On the classification of pre-Nichols algebras of diagonal type with finite Gelfand-Kirillov dimension

Guillermo Sanmarco

Joint with Andruskiewitsch (arXiv:2002.11087) and Angiono-Campagnolo. Hopf Algebras and Tensor Categories online Workshop.

- 1. Motivation
- 2. Background
- 3. Quantum linear spaces
- 4. Cartan, super and standard types

Motivation

Hopf algebras: coradical and infinitesimal braiding

Fix field $\mathbb{k} = \overline{\mathbb{k}}$ with char $\mathbb{k} = 0$. Let A be a Hopf algebra.

Definitions

- The coradical of A is $A_0 :=$ (direct) sum of simple subcoalgebras.
- Extends to coradical filtration $A = \bigcup_{n>0} A_n$ as coalgebra.

Hypothesis: the coradical is a Hopf subalgebra.

$$\implies$$
 $A = \bigcup_{n>0} A_n$ is a Hopf algebra filtration.

 \rightsquigarrow Get associated graded Hopf algebra gr A endowed with $A_0 \hookrightarrow$ gr A and gr A \rightarrow A_0 composing to id.

 \rightsquigarrow Recover gr $A \simeq R \# A_0$ with R graded Hopf algebra in $A_0 \mathcal{YD}$.

Definitions

 $R = \bigoplus_{n>0} R^n$ is the diagram and R^1 is the infinitesimal braiding of A.

Next: what kind of objects are these diagrams?

Generation in degree 1

• Fix a Hopf algebra *H* (with bijective antipode) and $V \in {}^{H}_{H} \mathcal{YD}$.

Definitions

A post-Nichols algebra of V is a corradically graded and connected Hopf algebra $\mathcal{E} = \bigoplus_{n \ge 0} \mathcal{E}^n$ in ${}^{H}_{H} \mathcal{YD}$ endowed with an iso $\mathcal{E}^1 \simeq V$.

A pre-Nichols algebra of V is a graded and connected Hopf algebra $\mathcal{B} = \bigoplus_{n>0} \mathcal{B}^n$ in ${}^{H}_{H} \mathcal{YD}$ generated by \mathcal{B}^1 and endowed with $\mathcal{B}^1 \simeq V$.

• Restrict now to a group algebra $H = \Bbbk \Gamma$.

Generation in degree 1 conjecture, Andruskiewitsch-Schneider '00 Let $V \in {}^{k\Gamma}_{k\Gamma} \mathcal{YD}$ such that dim $\mathcal{B}(V) < \infty$. Then the Nichols algebra itself is the unique finite dimensional post-Nichols algebra of *V*.

 \bullet Assume that Γ is abelian. \rightsquigarrow Conjecture holds (Angiono).

Considering Gelfand-Kirillov dimension instead, the conjecture fails.

Generation in degree 1

• Fix a Hopf algebra *H* (with bijective antipode) and $V \in {}^{H}_{H} \mathcal{YD}$.

Definitions

A post-Nichols algebra of V is a corradically graded and connected Hopf algebra $\mathcal{E} = \bigoplus_{n \ge 0} \mathcal{E}^n$ in ${}^{H}_{H} \mathcal{YD}$ endowed with an iso $\mathcal{E}^1 \simeq V$.

A pre-Nichols algebra of V is a graded and connected Hopf algebra $\mathcal{B} = \bigoplus_{n>0} \mathcal{B}^n$ in ${}^{H}_{H} \mathcal{YD}$ generated by \mathcal{B}^1 and endowed with $\mathcal{B}^1 \simeq V$.

• Restrict now to a group algebra $H = \Bbbk \Gamma$.

Generation in degree 1 conjecture, Andruskiewitsch-Schneider '00 Let $V \in {}^{k\Gamma}_{k\Gamma} \mathcal{YD}$ such that dim $\mathcal{B}(V) < \infty$. Then the Nichols algebra itself is the unique finite dimensional post-Nichols algebra of *V*.

 \bullet Assume that Γ is abelian. \rightsquigarrow Conjecture holds (Angiono).

Considering Gelfand-Kirillov dimension instead, the conjecture fails.

Goal: classify finite **GK-dim** Hopf algebras with coradical **kΓ**. Following [AAH18] ¹,

(A) classify (fin. dim.) $V \in {}_{\Bbbk\Gamma}^{\Gamma} \mathcal{YD}$ such that GK-dim $\mathcal{B}(V) < \infty$, then (B) for such V, classify its finite GK-dim post-Nichols algebras,

which is related to

(C) classify finite GK-dim pre-Nichols algebras of V.

We focus on problem (C) for some families of diagonal braidings:

- quantum linear spaces,
- super type,

- Cartan type,
- standard type.

¹[AAH18] N. Andruskiewitsch, I. Angiono, I. Heckenberger, *Liftings of Jordan and super Jordan planes*. Proc. Edinb. Math. Soc. **61** 661–672 (2018).

Background

Terminology

• Gelfand-Kirillov dim: let A be a k-algebra generated by I (finite). GK-dim A measures growth of {words on I of length $\leq k$ } as $k \to \infty$.

Examples: \cdot GK-dim A = 0 iff dim $A < \infty$,

- \cdot GK-dim $\Bbbk[x_1,\ldots,x_n] = n, \quad \cdot$ GK-dim U(\mathfrak{g}) = dim \mathfrak{g} .
- Braidings of diagonal type: given $\mathbb{I} = \{1, \ldots, \theta\}$ and $\mathfrak{q} \in M_{\theta}(\mathbb{k}^{\times})$, consider $(V, c^{\mathfrak{q}})$ where

V has basis $(x_i)_{i \in \mathbb{I}}$, $c^{\mathfrak{q}}(x_i \otimes x_j) = q_{ij}x_j \otimes x_i$, $i, j \in \mathbb{I}$.

- Dynkin diagram of such q: is the decorated graph with
 - vertices $\{1, \ldots, \theta\}$, vertex *i* labelled by q_{ii} ;
 - edge between *i* and *j* iff $\tilde{q}_{ij} := q_{ij}q_{ji} \neq 1$. Such edge is labelled \tilde{q}_{ij} .
- PBW-type basis for $\mathcal{B}_{\mathfrak{q}} := \mathcal{B}(V, c^{\mathfrak{q}})$ is available (Kharchenkho).
- Roots of q: is the set of heights of the PBW generators.
- Root system of q: is the bundle of roots of all reflections of q.

Finite dim versus finite GK-dim

• All connected q's such that dim $\mathcal{B}_q < \infty$ are known. More generally, Theorem, [H09] ²

Complete classification of connected q's with finite root system.

• On the other hand, going back to problem (A) we have

Conjecture, [AAH] 3

If GK-dim $\mathcal{B}_q < \infty$, the root system of \mathfrak{q} is finite.

Substantial progress has been made by Rosso and [AAH].

• However, regarding prob (C), for each connected q with dim $\mathcal{B}_q < \infty$ there is a finite GK-dim pre-Nichols algebra different from \mathcal{B}_q .

³[AAH] N. Andruskiewitsch, I. Angiono, I. Heckenberger, *On finite GK-dimensional Nichols algebras over abelian groups*. Mem. Amer. Math. Soc., to appear.

²[H09] I. Heckenberger, Classification of arithmetic root systems. Adv. Math. 220, 59–124 (2009)

Eminent pre-Nichols algebras

The set $\mathfrak{Pre}(\mathfrak{q})$ of pre-Nichols algebras of \mathfrak{q} is partially ordered:

 $\mathfrak{Pre}_{fGK}(\mathfrak{q})$:= subposet consisting of all elements with finite GK-dim.

Definition [Andruskiewitsch-S]

 $\widehat{\mathcal{B}} \in \mathfrak{Pre}(\mathfrak{q})$ is eminent if it is the minimum of $\mathfrak{Pre}_{fGK}(\mathfrak{q})$.

This means: $\operatorname{GK-dim} \widehat{\mathcal{B}} < \infty$ and for each $\mathcal{B} \in \mathfrak{Pre}_{\mathrm{fGK}}(\mathfrak{q})$ there exists a projection $\widehat{\mathcal{B}} \twoheadrightarrow \mathcal{B}$ of braided Hopf algebras which is the identity on V.

Goal: decide if there exist (in such case find) eminent pre-Nichols algebras for each braiding of interest.

Quantum linear spaces

Terminology

- Recall: V has basis $(x_i)_{i \in \mathbb{I}}$ and braiding $c^q(x_i \otimes x_j) = q_{ij}x_j \otimes x_i$.
- Quantum linear space condition: $q_{ij}q_{ji} = 1$ if $i \neq j \in \mathbb{I}$.
- Distinguished pre-Nichols: $\widetilde{\mathcal{B}}_{\mathfrak{q}} := T(V)/\langle x_i x_j q_{ij} x_j x_i : i < j \rangle$. Satisfies GK-dim = $|\mathbb{I}|$.

Partition $\mathbb{I} = \mathbb{I}^{<3} \sqcup \mathbb{I}^3 \sqcup \mathbb{I}^{>3} \sqcup \mathbb{I}^{\infty}$, where

$$\mathbb{I}^{\infty} = \{i \in \mathbb{I} : q_{ii} \notin \mathbb{G}_{\infty}\}, \quad \mathbb{I}^{N} = \{i \in \mathbb{I} : \text{ ord } q_{ii} = N\}, N \ge 1,$$
$$\mathbb{I}^{>3} = \bigcup_{N>3} \mathbb{I}^{N}, \qquad \mathbb{I}^{<3} = \{i \in \mathbb{I} : q_{ii} = \pm 1\} = \mathbb{I}^{1} \sqcup \mathbb{I}^{2}.$$

For $\star \in \{ < 3, 3, > 3, \infty \}$ set $V^{\star} = \Bbbk \{ X_i : i \in \mathbb{I}^{\star} \} \subset V$, so

 $V = V^{<3} \oplus V^3 \oplus V^{>3} \oplus V^{\infty}.$

Super symmetric algebra condition: $V = V^1 \oplus V^2$, i.e., $q_{ii}^2 = 1$ for all *i*.

Lema [Andruskiewitsch-S]

If \mathfrak{q} and \mathfrak{p} have the same Dynkin diagram, there is a posets iso $\mathfrak{Pre}_{\rm fGK}(\mathfrak{q})\simeq\mathfrak{Pre}_{\rm fGK}(\mathfrak{p})\,.$

 \rightsquigarrow Instead of (V, $c^{\mathfrak{q}}$), consider (V, $c^{\mathfrak{p}}$) with $p_{ij} = \pm 1$.

- $\mathfrak{Pre}(\mathfrak{p}) =$ super enveloping algebras $U(\mathfrak{n})$, where $\mathfrak{n} = \bigoplus_{j \ge 1} \mathfrak{n}^j$ graded Lie super algebra generated by $\mathfrak{n}^1 \simeq V$.
- $\mathfrak{Pre}_{fGK}(\mathfrak{p}) =$ super enveloping algebras $U(\mathfrak{n})$, where $\mathfrak{n} = \bigoplus_{j \ge 1} \mathfrak{n}^j$ graded Lie super algebra generated by $\mathfrak{n}^1 \simeq V$ and dim $\mathfrak{n} < \infty$.

Eminent pre-Nichols algebras might not exist.

Main result for quantum linear spaces

Theorem [Andruskiewitsch-S]

Recall: $V = V^{<3} \oplus V^3 \oplus V^{>3} \oplus V^{\infty}$.

(1) For $\star \in \{3, > 3, \infty\}$, the distinguished pre-Nichols algebra $\widetilde{\mathcal{B}}(V^{\star})$ is eminent.

(2) Let $\mathcal{B} \in \mathfrak{Pre}_{fGK}(V)$. For $\star \in \{\leq 3, > 3, \infty\}$, denote by \mathcal{B}^{\star} the subalgebra of \mathcal{B} generated by V^{\star} . Then

$$\mathcal{B}\simeq \mathcal{B}^{\leq 3}\underline{\otimes} \mathcal{B}^{>3}\underline{\otimes} \mathcal{B}^{\infty}.$$

(3) Assume V has basis $\{x_1, x_2\}$ with $x_1 \in V^3$, $x_2 \in V^1$. Then

$$\breve{\mathcal{B}}(V) = T(V) / \langle (\mathsf{ad}_{c} x_{1})^{4} x_{2}, \, (\mathsf{ad}_{c} x_{2})^{2} x_{1} \rangle$$

is an eminent pre-Nichols algebra of V with GK-dim = 6.

Moreover, $\breve{\mathcal{B}}(V)$ has a G_2 -type PBW basis ...

Non genuine quantum Serre relations

• Let $\mathbf{a} = (a_{ij})_{i,j \in \mathbb{I}}$ indecomposable symmetrizable GCM;

 $d\in \mathsf{GL}_\theta(\mathbb{Z})$ diagonal such that da is symmetric;

 $\mathfrak{g} = \mathfrak{g}(a)$ associated Kac-Moody algebra, $\mathfrak{g}(a) = \mathfrak{g}^+ \oplus \mathfrak{h} \oplus \mathfrak{g}^-$.

• Let $q \in \Bbbk^{\times}$ and consider the Dynkin diagram

• Fix q with this Dynkin diagram Beware: Cartan type, but associated Cartan matrix not necessarily a. Define $\breve{B}_q = T(V)/\langle (ad_c x_i)^{1-a_{ij}} x_j \ i \neq j \in \mathbb{I} \rangle$. **Proposition [Andruskiewitsch-S]**

 $\mathsf{GK}\text{-}\mathsf{dim}\,\breve{\mathcal{B}}_\mathfrak{q}\geq\mathsf{dim}\,\mathfrak{g}^+.$

Cartan, super and standard types

Terminology

• Andruskiewitsch-Angiono organize Heckenbergers' list with a Lie-theoretic perspective:

- Cartan, super, standard,
- modular, supermodular, UFO.
- For each q with dim $\mathcal{B}_q < \infty$, Angiono ⁴ defines the distinguished pre-Nichols algebra $\widetilde{\mathcal{B}}_q$. Some features:
 - if $\mathcal{B}_{\mathfrak{q}} = \mathfrak{u}_q^+(\mathfrak{g})$, then $\widetilde{\mathcal{B}}_{\mathfrak{q}} = \mathsf{U}_q^+(\mathfrak{g})$.
 - $\cdot \ \widetilde{\mathcal{B}}_{\mathfrak{q}}$ inherits all Lusztig's isomorphisms from $\mathcal{B}_{\mathfrak{q}}.$
 - $\widetilde{\mathcal{B}}_{\mathfrak{q}}$ has the same PBW generators of $\mathcal{B}_{\mathfrak{q}}$ (\neq heights).
 - · kernel of $\widetilde{\mathcal{B}}_{\mathfrak{q}} \twoheadrightarrow \mathcal{B}_{\mathfrak{q}}$ is generated by powers of root vectors.
 - GK-dim $\widetilde{\mathcal{B}}_{q} < \infty$. It is asked: is $\widetilde{\mathcal{B}}_{q}$ eminent?

Next: try to answer this for Cartan, super and standard types. If the answer is negative, find eminent pre-Nichols algebras.

⁴[An] I. Angiono Distinguished pre-Nichols algebras. Transf. Groups **21** 1–33 (2016).

Here
$$\mathcal{B}_{\mathfrak{q}} = T(V)/\langle x_1^3, x_2^3, x_{12}^3, x_{112}, x_{221} \rangle$$
 and $\widetilde{\mathcal{B}}_{\mathfrak{q}} = T(V)/\langle x_{112}, x_{221} \rangle$.
Define $\widehat{\mathcal{B}} = T(V)/\langle x_{1112}, x_{2112}, x_{1221}, x_{2221} \rangle$.

Let $\mathcal{Z} =$ subalgebra of $\widehat{\mathcal{B}}$ gen by x_1^3 , x_2^3 , x_{12}^3 , x_{112} , x_{221} .

Theorem [Andruskiewitsch-S]

- (1) \mathcal{Z} is a normal Hopf subalgebra. Moreover, $(\operatorname{ad}_{c}\widehat{\mathcal{B}})\mathcal{Z} = 0$.
- (2) \mathcal{Z} is a skew-polynomial algebra in five variables.
- (3) There is an extension of braided Hopf algebras

$$\Bbbk \to \mathcal{Z} \hookrightarrow \widehat{\mathcal{B}} \twoheadrightarrow \mathcal{B}_{\mathfrak{q}} \to \Bbbk.$$

(4) The pre-Nichols algebra $\widehat{\mathcal{B}}$ is eminent with GK-dim $\widehat{\mathcal{B}} = 5$.

¡Gracias!