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Chapter 1

Tensor categories and module categories
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Setting: finite tensor categories

Definition (Finite category)

Let k be a field. A k-linear category C is finite, if

1 C has finite-dimensional spaces of morphisms.

2 Every object of C has finite length.

3 C has enough projectives.

4 There are finitely many isomorphism classes of simple objects.

Remark

A linear category is finite, if and only if it is equivalent to the category A-mod
of finite-dimensional A-modules over a finite-dimensional k-algebra.

Definition (Finite tensor category)

A finite tensor category is a finite rigid monoidal linear category.

In particular, the tensor product is exact in each argument. Examples:
Finite-dimensional k-linear representations of a finite-dimensional k-Hopf
algebra.
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Drinfeld center

Braided categories naturally enter in the study of finite tensor categories:

Definition (Half-braiding, Drinfeld center)

Let A be a monoidal category.
A half-braiding for V ∈ A is a natural isomorphism

σV : V ⊗− → −⊗ V

such that σV (X ⊗ Y ) = (idX ⊗ σV (Y )) ◦ (σV (X )⊗ idY ) for all X ,Y ∈ C.
The Drinfeld center Z(A) has pairs (V , σV ) as objects.

Remarks

1 Z(A) is a braided monoidal category.

2 The forgetful functor Z(A)→ A is exact.

Left adjoint L : c 7→
∫ x∈C

x ⊗ c ⊗ ∨x
Right adjoint R : c 7→

∫
x∈C

∨x ⊗ c ⊗ c

3 C unimodular ⇔ L ∼= R
⇔ R(1) ∈ Z(A) is a (commutative) Frobenius algebra (Shimizu 2017)
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Module categories

Definition (Module categories)

Let A and B be linear monoidal categories.

1 A left A-module category is a linear category M with a bilinear functor
⊗ : A×M→M and natural isomorphisms

α : ⊗ ◦ (⊗× idM)
∼→ ⊗ ◦ (idA ×⊗) λ : ⊗ ◦ (idA ×−)

∼→ idM

satisfying obvious pentagon and triangle axioms. We write a.m := a⊗m.

2 Right module categories are defined analogously.

3 An A-B bimodule category is a linear category D, with the structure of a
left A and right D-module category and a natural associator isomorphism
(a.d).b ∼= c.(d .b).

4 Module functors, module natural transformations defined in obvious way.

Definition (Finite module categories)

Let A be a finite tensor category over k. A left A-module category is finite, if
the underlying category is a finite abelian category over k and the action is
k-linear in each variable and right exact in the first variable.
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Categorical Morita theory

Theorem (Schauenburg)

Let C be a finite tensor category and M an indecomposable exact C-module
category. Then there is a braided monoidal equivalence Z(C) ∼= Z(RexC(M)).

Definition

Two tensor categories C and D are categorically Morita equivalent, if there
exists an exact C-module category M and a tensor equivalence D ∼= RexC(M).

Remarks

1 The bicategories of module categories of Morita equivalent finite tensor
categories are equivalent.

2 r : H → A projection to a Hopf subalgebra, r(H)→ B projection to a
Hopf subalgebra B dual to A, then H-mod and r(H)-mod have equivalent
categories of Yetter Drinfeld modules. (Barvels, Lentner, CS, 2015) and
are even categorically Morita equivalent.

Classical objects like Hopf algebras deserve to be studied by their bicategory of
module categories.
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Equivariant generalizations of categorical Morita theory

Remarks

For C = ⊕g∈GCg a G -graded finite tensor category,
denote by ZG (C) the relative center with respect to the neutral component
Ce .

ZG (C) is a braided G -crossed tensor category.

Its equivariantization (=orbifold) is the Drinfeld center Z(C).

Theorem (Jaklitsch, 2020)

Let C be a G -graded finite tensor category and M be an exact indecomposable
G -graded C-module category. Then there is an equivalence of braided
G -crossed tensor categories ZG (C) ∼= ZG (RexC(M)).
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Towards Radford’s S4 theorem: Eilenberg-Watts calculus

Classical result about finite categories:

Proposition

Let A-mod and B-mod be finite tensor categories. Let

G : A-mod→ B-mod

be a right exact functor. Then G ∼= G(AAA)⊗A −.
The B-A-bimodule G(AAA) is a right A-module via the image of right

multiplication rA : A→ A under EndA(A)
G→ EndB(G(A)).

A similar statement allows to express left exact functors in terms of bimodules.

Morita-invariant formulation: triangle of explicit adjoint equivalences, based on
the Deligne product and (co)ends.

Aopp � B

Lex(A,B) Rex(A,B)

Φl Φr

Γlr

Ψl

Γrl

Ψr
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Nakayama functors

N r
A :=

∫ a∈A
HomA(−, a)∗ ⊗ a and N l

A :=

∫
a∈A

HomA(a,−)⊗ a

For A = A-mod:

N r
A = A∗ ⊗A − ∼= HomA(−,A)∗ and N l

A = HomA(A∗,−) .

For this reason, we call N r
A and N l

A Nakayama functors.

Proposition

1 The Nakayama functors are adjoints, N l
A a N r

A.

2 N l
A equivalence ⇔ N r

A equivalence. ⇔ A is selfinjective.

3 N l
A
∼= idA and N r

A
∼= idA ⇔ A is symmetric Frobenius.
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Radford’s S4-theorem

For linear functors, we have

Theorem (Fuchs, Schaumann, CS)

Let A,B be finite categories. Let F ∈ Lex(A,B) such that F la is left exact so
that F lla exists. Assume that F lla is left exact as well.
Then there is a natural isomorphism

ϕl
F : N l

B ◦ F ∼= F lla ◦ N l
A

that is coherent with respect to composition of functors.

Apply this to bimodule categories over finite tensor categories:

Theorem (Fuchs, Schaumann, CS)

Let A,B be finite tensor categories and M an A-B bimodule.
Then the Nakayama functor has the structure of a twisted bimodule functor:

N l
M(a.m.b) ∼= a∨∨.N l

M(m). ∨∨b
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Recovering Radford’s S4-theorem

N l
M(a.m.b) ∼= a∨∨.N l

M(m). ∨∨b

Observe

The finite tensor category A is a bimodule over itself.

N l
A(1) =

∫
a∈A

HomA(a, 1)⊗ a = DA

is the distinguished invertible object of A.

Compute

N l
A(a) = N l

A(a⊗ 1) = a∨∨ ⊗ N l
A(1) = a∨∨ ⊗ DA

and
N l
A(a) = N l

A(1⊗ a) = N l
A(1)⊗ ∨∨a = DA ⊗ ∨∨a

We recover Radford’s S4-theorem in its categorical form
DA ⊗ a⊗ D−1

A = a∨∨∨∨ [ENO, 2004]

Hence, the Radford’s classical theorem can be seen as a statement about
Nakayama functors as twisted module functors:

N l
M(a.m.b) ∼= a∨∨.N l

M(m). ∨∨b
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Relative Serre functors

Definition (Fuchs, Schaumann, CS)

Let M be a C-module. A right/left relative Serre functor is an endofunctor
Sr
M / Sl

M of M together with a family

Hom(m, n)∨
∼=−−→ Hom(n, Sr

M(m))
∨Hom(m, n)

∼=−−→ Hom(Sl
M(n),m)

of isomorphisms natural in m, n ∈M.

Relative Serre functors exist, iff M is an exact module category
(i.e. p.m is projective, if p ∈ C is projective).

Serre functors are equivalences of categories.

Serre functors are twisted module functors:

φc,m : Sr
M(c.m) −→ c∨∨. Sr

M(m) and φ̃c,m : Sl
M(c.m) −→ ∨∨c. Sl

M(m)

Theorem

Let M be an exact A-module. Then

N l
M ∼= DA.S

l
M and N r

M ∼= D−1
A .Sr

M
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Pivotal module categories

Serre functors are twisted module functors:

φc,m : Sr
M(c.m) −→ c∨∨. Sr

M(m) and φ̃c,m : Sl
M(c.m) −→ ∨∨c.Sr

M(m) .

Definition (Schaumann 2015, Shimizu 2019)

A pivotal structure on an exact module category M over a pivotal finite tensor
category (C, π) is an isomorphism of functors π̃ : idM → Sr

M
such that the following diagram commutes for all c ∈ C and m ∈M:

c.m c∨∨.Sr
M(m)

Sr
M(c.m)

πc .π̃m

π̃c.m φc,m

For indecomposable exact module categories, the pivotal structure is
unique up to scalar.

The algebras Hom(m,m) ∈ C for m in a pivotal module category
have the structure of symmetric Frobenius algebras.
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Symmetric Frobenius algebras in the Drinfeld center

For CFT, we need symmetric Frobenius algebras in Z(C).
Let C be a finite tensor category and M and N be C-modules.
The functor category RexC(M,N ) is a module category over Z(C):

(z .F )(m) := z .F (m)

with module functor structure given by half braiding:

(z .F )(c.m) = z .F (c.m) ∼= (z ⊗ c).F (m) ∼= (c ⊗ z).F (m) ∼= c.(z .F )(m)

Theorem (Fuchs, CS 2020)

C a pivotal finite tensor category and M and N exact C-modules.

1 The functor category RexC(M,N ) is an exact module category over Z(C)
with relative Serre functor N r

N ◦ (D.−) ◦ N r
M.

2 If C is unimodular pivotal and M and N are pivotal C-modules,
then RexC(M,N ) is a pivotal Z(C)-module category.

3 In particular, then Nat(F ,F ) is a symmetric Frobenius algebra in the
Drinfeld center Z(C) and Nat(idM, idM) has a natural structure of a
commutative symmetric Frobenius algebra.
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Chapter 2

Topological field theory
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Warmup: Topological field theories in two dimensions

Definition (Cobordism category)

Objects: closed oriented 1-manifolds.

Morphisms: spans S→ M ← S′ with M
oriented 2-manifold with boundary
∂M ∼= S t S′, up to diffeomorphism relative
boundary.

Monoidal product is disjoint union.

Definition (Two-dimensional topological field theory)

An (oriented) topological field theory is a symmetric monoidal functor
tft : cobor

2,1 → vect. (It is a representation of cobor
2,1.)

Remark

Topological fact: cobor
2,1 is the free symmetric monoidal category on a

commutative Frobenius object.
Corollary: tft(S1) is a commutative Frobenius algebra. Any such Frobenius
algebra gives a TFT.
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Extended three-dimensional topological field theories

Knots and links are part of the picture:

Definition (2-vector spaces)

Denote by 2-vect the symmetric monoidal
bicategory

Objects: finitely semisimple k-linear
abelian categories.

1-Morphisms: k-linear functors,
2-morphisms: k-linear natural
transformations.

The monoidal product is given by the
Deligne product.

Definition (Cobordism bicategory)

Objects: closed oriented
1-manifolds.

1-Morphisms: spans
S→ M ← S′ with M oriented
2-manifold with boundary
∂M ∼= S t S′.
2-Morphisms: 3-manifolds
with corners up to
diffeomorphisms

The monoidal product is given
by disjoint union.

Definition (Extended topological field theory)

A 3-2-1 extended oriented topological field theory is a symmetric monoidal
2-functor tft : cobor

3,2,1 → 2-vect.
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Evaluation of a 3-2-1 TFT

Definition (Extended topological field theory)

A 3-2-1 extended oriented topological field theory is a symmetric monoidal
2-functor tft : cobor

3,2,1 → 2-vect.

Examples:

1-morphism

gives tensor product
⊗ : tft(S1)× tft(S1)→ tft(S1)

2-morphism

gives braiding
⊗ ⇒ ⊗opp
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Modular tensor categories

Definition (Modular tensor category)

A modular tensor category C is a finite ribbon category such that the braiding is
maximally non-degenerate. Various formulations exist and are equivalent [Sh]:

Braided equivalence C � Crev ∼= Z(C)

Coend L :=
∫ C

U∨ ⊗ U has non-degenerate Hopf pairing ωC

Map Hom(1, L)→ Hom(L, 1) induced by ωC is isomorphism.

C has no transparent objects.

Remarks

The Drinfeld center of a finite tensor category is a modular tensor category.

The representation category of suitable vertex algebras or nets of
observable algebras has naturally the structure of a modular tensor
category:
The chiral data of a (finite) conformal field theory are described by a
modular tensor category.
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Modular tensor categories

Remark

Topological fact [BDS-PV]:
cobor

3,2,1 is free symmetric monoidal bicategory on a single anomaly-free modular
object.
Corollary:
tft(S1) is a semisimple modular tensor category. Any such tensor category gives
an extended TFT.

Remarks

From a modular tensor category, one can construct a modular functor
(Lyubashenko, ∼ 1995)

Lyubashenko’s modular functor is H0 of a modular functor with values in
chain complexes of vector spaces with homotopy coherent mapping class
group action. (Woike, CS 2020, Lentner, Mierach, Sommerhäuser, CS
2020)

This can be seen as a (substantial) generalization of the SL(2,Z) action on
the center of a factorizable ribbon Hopf algebra (Sommerhäuser, Zhu,. . . )
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Overview over constructions of 3d extended TFTs

RT TV
Method Surgery State sum / string nets
Input Modular fusion category C Spherical fusion category A
Special cases Chern-Simons Kitaev’s toric code

(including abelian Chern-Simons) Dijkgraaf-Witten theory
(finite abelian group finite group with 3-cocycle
with quadratic form)

tft(S1) C Z(A)
Boundaries only if C Witt-trivial always
C1-C2-defects if C1, C2 in same Witt class always

State-sum TFT with boundaries

Remarks

Framed modular functor from state sums for finite tensor categories and
their bimodules (Fuchs, Schaumann, CS 2019)

Boundary conditions: module categories, in particular A as a module
category over itself.

Different spherical fusion categories give same TV theory, e.g. G -rep and
G -vect. Reflections of pivotal Hopf algebras are field theoretic dualities.
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Flavours of TFTs

There are various flavours of TFTs, defined on different categories of
cobordisms

Cobordism Framed Oriented
Input fusion category spherical fusion category
Boundary exact module category pivotal module category

Equivariant topological field theories:

G -cob3,2,1 → 2-vect

RT TV
Input G-graded spherical fusion category G-modular tensor category

Theorem (Woike, CS)

For any group homomorphisms G → H, there is a functor (“geometric orbifold
construction”) G -tft→ H-tft that specializes to the orbifold construction
(equivariantization) for H = 1.
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Equivariant Frobenius Schur indicators and boundaries

Recap

V a finite-dimensional irreducible C[G ]-module.

ν2(V ) :=
1

|G |
∑
g∈G

χV (g 2) ∈ {0,±1}

ν = ±1 ⇔ non-deg. invariant bilinear form on V symmetric or antisymmetric.

ν2(V ) is the trace of the endomor-
phism on the one-dimensional vector
space Hom(V ⊗ V , 1):

Generalization for pivotal categories: V ∈ C and X ∈ Z(C):
[Kashina, Sommerhäuser, Zhu; Ng, Schauenburg]

Generalized Frobenius Schur indicator:
νV ,X ,(n,l) := trξV ,X ,(n,l).
Equivariance under SL(2,Z).
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Application to the equivariant Frobenius-Schur indicators

Generalized Frobenius Schur indicator:
νV ,X ,(n,l) := trξV ,X ,(n,l).
Equivariance under SL(2,Z).

Congruence subgroup conjecture for Drinfeld doubles of fusion categories

FS indicators for big finite groups (∼ 2 · 1018 elements)

Theorem (Farnsteiner, 2020)

 Hom(V⊗n,X ) Solid torus with Wilson line  νV ,X ,(n,l)
SL(2,Z)-equivariance becomes geometric and follows from TFT axioms.
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Some lessons

Other representation-theoretic results can be understood in terms of TFT as
well:

TFT gives a homotopy action of O(3) on fusion categories. π1(o(3)) acts
by autoequivalence −∨∨ (Douglas, Schommer-Pries-Snyder)

Relation between Brauer-Picard group of A and braided autoequivalences
of Z(A) (Etingof, Nikshych, Ostrik, Meir)

Some lessons:

Finite tensor categories should be studied at the same time as their
bimodule categories and their Drinfeld centers.

Various TFT constructions and the theory of finite tensor categories are
deeply interwoven.

3d TFT (including boundaries and defects) is a natural organizing principle
for mathematical structures related to finite tensor categories.
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