Reflections of Yetter-Drinfeld modules over Nichols systems

Kevin Wolf

Philipps-Universität Marburg

August 17, 2020

Let C be a braided strict monoidal category and let k be a field.

Definition

Let $\theta \in \mathbb{N}$, Γ be an abelian group such that $\mathbb{Z}^{\theta} \subset \Gamma$ and let R be a \mathbb{N}_{0}^{θ} -graded connected Hopf algebra in C. Let $V \in {}^{R}_{R}\mathcal{YD}(C)$ be a Γ -graded object, where there exists $n_{0} \in \Gamma$ such that $V(n_{0})$ generates V as an R-module. We say V is well graded, if

$$V(n_0) = V^{\operatorname{co} R} = \{ v \in V \mid \rho_V^R(v) = 1 \otimes v \}.$$

Remark

We always have $V(n_0) \subset V^{\operatorname{co} R}$, since the *R*-coaction ρ_V^R is graded.

Let $\theta \in \mathbb{N}$ and $\mathbb{I} = \{1, \dots, \theta\}$. Let $\alpha_1, \dots, \alpha_\theta \in \mathbb{N}_0^\theta$ be the unit vectors. Let H be a Hopf algebra over some field \Bbbk with bijective antipode and $\mathcal{C} := {}_H^H \mathcal{YD}$.

Definition

Let $Q \in C$ be a Hopf algebra and $N_1, \ldots, N_{\theta} \in C$ be finite-dimensional subobjects of Q in C and $N := (N_1, \ldots, N_{\theta})$. The tuple $\mathcal{N} := (Q, N)$ is called a **pre-Nichols system**, if

- The algebra Q is generated by N_1, \ldots, N_{θ} .
- ② *Q* is an \mathbb{N}_0^{θ} -graded Hopf algebra in *C* with *Q*(α_i) = *N*_{*i*} for all *i* ∈ I.

\mathcal{N} is called a Nichols system over $i \in \mathbb{I}$, if also

3 $\Bbbk[N_i]$ is strictly graded.

• $(\operatorname{ad} \mathbb{k}[N_i])(N_j) \in \frac{\mathbb{k}[N_i]}{\mathbb{k}[N_i]} \mathcal{YD}(\mathcal{C})$ is well graded for all $j \in \mathbb{I} \setminus \{i\}$.

We want to construct a reflection functor on ${}^{Q}_{O}\mathcal{YD}(\mathcal{C})$.

Proposition

Let $A \in C$ and $R \in {}^{A}_{A}\mathcal{YD}(C)$ be Hopf algebras in the specific categories. Then the functor

$${}^{R}_{R}\mathcal{YD}({}^{A}_{A}\mathcal{YD}(\mathcal{C})) o {}^{R\#A}_{R\#A}\mathcal{YD}(\mathcal{C}),$$

 $\left(\left(V,
u^{A},
ho^{A}
ight),
u^{R},
ho^{R}
ight) \mapsto \left(V,
u^{R}(\mathrm{id} \otimes
u^{A}), (\mathrm{id} \otimes
ho^{A})
ho^{R}
ight)$

and where morphisms are mapped onto oneself, is a braided strict monoidal isomorphism¹.

Kevin Wolf

¹Heckenberger and Schneider, "Hopf algebras and root systems", 2020, Proposition 3.8.7.

Definition

Let Γ be a partial ordered monoid with partial order denoted by \leq . Let R be a Γ -graded Hopf algebra in C and let V be a left R-module. We call V a **rational** R-**module**, if for all $v \in V$ there exists $\gamma_0 \in \Gamma$, such that $R(\gamma)v = 0$ for all $\gamma \in \Gamma$, $\gamma_0 \leq \gamma$. Moreover we denote ${}^R_R \mathcal{YD}(C)_{\rm rat}$ for the category of \mathcal{YD} -modules which are rational R-modules. Let A, B be a dual pair of locally finite \mathbb{N}_0 -graded Hopf algebras in the category $\mathcal{C} = {}^H_H \mathcal{YD}$. There is a braided monoidal isomorphic functor²

$$(\Omega, \omega) : {}^{B}_{B}\mathcal{YD}(\mathcal{C})_{\mathrm{rat}} \to {}^{A}_{A}\mathcal{YD}(\mathcal{C})_{\mathrm{rat}},$$

such that

- If $V \in {}^{B}_{B}\mathcal{YD}(\mathcal{C})_{\mathrm{rat}}$ is \mathbb{Z} -graded, then $\Omega(V)$ is \mathbb{Z} -graded with $\Omega(V)(n) = V(-n)$ for all $n \in \mathbb{N}_{0}$.
- If V, V' ∈ ^B_B𝔅𝔅𝔅(𝔅)_{rat} are ℤ-graded and f : V → V' is a ℤ-graded morphism, then Ω(f) = f as linear maps.

Kevin Wolf

²Heckenberger and Schneider, "Hopf algebras and root systems", 2020, Proposition 12.3.2.

Let $\mathcal{N} = (Q, (N_1, \dots, N_{\theta}))$ be a pre-Nichols system and $i \in \mathbb{I}$ and $K_i := Q^{\operatorname{co} \Bbbk[N_i]} \in {\overset{\Bbbk[N_i]}{\Bbbk[N_i]}} \mathcal{YD}(\mathcal{C})$. Let (Ω_i, ω_i) be the braided monoidal isomorphism

$$(\Omega_i, \omega_i) : {}^{\Bbbk[N_i]}_{\Bbbk[N_i]} \mathcal{YD}(\mathcal{C})_{\mathrm{rat}} o {}^{\Bbbk[N_i^*]}_{\Bbbk[N_i^*]} \mathcal{YD}(\mathcal{C})_{\mathrm{rat}}.$$

Definition

Assume
$$K_i \in {\mathbb{K}[N_i] \atop {\mathbb{K}[N_i]}} \mathcal{YD}(\mathcal{C})_{\mathrm{rat}}$$
. Let $R_i(Q) := \Omega_i(K_i) \# {\mathbb{K}[N_i^*]}$ and let

$$(R_i, \omega_{R_i}): {}^Q_Q \mathcal{YD}(\mathcal{C})_{\mathrm{rat}} o {}^{R_i(Q)}_{R_i(Q)} \mathcal{YD}(\mathcal{C})_{\mathrm{rat}}$$

be the braided monoidal isomorphism defined as follows:

$$\begin{array}{l} {}^{Q}_{Q}\mathcal{YD}(\mathcal{C})_{\mathrm{rat}} \stackrel{\cong}{\longrightarrow} {}^{K_{i}\#\Bbbk[N_{i}]}_{K_{i}\#\Bbbk[N_{i}]}\mathcal{YD}(\mathcal{C})_{\mathrm{rat}} \stackrel{\cong}{\longrightarrow} {}^{K_{i}}_{K_{i}}\mathcal{YD}({}^{\Bbbk[N_{i}]}_{\Bbbk[N_{i}]}\mathcal{YD}(\mathcal{C})_{\mathrm{rat}}) \\ \\ \stackrel{(\Omega_{i},\omega_{i})}{\longrightarrow} {}^{\Omega_{i}(K_{i})}_{\Omega_{i}(K_{i})}\mathcal{YD}({}^{\Bbbk[N_{i}^{*}]}_{\Bbbk[N_{i}^{*}]}\mathcal{YD}(\mathcal{C})_{\mathrm{rat}}) \stackrel{\cong}{\longrightarrow} {}^{R_{i}(Q)}_{R_{i}(Q)}\mathcal{YD}(\mathcal{C})_{\mathrm{rat}}. \end{array}$$

For $V \in {}^{Q}_{Q}\mathcal{YD}(\mathcal{C})_{\mathrm{rat}}$, $R_{i}(V)$ is called the *i*-th reflection of V.

Let $\mathcal{N} = (Q, N)$ be a pre-Nichols system and assume that N_j is irreducible in \mathcal{C} for all $j \in \mathbb{I}$. Let $0 \neq V \in {}^Q_Q \mathcal{YD}(\mathcal{C})_{\mathrm{rat}}$ be \mathbb{Z}^{θ} -graded, such that there exists $n_0 \in \mathbb{Z}^{\theta}$, such that V is generated as a Q-module by $V(n_0)$, and assume $V(n_0)$ is irreducible in \mathcal{C} .

Definition

Let $k \in \mathbb{N}_0$, $i_1, \ldots, i_k \in \mathbb{I}$.

- We say N admits the reflection sequence (i₁,..., i_k), if k = 0 or N is a Nichols-system over i₁, K_{i₁} is rational and R_{i₁}(N) admits the reflection sequence (i₂,..., i_k).
- Assume N admits the reflection sequence (i₁,..., i_k). We say V admits the reflection sequence (i₁,..., i_k), if k = 0 or k[N_{i1}] · V(n₀) ∈ ^{k[N_{i1}]}_{k[N_{i1}]} YD(C) is well graded and R_{i1}(V) admits the reflection sequence (i₂,..., i_k).

This definition makes sure that the precondiditions at the top of this slide are met after each reflection.

Kevin Wolf

Reflections of YD modules over Nichols systems

Let *M* be the convex hull of $Sup(V) = \{n \in \mathbb{Z}^{\theta} \mid V(n) \neq 0\}$.

- The interior V° of V consists of all components V(n), n ∈ Sup(V), such that n lies in the interior of M.
- The **boundary** δV of V consists of all components V(n), $n \in \text{Sup}(V)$, such that n lies on the boundary of M.

Proposition

Assume \mathcal{N} and V admit all reflections. There exists a unique graded subobject $U \subset V^{\circ}$ of V in ${}^{Q}_{Q}\mathcal{YD}(\mathcal{C})$, such that every proper graded subobject of V in ${}^{Q}_{Q}\mathcal{YD}(\mathcal{C})$ is contained in U. Moreover V/U is irreducible in ${}^{Q}_{Q}\mathcal{YD}(\mathcal{C})$.

Sketch of the proof:

- Show that if a graded subobject of V contains any component V(n) on the boundary of V, then it must contain the entire edge of Sup(V), where n lies on, in particular it contains a vertex.
- Show that each vertex of Sup(V) is the generating compontent of some reflection of V, hence the only graded subobject of V containing a vertex is V.

Define the functor

$$\mathcal{I}_Q: {}^Q\mathcal{C} o {}^Q_Q\mathcal{YD}(\mathcal{C}),$$

where a Q-comodule $U \in \mathcal{C}$ gets mapped to

$$\mathcal{I}_Q(U) = Q \otimes U \in {}^Q_Q \mathcal{YD}(\mathcal{C})$$

with Q-action $\mu_Q \otimes \mathrm{id}_U$ and coadjoint Q-coaction and where a Q-comodule morphism f gets mapped to $\mathcal{I}_Q(f) = \mathrm{id}_Q \otimes f$.

Remark

This construction is similar to Verma modules in the representation theory of Lie algebras.

Proposition

Assume that Q is finite dimensional and that \mathcal{N} admits all reflections. Let $U \in {}^{Q}\mathcal{C}$ be an irreducible object in C. Then the following are equivalent:

- **1** $\mathcal{I}_Q(U)$ admits all reflections.
- **2** $\mathcal{I}_Q(U)$ is irreducible in ${}^Q_Q \mathcal{YD}(\mathcal{C})$.

Sketch of the proof:

- Let $N \in \operatorname{Sup}(\mathcal{I}_Q(U)) = \operatorname{Sup}(Q)$ be such that there is no $n \in \mathbb{Z}^{\theta}$, n > N, such that $n \in \operatorname{Sup}(Q)$.
- Show that each subobject of $\mathcal{I}_Q(U)$ contains an element in the componenent $\mathcal{I}_Q(U)(N)$, i.e. on the boundary of $\mathcal{I}_Q(U)$.
- Ise the previous proposition.

Assume \mathcal{N} is of diagonal type, that is N_j is one-dimensional for all $j \in \mathbb{I}$. Let $0 \neq x_j \in N_j$ be a basis. Define $D \in (\mathbb{k}^{\times})^{\theta \times \theta}$ as follows: For $j \in \mathbb{I}$ we have

$$c_{N_j,N_j}^{\mathcal{C}}(x_j\otimes x_j)=D_{jj}x_j\otimes x_j.$$

For $1 \leq j < k \leq \theta$ we have $D_{kj} = 1$ and

$$c_{N_k,N_j}^{\mathcal{C}}c_{N_j,N_k}^{\mathcal{C}}(x_j\otimes x_k)=D_{jk}x_j\otimes x_k.$$

Let $\chi : \mathbb{Z}^{\theta} \times \mathbb{Z}^{\theta} \to \mathbb{k}^{\times}$ be the bicharacter that is given by $\chi(\alpha_j, \alpha_k) = D_{jk}$ for all $j, k \in \mathbb{I}$ and let $\lambda : \mathbb{Z}^{\theta} \to \mathbb{k}^{\times}$ be the character that is given by $\lambda(\alpha_i) = D_{ji}$ for all $j \in \mathbb{I}$.

For $v = \sum_{i=1}^{\theta} n_i \alpha_i \in \mathbb{Z}^{\theta}$, $n_1, \ldots, n_{\theta} \in \mathbb{Z}$ we define the monomial $t_v := \prod_{i=1}^{\theta} t_i^{n_i}$. Let $\Delta^{\mathcal{N}}_+$ denote the positive roots of \mathcal{N} and for $\gamma \in \mathbb{Z}^{\theta}$ let $m_{\gamma} := \min\{m \in \mathbb{N}_0 \mid (m+1)_{\chi(\gamma,\gamma)} = 0\}$.

Definition

If Δ^N_+ is finite and $m_\gamma \in \mathbb{N}_0$ for all $\gamma \in \Delta^N_+$, then define the polynomial

$$\mathcal{P}^{\mathcal{N}} := \prod_{\gamma \in \Delta^{\mathcal{N}}_+} \prod_{m=1}^{m_{\gamma}} t_{\gamma} - \lambda(\gamma) \chi(\gamma, \gamma)^{-m} \in \mathbb{k}[t_1, \dots, t_{\theta}].$$

Remark

This construction is the same as the Shapovalov determinant for bicharacters of finite root systems³.

³Heckenberger and Yamane, "Drinfel'd doubles and Shapovalov determinants", 2010, Section 7.

Kevin Wolf

Reflections of YD modules over Nichols systems

Let $U \in {}^{Q}C$ be a one-dimensional object. Let $r_1, \ldots, r_{\theta} \in \mathbb{k}^{\times}$ be such that for $u \in U$, $u \neq 0$, $j \in \mathbb{I}$ we have

$$c_{U,N_j}^{\mathcal{C}}c_{N_j,U}^{\mathcal{C}}(x_j\otimes u)=r_jx_j\otimes u.$$

Theorem

Assume \mathcal{N} admits all reflections and Q is finite-dimensional. The following are equivalent

•
$$\mathcal{I}_Q(U)$$
 is irreducible in ${}^Q_Q \mathcal{YD}(\mathcal{C})$.

$$P^{\mathcal{N}}(r_1,\ldots,r_{\theta})\neq 0.$$

Remark

Even more holds: We can determine precisely which reflection sequences $\mathcal{I}_Q(U)$ admits by looking at which factor of P^N vanishes for $(r_1, \ldots, r_{\theta})$.