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The context

• Let k be an algebraic closed field of characteristic p > 2. Let

Γ ≃ Z/pZ be the cyclic group of p elements with generator g,

written multiplicatively.

• The Jordan plane J is the algebra presented by generators x,

y with relation yx− xy + 1
2x

2 = 0.

• In characteristic 0 this is the Nichols algebra of the braided

vector space V = k{x, y} with braiding:

c(x⊗x) = x⊗x, c(y⊗x) = x⊗y,

c(x⊗y) = (x+ y)⊗x, c(y⊗y) = (x+ y)⊗y.
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• In odd characteristic, Cibils, Lauve and Witherspoon (2009)

[CLW] showed that the Nichols algebra B(V ) is the called re-

stricted Jordan plane J = J/(xp, yp).

• The braided vector space (V, c) can be realized in kΓ
kΓYD with

action ⇀ and coaction δ:

g ⇀ x = x, g ⇀ y = y + x, δ(x) = g⊗x, δ(y) = g⊗y.

• We can define the finite dimensional Hopf algebra

H := J#kΓ
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The plan.

• Present by generators and relations the Drinfeld double D(H).

• Compute its simple modules.

• Define a Hopf algebra D̃ of infinite dimension such that D̃ ։

D(H). This algebra will be the double of the Jordan plane.

• Understand various Frobenius-like maps and extensions of the

algebra D̃.

• In [AP] we also classify finite dimensional pre- and post-Nichols

algebras of V .
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The dual Hopf algebra H∗.

• Let be W = k{u, v} be the braided vector space given by

c(u⊗u) = u⊗u, c(u⊗v) = v⊗u,

c(v⊗u) = u⊗(v + u), c(v⊗v) = v⊗(v + u).

• B(W ) is isomorphic to the Jordan plane as an algebra but with

opposite comultiplication.

• H∗ ≃ B(W )#k
Γ.

• Also k
Γ ≃ k[ζ]/(ζp−ζ). This is the restricted enveloping algebra

of Lie algebra of a one dimensional torus.

We have the following presentation for (H∗)op.
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Lemma. (H∗)op is the algebra presented by generators u, v and

ζ with relations:

vp = 0, up = 0, vu = uv −
1

2
u2,

vζ = ζv + v, uζ = ζu+ u, ζp = ζ.

Proposition. The Hopf algebra D(H) is presented by generators

u, v, ζ, g, x, y with the relations of H, (H∗)op and

ζy = yζ + y, ζx = xζ + x, vg = gv + gu,

ug = gu, vx = xv + (1− g) + xu, ux = xu,

uy = yu+ (1− g) vy = yv − gζ + yu, gζ = ζg.
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D(H) is an abelian extension of u(sl2(k)).

Let R be the subalgebra of D(H) generated by g, x, u. This is

a normal commutative Hopf subalgebra.

Theorem. There exist a exact sequence of Hopf algebras:

R
� � //D(H) // //u(sl2(k)).

As R is commutative and u(sl2(k)) co-commutative, this is an

abelian extension.

Remarks. • The algebra R is the Frobenius kernel of the alge-

braic group G = (Ga ×Ga) ⋊Gm. Also R is local.

• IrrepD(H) ≃ Irrep u(sl2(k)) as D(H)R+ is a nilpotent ideal.

In particular there are p isomorphism classes of simple modules.

There is an explicit description as quotients of Verma modules.
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The double of the Jordan plane. We now define the Hopf

algebra D̃ as the algebra presented by generators u, v, ζ, g, x, y

with the same relations as D(H) but removing:

xp = 0, yp = 0, up = 0, vp = 0, gp = 1, ζp = ζ.

D̃ is a Hopf algebra with GKdim D̃ = 6.

The Hopf subalgebra Z of D̃ generated by xp, yp, up, vp, gp and

ζ(p) := ζp − ζ is central. We have the following result:

Theorem. There is an exact sequence of Hopf algebras:

Z � � // D̃ // //D(H).

Remark. Z ≃ O(B) for certain soluble algebraic group B related

with the 3× 3 Heisenberg group.
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Ring properties of D̃.

• The algebra D̃ admits an exhaustive ascending filtration (D̃n)n∈N0

such that

gr D̃ ≃ k[T±]⊗k[X1, . . . , X5].

• As a consequence D̃ is a noetherian domain.

• D̃ is a polynomial identity algebra as it is a free module over

the central subalgebra Z.
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A conmutative diagram. The previous maps can be summa-

rized in the following diagram:

O(G) � � //

� _

Fr

��

O(B)
� _

��

// //O(G3
a)� _

��

O(G) � � //

��
��

D̃ // //

��
��

U(sl2(k))

��
��

R
� � //D(H) // //u(sl2(k))

All columns and rows are exact sequence of Hopf algebras.
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The super Jordan plane

In [AAH] is introduced other indecomposable braided vector space

of dimension two. Let Vs = k{x1, x2} with braiding

c(x1⊗x1) = −x1⊗x1, c(x2⊗x1) = −x1⊗x2,

c(x1⊗x2) = (−x2 + x1)⊗x1, c(x2⊗x2) = (−x2 + x1)⊗x2.

• In characteristic 0 the Nichols algebra B(Vs) has GKdim 2. It

is the called super Jordan plane.

• In characteristic p > 2, B(Vs) has finite dimension. Is the called

restricted super Jordan plane.

In [AP2] we carried the same program for the super Jordan plane.
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The double of the super Jordan plane The doubles of the

super Jordan plane and its restricted version are essentially the

bosonization of Hopf superalgebras D̃ and D respectively. they

fit in the following diagram:

O(G̃) � � //

� _

��

O(B̃)
� _

��

// //O(G3
a)� _

��

O(G) � � //

��
��

D̃ // //

��
��

U(osp(1|2))

��
��

R̃
� � //D // //u(osp(1|2))

This justifies the adjetive super given to the super Jordan plane.
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The super Jordan plane

In [AAH] is introduced other indecomposable braided vector space

of dimension two. Let Vs = k{x1, x2} with braiding

c(x1⊗x1) = −x1⊗x1, c(x2⊗x1) = −x1⊗x2,

c(x1⊗x2) = (−x2 + x1)⊗x1, c(x2⊗x2) = (−x2 + x1)⊗x2.

• In characteristic 0 the Nichols algebra B(Vs) has GKdim 2. It

is the called super Jordan plane.

• In characteristic p > 2, B(Vs) has finite dimension. Is the called

restricted super Jordan plane.

In [AP2] we carried the same program for the super Jordan plane.
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Finite dimensional pre-Nichols algebras

Theorem. Let A be a finite dimensional pre-Nichols algebra of

V such that J ։ A. Then

A ≃ G(k, ℓ, a) := J/(yp
k
− axp

k
, xp

ℓ
),

for some k, ℓ ∈ N, a ∈ k.

Remark. The automorphism group of J acts over the set of

pre-Nichols algebras G(k, ℓ, a). Then we can see that

G(k, ℓ, a) ≃ G(k, ℓ,0) := G(k, ℓ),

as braided Hopf algebras. This is not an isomorphism of pre-

Nichols algebras.
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The graded dual of the Jordan plane and post-Nichols al-

gebras.

Given a graded locally finite Hopf algebra

A =
⊕

n∈N0

An, dimAn < ∞, ∀n ∈ N0.

The graded dual A∗ :=
⊕

n∈N0
(An)∗ is also a Hopf algebra with

the transpose structures.

We compute the graded dual of the Jordan plane. This will give

us a post-Nichols algebra of W .
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Theorem. The graded dual E of J is presented by generators

x
[n], y[n], n ∈ N, and relations

x
[n]

x
[m] =

(n+m

n

)
x
[n+m],

y
[n]

y
[m] =

(n+m

n

)
y
[n+m],

x
[n]

y
[m] =

m∑

k=0

(n+ k

k

)
(−1)k

[−n][k]

2k
y
[m−k]

x
[n+k],

x
[0] = y

[0] = 1.
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Finite dimensional post-Nichols algebras

Let G(k, ℓ) = G(k, ℓ)∗ be a post-Nichols algebra of W .

This is exactly the subalgebra of E generated by x
[n], y

[m], n ∈

I0,pk−1, m ∈ I0,pℓ−1. In particular E =
⋃
k,ℓ∈NG(k, ℓ).

We have then new examples of coradically graded pointed Hopf

alegebras in positive characteristic p

Hk,ℓ = G(k, ℓ)#kΓ.
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Thanks.
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