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Let C be a braided strict monoidal category and let k be a field.

Definition

Let θ ∈ N, Γ be an abelian group such that Zθ ⊂ Γ and let R be a
Nθ0-graded connected Hopf algebra in C. Let V ∈ R

RYD(C) be a
Γ-graded object, where there exists n0 ∈ Γ such that V (n0)
generates V as an R-module. We say V is well graded, if

V (n0) = V coR = {v ∈ V | ρRV (v) = 1⊗ v}.

Remark

We always have V (n0) ⊂ V coR , since the R-coaction ρRV is graded.
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Let θ ∈ N and I = {1, . . . , θ}. Let α1, . . . , αθ ∈ Nθ0 be the unit
vectors. Let H be a Hopf algebra over some field k with bijective
antipode and C := H

HYD.

Definition

Let Q ∈ C be a Hopf algebra and N1, . . . ,Nθ ∈ C be
finite-dimensional subobjects of Q in C and N := (N1, . . . ,Nθ).
The tuple N := (Q,N) is called a pre-Nichols system, if

1 The algebra Q is generated by N1, . . . ,Nθ.

2 Q is an Nθ0-graded Hopf algebra in C with Q(αi ) = Ni for all
i ∈ I.

N is called a Nichols system over i ∈ I, if also

3 k[Ni ] is strictly graded.

4 (ad k[Ni ])(Nj) ∈
k[Ni ]
k[Ni ]
YD(C) is well graded for all j ∈ I \ {i}.
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We want to construct a reflection functor on Q
QYD(C).

Proposition

Let A ∈ C and R ∈ A
AYD(C) be Hopf algebras in the specific

categories. Then the functor

R
RYD(AAYD(C))→ R#A

R#AYD(C),((
V , νA, ρA

)
, νR , ρR

)
7→
(
V , νR(id⊗ νA), (id⊗ ρA)ρR

)
and where morphisms are mapped onto oneself, is a braided strict
monoidal isomorphism1.

1Heckenberger and Schneider, “Hopf algebras and root systems”, 2020,
Proposition 3.8.7.
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Definition

Let Γ be a partial ordered monoid with partial order denoted by ≤.
Let R be a Γ-graded Hopf algebra in C and let V be a left
R-module. We call V a rational R-module, if for all v ∈ V there
exists γ0 ∈ Γ, such that R(γ)v = 0 for all γ ∈ Γ, γ0 ≤ γ. Moreover
we denote R

RYD(C)rat for the category of YD-modules which are
rational R-modules.
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Let A,B be a dual pair of locally finite N0-graded Hopf algebras in
the category C = H

HYD.
There is a braided monoidal isomorphic functor2

(Ω, ω) : B
BYD(C)rat → A

AYD(C)rat,

such that

1 If V ∈ B
BYD(C)rat is Z-graded, then Ω(V ) is Z-graded with

Ω(V )(n) = V (−n) for all n ∈ N0.

2 If V ,V ′ ∈ B
BYD(C)rat are Z-graded and f : V → V ′ is a

Z-graded morphism, then Ω(f ) = f as linear maps.

2Heckenberger and Schneider, “Hopf algebras and root systems”, 2020,
Proposition 12.3.2.
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Let N = (Q, (N1, . . . ,Nθ)) be a pre-Nichols system and i ∈ I and

Ki := Qco k[Ni ] ∈ k[Ni ]
k[Ni ]
YD(C). Let (Ωi , ωi ) be the braided monoidal

isomorphism

(Ωi , ωi ) :
k[Ni ]
k[Ni ]
YD(C)rat →

k[N∗i ]

k[N∗i ]YD(C)rat.

Definition

Assume Ki ∈
k[Ni ]
k[Ni ]
YD(C)rat. Let Ri (Q) := Ωi (Ki )#k[N∗i ] and let

(Ri , ωRi
) : Q

QYD(C)rat → Ri (Q)
Ri (Q)YD(C)rat

be the braided monoidal isomorphism defined as follows:

Q
QYD(C)rat

∼=−→ Ki#k[Ni ]
Ki#k[Ni ]

YD(C)rat
∼=−→ Ki

Ki
YD(

k[Ni ]
k[Ni ]
YD(C)rat)

(Ωi ,ωi )−→ Ωi (Ki )
Ωi (Ki )

YD(
k[N∗i ]

k[N∗i ]YD(C)rat)
∼=−→ Ri (Q)

Ri (Q)YD(C)rat.

For V ∈ Q
QYD(C)rat, Ri (V ) is called the i-th reflection of V .
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Let N = (Q,N) be a pre-Nichols system and assume that Nj is
irreducible in C for all j ∈ I.
Let 0 6= V ∈ Q

QYD(C)rat be Zθ-graded, such that there exists

n0 ∈ Zθ, such that V is generated as a Q-module by V (n0), and
assume V (n0) is irreducible in C.

Definition

Let k ∈ N0, i1, . . . , ik ∈ I.
1 We say N admits the reflection sequence (i1, . . . , ik), if

k = 0 or N is a Nichols-system over i1, Ki1 is rational and
Ri1(N ) admits the reflection sequence (i2, . . . , ik).

2 Assume N admits the reflection sequence (i1, . . . , ik). We say
V admits the reflection sequence (i1, . . . , ik), if k = 0 or

k[Ni1 ] · V (n0) ∈ k[Ni1
]

k[Ni1
]YD(C) is well graded and Ri1(V ) admits

the reflection sequence (i2, . . . , ik).

This definition makes sure that the precondiditions at the top of
this slide are met after each reflection.

Kevin Wolf Reflections of YD modules over Nichols systems 8 / 15



Let M be the convex hull of Sup(V ) = {n ∈ Zθ | V (n) 6= 0}.
The interior V ◦ of V consists of all components V (n),
n ∈ Sup(V ), such that n lies in the interior of M.

The boundary δV of V consists of all components V (n),
n ∈ Sup(V ), such that n lies on the boundary of M.
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Proposition

Assume N and V admit all reflections. There exists a unique
graded subobject U ⊂ V ◦ of V in Q

QYD(C), such that every proper

graded subobject of V in Q
QYD(C) is contained in U. Moreover

V /U is irreducible in Q
QYD(C).

Sketch of the proof:

Show that if a graded subobject of V contains any component
V (n) on the boundary of V , then it must contain the entire
edge of Sup(V ), where n lies on, in particular it contains a
vertex.

Show that each vertex of Sup(V ) is the generating
compontent of some reflection of V , hence the only graded
subobject of V containing a vertex is V .
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Define the functor

IQ : QC → Q
QYD(C),

where a Q-comodule U ∈ C gets mapped to

IQ(U) = Q ⊗ U ∈ Q
QYD(C)

with Q-action µQ ⊗ idU and coadjoint Q-coaction and where a
Q-comodule morphism f gets mapped to IQ(f ) = idQ ⊗ f .

Remark

This construction is similar to Verma modules in the representation
theory of Lie algebras.
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Proposition

Assume that Q is finite dimensional and that N admits all
reflections. Let U ∈ QC be an irreducible object in C. Then the
following are equivalent:

1 IQ(U) admits all reflections.

2 IQ(U) is irreducible in Q
QYD(C).

Sketch of the proof:

1 Let N ∈ Sup(IQ(U)) = Sup(Q) be such that there is no
n ∈ Zθ, n > N, such that n ∈ Sup(Q).

2 Show that each subobject of IQ(U) contains an element in
the componenent IQ(U)(N), i.e. on the boundary of IQ(U).

3 Use the previous proposition.
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Assume N is of diagonal type, that is Nj is one-dimensional for all
j ∈ I. Let 0 6= xj ∈ Nj be a basis. Define D ∈ (k×)θ×θ as follows:
For j ∈ I we have

cCNj ,Nj
(xj ⊗ xj) = Djjxj ⊗ xj .

For 1 ≤ j < k ≤ θ we have Dkj = 1 and

cCNk ,Nj
cCNj ,Nk

(xj ⊗ xk) = Djkxj ⊗ xk .

Let χ : Zθ × Zθ → k× be the bicharacter that is given by
χ(αj , αk) = Djk for all j , k ∈ I and let λ : Zθ → k× be the
character that is given by λ(αj) = Djj for all j ∈ I.
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For v =
∑θ

i=1 niαi ∈ Zθ, n1, . . . , nθ ∈ Z we define the monomial

tv :=
∏θ

i=1 t
ni
i . Let ∆N+ denote the positive roots of N and for

γ ∈ Zθ let mγ := min{m ∈ N0 | (m + 1)χ(γ,γ) = 0}.

Definition

If ∆N+ is finite and mγ ∈ N0 for all γ ∈ ∆N+ , then define the
polynomial

PN :=
∏
γ∈∆N+

mγ∏
m=1

tγ − λ (γ)χ (γ, γ)−m ∈ k[t1, . . . , tθ].

Remark

This construction is the same as the Shapovalov determinant for
bicharacters of finite root systems3.

3Heckenberger and Yamane, “Drinfel’d doubles and Shapovalov
determinants”, 2010, Section 7.
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Let U ∈ QC be a one-dimensional object. Let r1, . . . , rθ ∈ k× be
such that for u ∈ U, u 6= 0, j ∈ I we have

cCU,Nj
cCNj ,U

(xj ⊗ u) = rjxj ⊗ u.

Theorem

Assume N admits all reflections and Q is finite-dimensional. The
following are equivalent

1 IQ(U) is irreducible in Q
QYD(C).

2 PN (r1, . . . , rθ) 6= 0.

Remark

Even more holds: We can determine precisely which reflection
sequences IQ(U) admits by looking at which factor of PN

vanishes for (r1, . . . , rθ).
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