Operator valued Fourier transforms on nilpotent Lie groups

Daniel Beltiță Institute of Mathematics of the Romanian Academy ***

Joint work with Ingrid Beltiță (IMAR) and Jean Ludwig (UL)

Hamburg, 16.02.2015

Reference

▶ I. BELTIŢĂ, D. B., J. LUDWIG, Fourier transforms of C*-algebras of nilpotent Lie groups. Preprint arXiv:1411.3254 [math.OA].

- **1** Motivation: continuity properties of the Kirillov correspondence
- **Operator-valued Fourier transforms: continuity of operator fields**
- Tools from C*-algebra extension theory: Busby invariant, completely positive lifting
- C*-algebras of nilpotent Lie groups: stratifications of the dual, C*-solvability
- S Application to Heisenberg groups

Motivation (1): Lie group representations

Nilpotent Lie group G = (g, ·): finite-dim. ℝ-linear space g with polynomial group law satisfying (sx) · (tx) = (s + t)x for s, t ∈ ℝ, x ∈ g
Ĝ := unitary equivalence classes [π] of unirreps π: G → U(H_π)

• Kirillov correspondence: $\kappa: \widehat{G} \xrightarrow{\sim} \mathfrak{g}^* / \operatorname{Ad}_G^*$ (=the coadjoint *G*-orbits) where $\operatorname{Ad}_G^*: G \times \mathfrak{g}^* \to \mathfrak{g}^*$ Recall: $[\pi] \stackrel{\kappa}{\longleftrightarrow} \mathcal{O} \iff (\forall \varphi \in \mathcal{C}_c^{\infty}(\mathfrak{g})) \quad \operatorname{Tr} \pi(\varphi) = \int_{\mathcal{O}} \widehat{\varphi}$

Goal

continuity properties of the bijection κ

• Regular representation $\lambda \colon L^1(G) \to \mathcal{B}(L^2(G)), \ \lambda(f)\varphi = f * \varphi$

•
$$C^*(G) := \overline{\lambda(L^1(G))}^{\|\cdot\|} \subseteq \mathcal{B}(L^2(G)) \rightsquigarrow \widehat{G} \simeq \widehat{C^*(G)}$$

Motivation (2): C^* -algebra representations

- C^* -alg. $\mathcal{A} \rightsquigarrow$ spectrum $\widehat{\mathcal{A}} := \{ [\pi] \mid \pi : \mathcal{A} \rightarrow B(\mathcal{H}_{\pi}) \text{ irred. } *\text{-repres.} \}$ \rightsquigarrow topology with open sets $\{ [\pi] \in \widehat{\mathcal{A}} \mid \pi \mid_{\mathcal{J}} \neq 0 \}$ for closed 2-sided ideals $\mathcal{J} \subseteq \mathcal{A}$
- $\mathcal{A}_0 := \{a \in \mathcal{A} \mid \widehat{\mathcal{A}} \to [0, \infty), \ [\underline{\pi}] \mapsto \operatorname{Tr}(\pi(a)\pi(a)^*) \text{ well-def. } \& \text{ cont} \}$
- \mathcal{A} has continuous trace $\iff \overline{\mathcal{A}_0} = \mathcal{A}$ $\Rightarrow \widehat{\mathcal{A}}$ is loc. comp. Hausdorff and $\pi(\mathcal{A}) = \mathcal{K}(\mathcal{H}_{\pi})$ for all $[\pi] \in \widehat{\mathcal{A}} \setminus \{[0]\}$ **Example**: $\mathcal{A} = \mathcal{C}_0(\Gamma, \mathcal{K}(\mathcal{H}))$ with Γ loc. comp. Hausdorff $\Rightarrow \widehat{\mathcal{A}} \simeq \Gamma$ and \mathcal{A} has continuous trace

Theorem (N.V. Pedersen, 1984)

If G is a nilpotent Lie group then there exist closed 2-sided ideals of $C^*(G)$

$$\{0\} = \mathcal{J}_0 \subseteq \mathcal{J}_1 \subseteq \cdots \subseteq \mathcal{J}_n = C^*(G)$$

with $\mathcal{J}_j/\mathcal{J}_{j-1}$ having continuous trace for $j=1,\ldots,n$

Question: Can we always arrange to have $\mathcal{J}_j/\mathcal{J}_{j-1} \simeq \mathcal{C}_0(\Gamma_j, \mathcal{K}(\mathcal{H}_j))$ j = 1, ..., n?

Daniel Beltiță (IMAR)

Operator valued Fourier transforms of a C^* -algebra \mathcal{A}

- $\bullet \ \mathsf{let} \ \Gamma \subseteq \widehat{\mathcal{A}}$
- select $\pi_{\gamma} \colon \mathcal{A} \to \mathcal{B}(\mathcal{H}_{\gamma})$ with $[\pi_{\gamma}] = \gamma$ for all $\gamma \in \Gamma$

 \rightsquigarrow Fourier transform

$$\mathcal{F}_{\mathsf{\Gamma}} \colon \mathcal{A} o \ell^{\infty}(\mathsf{\Gamma}, \prod_{\gamma \in \mathsf{\Gamma}} \mathcal{B}(\mathcal{H}_{\gamma})), \quad \mathsf{a} \mapsto \{\pi_{\gamma}(\mathsf{a})\}_{\gamma \in \mathsf{\Gamma}}$$

Problem: What is the range of \mathcal{F}_{Γ} , particularly for $\mathcal{A} = C^*(G)$ & $\Gamma = \widehat{\mathcal{A}}$?

Continuity of operator fields

• Γ Hausdorff

•
$$(\forall \gamma \in \Gamma) \mathcal{H}_{\gamma} = \mathcal{H}$$

- \bullet total subset $\mathcal{V}\subseteq\mathcal{H}\text{,}$ dense *-subalg. $\mathcal{S}\subseteq\mathcal{A}$ satisfying
- 1. $(\forall a \in S)(\forall v_1, v_2 \in V) \quad \Gamma \to \mathbb{C}, \ \gamma \mapsto \langle \pi_{\gamma}(a)v_1, v_2 \rangle$ is continuous
- 2. $(\forall a \in S) \quad \Gamma \to \mathbb{C}, \ \gamma \mapsto \operatorname{Tr} \pi_{\gamma}(a)$ is well-defined & continuous $\Longrightarrow (\forall a \in A) \quad \mathcal{F}_{\Gamma}(a) \in \mathcal{C}_{b}(\Gamma, \mathcal{K}(\mathcal{H}))$

Tools from C^* -algebra extension theory

• Extension of C*-algebras: $0 \to \mathcal{J} \hookrightarrow \mathcal{A} \xrightarrow{q} \mathcal{B} \to 0$ classified by Busby's *-morphism $\beta \colon \mathcal{B} \to M(\mathcal{J})/\mathcal{J}$ Example

$$\mathcal{J} = \mathcal{C}_0(\Gamma, \mathcal{K}(\mathcal{H})) \Rightarrow \mathcal{M}(\mathcal{J}) = \{\varphi \colon \Gamma \to \mathcal{B}(\mathcal{H}) \mid \varphi \text{ bounded strong}^*\text{-cont.}\}$$

• If the points of $\Gamma = \widehat{\mathcal{J}}$ are closed separated in $\widehat{\mathcal{A}}$, then

 $\beta: \mathcal{B} \to \mathcal{C}_b(\Gamma, \mathcal{K}(\mathcal{H}))/\mathcal{C}_0(\Gamma, \mathcal{K}(\mathcal{H})) \ (\subseteq M(\mathcal{J})/\mathcal{J})$

Choi-Effros completely positive lifting theorem

If \mathcal{B} nuclear separable, then there exists $\nu \colon \mathcal{B} \to \mathcal{C}_b(\Gamma, \mathcal{K}(\mathcal{H}))$ linear, completely positive, $\|\nu\| \leq 1$, satisfying

$$(\forall b \in \mathcal{B}) \quad \beta(b) - \nu(b) \in \mathcal{C}_0(\Gamma, \mathcal{K}(\mathcal{H})).$$

Also $\nu(b_1b_2) - \nu(b_1)\nu(b_2) \in C_0(\Gamma, \mathcal{K}(\mathcal{H}))$ for $b_1, b_2 \in \mathcal{B}$. **Examples:** $C^*(G)$ is nuclear separable.

The class of nuclear separable C^* -algebras is closed under closed 2-sided ideals and quotients.

Daniel Beltiță (IMAR)

Boundary values of operator fields

- \mathcal{A} separable C^* -algebra
- open sets $\emptyset = V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n = \widehat{\mathcal{A}}$
- ideals $\{0\} = \mathcal{J}_0 \subseteq \mathcal{J}_1 \subseteq \cdots \subseteq \mathcal{J}_n = \mathcal{A}$ with $\widehat{\mathcal{J}}_{\ell} = V_{\ell}$, satisfying

$$\bullet \ \ \mathsf{\Gamma}_\ell := \mathsf{V}_\ell \setminus \mathsf{V}_{\ell-1} \ \text{is dense in} \ \widehat{\mathcal{A}} \setminus \mathsf{V}_{\ell-1};$$

Solution the exist a complex Hibert space \mathcal{H}_{ℓ} and $\pi_{\gamma} : \mathcal{A} \to \mathcal{K}(\mathcal{H}_{\ell})$ with $[\pi_{\gamma}] = \gamma$ for all $\gamma \in \Gamma_{\ell}$ such that for every $a \in \mathcal{A}$ the mapping $\Gamma_{\ell} \to \mathcal{K}(\mathcal{H}_{\ell}), \ \gamma \mapsto \pi_{\gamma}(a)$ is norm continuous.

Define

а

$$\mathcal{L}_{\ell} := \{ f : \widehat{\mathcal{A}} \setminus V_{\ell} \to \mathcal{K}(\mathcal{H}_{\ell+1}) \oplus \cdots \oplus \mathcal{K}(\mathcal{H}_n) \mid f(\gamma) \in \mathcal{K}(\mathcal{H}_j) \text{ if } \gamma \in \Gamma_j \}$$

nd $\mathcal{F}_{\mathcal{A}/\mathcal{J}_{\ell}} : \mathcal{A}/\mathcal{J}_{\ell} \to \mathcal{L}_{\ell}, (\mathcal{F}_{\mathcal{A}/\mathcal{J}_{\ell}}(\mathbf{a} + \mathcal{J}_{\ell}))(\gamma) := \pi_{\gamma}(\mathbf{a}), \ \ell = 0, \dots, n.$

There exist linear maps $\nu_{\ell} \colon \mathcal{F}_{\mathcal{A}/\mathcal{J}_{\ell}}(\mathcal{A}/\mathcal{J}_{\ell}) \to \mathcal{C}_{b}(\Gamma_{\ell}, \mathcal{K}(\mathcal{H}_{\ell}))$, which are completely positive, completely isometric, almost *-morphisms, with

$$\mathcal{F}_{\mathcal{A}}(\mathcal{A}) = \{ f \in \mathcal{L}_0 \mid f|_{\Gamma_{\ell}} - \nu_{\ell}(f|_{\hat{\mathcal{A}} \setminus V_{\ell}}) \in \mathcal{C}_0(\Gamma_{\ell}, \mathcal{K}(\mathcal{H}_{\ell})), \ \ell = 1, \ldots, n-1 \}$$

C^* -algebras of nilpotent Lie groups are solvable (1)

G nilpotent Lie group $\implies C^*(G)$ has a special solving series.

That is, a finite series of ideals $\{0\} = \mathcal{J}_0 \subseteq \mathcal{J}_1 \subseteq \cdots \subseteq \mathcal{J}_n = \mathcal{A} := C^*(G)$ with $\mathcal{J}_j/\mathcal{J}_{j-1} \simeq \mathcal{C}_0(\Gamma_j, \mathcal{K}(\mathcal{H}_j))$ for $j = 1, \dots, n$, and moreover

- **(**) $\widehat{\mathcal{A}}$ is a topological \mathbb{R} -space, Γ_j are \mathbb{R} -subspaces, $\widehat{\mathcal{A}} = \Gamma_1 \sqcup \cdots \sqcup \Gamma_n$
- **2** dim $\mathcal{H}_n = 1$ and $\Gamma_n \simeq [\mathfrak{g}, \mathfrak{g}]^{\perp}$ as topological \mathbb{R} -spaces
- dim $\mathcal{H}_j = \infty$ if j < n, Γ_j is open dense, having closed and separated points in $\widehat{\mathcal{A}} \setminus \widehat{\mathcal{J}}_{j-1}$
- Solution Γ_j ≃ semi-algebraic cone in a finite-dimensional vector space, which is a Zariski open set for j = 1, and its dimension is the *index of G*, denoted by ind G.
- So there exists a homogeneous function $φ_j: \widehat{A} → ℝ$ such that $φ_j|_{Γ_1}$ is a polynomial function and

$$\Gamma_j = \{ \gamma \in \widehat{\mathcal{A}} \mid \varphi_j(\gamma) \neq 0 \text{ and } \varphi_i(\gamma) = 0 \text{ if } i < j \}.$$

C^* -algebras of nilpotent Lie groups are solvable (2)

A topological \mathbb{R} -space is a topological space X with a continuous map $\mathbb{R} \times X \to X$, $(t, x) \mapsto t \cdot x$, and with a distinguished point $x_0 \in X$ satisfying

$$(\forall x \in X) \quad 0 \cdot x = x_0$$

$$(\forall t, s \in \mathbb{R})(\forall x \in X) \quad t \cdot (s \cdot x) = ts \cdot x$$

So For every x ∈ X \ {x₀} the map ℝ → X, t ↦ t ⋅ x is a homeomorphism onto its image.

An \mathbb{R} -subspace is any $\Gamma \subseteq X$ with $\mathbb{R} \cdot \Gamma \subseteq \Gamma \cup \{x_0\}$, so $\Gamma \cup \{x_0\}$ is a topological \mathbb{R} -space.

Examples: 1. Finite-dimensional \mathbb{R} -linear spaces are topological \mathbb{R} -spaces. 2. $G = (\mathfrak{g}, \cdot) \rightsquigarrow \widehat{G} \simeq \widehat{C^*(G)} \simeq \mathfrak{g}^*/\mathrm{Ad}_G^*$ topological \mathbb{R} -space via

$$t \cdot \mathcal{O}_{\xi} := \mathcal{O}_{t\xi}$$

where $\mathcal{O}_{\xi} = \mathrm{Ad}_{\mathcal{G}}^*(\mathcal{G})\xi$. The linear space $[\mathfrak{g},\mathfrak{g}]^{\perp}$ (\simeq the singleton orbits) is an \mathbb{R} -subspace of $\mathfrak{g}^*/\mathrm{Ad}_{\mathcal{G}}^*$.

C^* -algebras of nilpotent Lie groups are solvable (3)

- nilpotent Lie group $G = (\mathfrak{g}, \cdot)$ $G = (\mathfrak{g}, \cdot)$
- Jordan-Hölder sequence $\{0\} = \mathfrak{g}_0 \subseteq \cdots \subseteq \mathfrak{g}_m = \mathfrak{g}$
- duality pairing $\langle \cdot, \cdot \rangle \colon \mathfrak{g}^* \times \mathfrak{g} \to \mathbb{R}$
- coadjoint isotropy at $\xi \in \mathfrak{g}^*$: $\mathfrak{g}(\xi) := \{x \in \mathfrak{g} \mid \langle \xi, [x, \mathfrak{g}] \rangle = 0\}$
- jump set at $\xi \in \mathfrak{g}^*$: $J_{\xi} := \{j \in \{1, \dots, m\} \mid \mathfrak{g}_j \not\subset \mathfrak{g}(\xi) + \mathfrak{g}_{j-1}\}$
- \mathcal{E} the set of all subsets of $\{1, \ldots, m\}$

Piecewise continuity of trace wrt the coarse stratification Define $\Omega_e := \{\xi \in \mathfrak{g}^* \mid J_{\xi} = e\}$ for $e \in \mathcal{E}$. *Coarse stratification*: $\mathfrak{g}^* = \bigsqcup_{e \in \mathcal{E}} \Omega_e$, finite partition into *G*-invariant sets

$$\rightsquigarrow \boxed{\widehat{\mathcal{G}} \simeq \mathfrak{g}^*/\mathrm{Ad}_{\mathcal{G}}^* = \bigsqcup_{e \in \mathcal{E}} \Xi_e} \text{ where } \Xi_e := \Omega_e/\mathrm{Ad}_{\mathcal{G}}^*$$

For every $e \in \mathcal{E}$ one has:

- The relative topology of $\Xi_e \subseteq \mathfrak{g}^*/\mathrm{Ad}_{\mathcal{G}}^*$ is Hausdorff.
- Solution For every φ ∈ C₀[∞](G) the function Ξ_e → C, O → Tr (π_O(φ)) is well defined and continuous, where [π_O] ↔ O.

C^* -algebras of nilpotent Lie groups are solvable (4)

Piecewise continuity wrt the refined stratification Define $J_{\xi}^{k} := \{j \in \{1, ..., k\} \mid \mathfrak{g}_{j} \not\subset \mathfrak{g}_{k}(\xi|_{\mathfrak{g}_{k}}) + \mathfrak{g}_{j-1}\}$ for k = 1, ..., m, $\xi \in \mathfrak{g}^{*}$, and

$$(\forall \varepsilon \in \mathcal{E}^m) \quad \Omega_{\varepsilon} := \{\xi \in \mathfrak{g}^* \mid (J^1_{\xi}, \dots, J^m_{\xi}) = \varepsilon\}.$$

 $\begin{array}{l} \textit{Fine stratification: } \mathfrak{g}^{*} = \bigsqcup_{\varepsilon \in \mathcal{E}^{m}} \Omega_{\varepsilon} \textit{ finite partition into } G\textit{-invariant sets} \\ \rightsquigarrow \boxed{\widehat{G} \simeq \mathfrak{g}^{*}/\mathrm{Ad}_{G}^{*} = \bigsqcup_{\varepsilon \in \mathcal{E}^{m}} \Xi_{\varepsilon}} \textit{ where } \Xi_{\varepsilon} := \Omega_{\varepsilon}/\mathrm{Ad}_{G}^{*} \\ \textit{For } \varepsilon \in \mathcal{E}^{m} \textit{ let } \Gamma_{\varepsilon} \subseteq \widehat{G} \textit{ be the image of } \Xi_{\varepsilon} \textit{ through Kirillov's} \\ \textit{correspondence } \mathfrak{g}^{*}/\mathrm{Ad}_{G}^{*} \simeq \widehat{G}. \end{array}$

For $\varepsilon \in \mathcal{E}^m$ there exist a Hilbert space $\mathcal{H}_{\varepsilon}$ & unirrep $\pi_{\gamma} \colon G \to \mathcal{B}(\mathcal{H}_{\varepsilon})$ with $[\pi_{\gamma}] = \gamma$ for $\gamma \in \Gamma_{\varepsilon}$ such that the map $\Pi_a \colon \Gamma_{\varepsilon} \to \mathcal{B}(\mathcal{H}_{\varepsilon}), \ \gamma \mapsto \pi_{\gamma}(a)$, is norm continuous for all $a \in C^*(G)$.

Prf. 1. Weak continuity for $a \in C_0^{\infty}(G)$ suffices since trace continuity holds on Γ_{ε} .

Daniel Beltiță (IMAR)

C^* -algebras of nilpotent Lie groups are solvable (5)

 Models of representations via canonical coordinates on coadjoint orbits. Let 2d = dim Ø for all Ø ∈ Ξ_ε and H_ε := L²(ℝ^d).
 (2a) Let p₁,..., p_d, q₁,..., q_d be the coordinate functions on ℝ^{2d}. Then E¹(ℝ^{2d}) := {φ ∈ C[∞](ℝ^{2d}) | φ = a_{φ,0}(q) + ∑_{j=1}^d a_{φ,j}(q)p_j} is a Lie algebra wrt the Poisson bracket, and Q: E¹(ℝ^{2d}) → Diff(ℝ^d), Q(φ)f = ∑_{j=1}^d a_{φ,j}∂_jf + (ia_{φ,0} + ½∑_{j=1}^d ∂_ja_{φ,j})f is a Lie algebra morphism into the skew-symmetric differential operators.
 (2b) There exist a semi-alg. set T and a homeo. Ψ: T × ℝ^{2d} → Ξ_ε with

- for every $t \in T$, $\Psi_t := \Psi(t, \cdot)$ is a symplectomorphism from \mathbb{R}^{2d} onto a coadjoint orbit \mathcal{O}_t of G;
- $\ \, { \ \, { \ \, on } } \ \, \psi^{x}:=\langle\cdot,x\rangle \ \, { on } \ \, { \mathcal O}_t \ \, { \rm satisfies } \ \, \psi^{x}\circ\Psi_t\in \mathcal E^1(\mathbb R^{2d}) \ \, { \rm for } \ t\in { T}, \ x\in\mathfrak g.$
- So For all $t \in T$, $\rho_t : \mathfrak{g} \to \text{Diff}(\mathbb{R}^d)$, $\rho_t(X) := \mathcal{Q}(\psi^X \circ \Psi_t)$, is a Lie algebra morphism.

Uniqueness of Heisenberg groups via solvable C^* -algebras

 $G = (\mathfrak{g}, \cdot)$ nilpotent Lie group \Rightarrow Equivalent properties:

 $(1) \ 0 \to \mathcal{C}_0(\Gamma_1, \mathcal{K}(\mathcal{H})) \to C^*(G) \to \mathcal{C}_0([\mathfrak{g}, \mathfrak{g}]^{\perp}) \to 0 \text{ exact sequence with}$

- Γ_1 dense open \mathbb{R} -subspace of \widehat{G} that is homeomorphic to $\mathbb{R} \setminus \{0\}$;
- ► *H* separable infinite-dimensional complex Hilbert space.

(2) There exists $d \geq 1$ with dim $[\mathfrak{g},\mathfrak{g}]^{\perp} = 2d$ and $G \simeq \mathbb{H}_{2d+1}$.

Prf. (1) \Rightarrow (2) • $\widehat{G} \simeq \mathfrak{g}^*/\operatorname{Ad}_G^*$ via Kirillov's correspondence $\rightsquigarrow \mathfrak{g}^*/\operatorname{Ad}_G^* = \Gamma_1 \sqcup [\mathfrak{g}, \mathfrak{g}]^{\perp}$ • $\mathcal{O}_{\xi} :=$ the coadjoint orbit of every $\xi \in \mathfrak{g}^*$ • G has infinite-dimensional unirreps $\Rightarrow G$ is non-commutative $\Rightarrow (\exists \xi_1 \in \mathfrak{g}^*) \ \mathcal{O}_{\xi_1} \neq \{\xi_1\} \Rightarrow \mathfrak{g}^* = \bigsqcup_{t \in \mathbb{R} \setminus \{0\}} \mathcal{O}_{t\xi_1} \sqcup [\mathfrak{g}, \mathfrak{g}]^{\perp}$ $\Rightarrow (\exists x, y \in \mathfrak{g}) \ z := [x, y] \in \mathcal{Z}(\mathfrak{g}) \setminus \{0\}, \ \langle \xi_1, z \rangle \neq 0$ $\Rightarrow [\mathfrak{g}, \mathfrak{g}] = \mathbb{R}z \Rightarrow (\exists d \ge 1, k \ge 0) \ \mathfrak{g} = \mathfrak{h}_{2d+1} \times \mathbb{R}^k \Rightarrow \operatorname{ind} \mathfrak{g} = k+1$ • Γ_1 is a dense open subset of \widehat{G} that is homeomorphic to $\mathbb{R} \setminus \{0\}$ $\Rightarrow \operatorname{ind} G = 1 \Rightarrow k = 0 \Rightarrow \mathfrak{g} = \mathfrak{h}_{2d+1}$