}^{\times} \longrightarrow & \mathfrak{t}_{\mathbb{C}} \rtimes\{ \pm 1\} \\
(m, z) \longmapsto & (m, 1)
\end{aligned}
$$

where -1 acts on everything by ι.
Extend the basic representation to

$$
\varrho_{\text {bas }}: \mathcal{T}_{\mathbb{C}} \rtimes\{ \pm 1\} \longrightarrow 1 \operatorname{Aut}\left(\operatorname{Coh}\left(T_{\mathbb{C}}\right)\right)
$$

by setting $r_{\text {bas }}(-1):=\iota$. So, $\varrho_{\text {bas }}(-1):=\iota_{*}$.

Theorem: The 1automorphisms of this $\varrho_{\text {bas }}$ form the extraspecial categorical 2-group $\mathcal{T}_{\mathbb{C}}^{\{ \pm 1\}}$.

Normalizers

Let

$$
\varrho: H \longrightarrow G=G L(V)
$$

be a representation of a group H on some vector space. Then

$$
\operatorname{Aut}(\varrho)=C(\varrho)=\left\{g \in G \mid c_{g} \circ \varrho=\varrho\right\}
$$

is the centralizer of (the image of) ϱ in G. Here c_{g} is conjugation by g.

Definition [Dror Farjoun, Segev]: The injective normalizer of ϱ is the subgroup of $\operatorname{Aut}(H) \times G$ defined as

$$
N(\varrho)=\left\{(f, g) \mid c_{g} \circ \varrho=\varrho \circ f\right\} .
$$

If ϱ is injective, this is the normalizer of its image.

Towards the refined Monster?

(In progress)
Theorem: The 1automorphisms of \mathcal{T} form an extension

$$
p t / / \Lambda \longrightarrow 1 \operatorname{Aut}(\mathcal{T}) \longrightarrow O\left(\Lambda^{\vee}, I\right)
$$

Here $O\left(\Lambda^{\vee}, I\right)$ is the group of linear isometries of $\left(\Lambda^{\vee}, I\right)$.
Example: the Conway group

$$
O\left(\Lambda_{\text {Leech }}^{\vee}, I\right)=C_{o} .
$$

In spirit, the subgroup of the Monster, known as

$$
2^{1+24} \cdot C_{o_{1}}=\widetilde{T[2]} \rtimes\left(C_{o} /\{ \pm i d\}\right)
$$

wants to parametrize the isomorphism classes of some categorical variant of normalizer of $\varrho_{\text {bas }}: \mathcal{T}_{\mathbb{C}} \rtimes\{ \pm 1\} \longrightarrow 1 \operatorname{Aut}\left(\operatorname{Coh}\left(T_{\mathbb{C}}\right)\right)$.

