Introductory Lecture Vertex Algebras and their Representation Theory

Simon Lentner

University of Hamburg

21 August 2019

Content:

- Correlators and Conformal Field Theory
- Vertex Algebras and their representations
- The screening method

Background and Motivation:

Consider a stochastical experiment:

- A space Ω of possible configurations ω .
- A probability function $P: \Omega \to \mathbb{R}$, maybe non-normalized
- Some observables (i.e. random variables) $\mathcal{O}_i : \Omega \to \mathbb{C}$.

Our main output are expectation values

$$\langle \mathcal{O}_i \rangle = \frac{\int_{\Omega} P(\omega) \mathcal{O}_i(\omega) \, \mathrm{d}\omega}{\int_{\Omega} P(\omega) \, \mathrm{d}\omega}$$

and more generally the *n*-correlators

$$\langle \mathcal{O}_{i_1} \cdots \mathcal{O}_{i_n} \rangle = \frac{\int_{\Omega} P(\omega) \mathcal{O}_{i_1}(\omega) \cdots \mathcal{O}_{i_n}(\omega) d\omega}{\int_{\Omega} P(\omega) d\omega}$$

In physics, Ω as set of "states of the world" (positions, speed,...)

 P(ω) = e^{-¹/_T L[ω]} with L the total energy in the state ω and T the temperature of a thermodynamical system. In physics, Ω as set of "states of the world" (positions, speed,...)

- P(ω) = e^{-¹/_T L[ω]} with L the total energy in the state ω and T the temperature of a thermodynamical system.
- P(ω) = e^{-i/ħ L[ω]} with L the Langrangian of the system.
 Now P is a complex-valued amplitude of a quantum system.

In the classical limit \hbar , $T \rightarrow 0$ the system remains at minimal $L[\omega]$.

Now we consider **quantum field theory** on a manifold Σ :

- Ω is e.g. the set of all functions $\phi_1, \ldots, \phi_n : \Sigma \to \mathbb{C}$ etc.
- The expectation value \int_{Ω} is the ill-defined path integral.
- $L[\omega]$ is a functional and finding minimal ω is a variational problem, leading to Euler-Langrange equations for $\phi_i^{\text{classical}}$
- Typical observables \mathcal{O} are the evaluations $\phi_i(z)$ and their derivatives at a fixed point $z \in \Sigma$.

Now we consider **quantum field theory** on a manifold Σ :

- Ω is e.g. the set of all functions $\phi_1, \ldots, \phi_n : \Sigma \to \mathbb{C}$ etc.
- The expectation value \int_{Ω} is the ill-defined path integral.
- $L[\omega]$ is a functional and finding minimal ω is a variational problem, leading to Euler-Langrange equations for $\phi_i^{\text{classical}}$
- Typical observables O are the evaluations φ_i(z) and their derivatives at a fixed point z ∈ Σ.

In **conformal field theory** the manifold is a surface Σ_g of genus g and correlators $\langle \phi_{i_1}(z_1) \cdots \phi_{i_n}(z_n) \rangle$ are invariant under conformal maps.

We split the correlators into holomorphic and antiholomorphic chiral correlators $\langle \phi_{i_1}(z_1) \cdots \phi_{i_n}(z_n) \rangle$, which are multivalued. They are function on the moduli space of complex structures of $\Sigma_{g,n}$.

Example

A single free field on Σ with values in $\mathbb{C}.$

- Ω is the space of functions $\phi: \Sigma \to \mathbb{C}$
- $L[\phi] = \frac{1}{2} \int_{\Sigma} |\nabla \phi|^2 \, dx dy$ (no interaction, no external fields)
- The minima $\phi^{\text{classical}}$ are waves, solving $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\phi = 0$

Example

A single free field on Σ with values in $\mathbb{C}.$

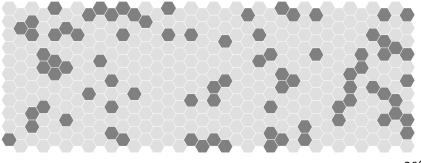
- Ω is the space of functions $\phi: \Sigma \to \mathbb{C}$
- $L[\phi] = \frac{1}{2} \int_{\Sigma} |\nabla \phi|^2 \, dx dy$ (no interaction, no external fields)
- The minima $\phi^{\text{classical}}$ are waves, solving $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\phi = 0$

Chiral correlators for z = x + iy, for example of $\partial \phi(z)$ with itself:

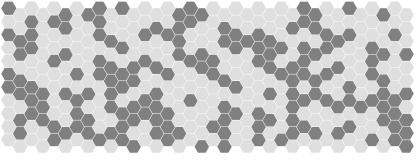
$$\begin{split} \langle \partial \phi(z_1) \rangle &= 0 \\ \langle \partial \phi(z_2) \partial \phi(z_1) \rangle &= \frac{1}{(z_2 - z_1)^2} \\ \langle \partial \phi(z_3) \partial \phi(z_2) \partial \phi(z_1) \rangle &= 0 \\ \langle \partial \phi(z_4) \partial \phi(z_3) \partial \phi(z_2) \partial \phi(z_1) \rangle &= \frac{1}{(z_4 - z_3)^2} \frac{1}{(z_2 - z_1)^2} + \frac{1}{(z_4 - z_2)^2} \frac{1}{(z_3 - z_1)^2} + \frac{1}{(z_4 - z_1)^2} \frac{1}{(z_3 - z_2)^2} \end{split}$$

Calculate?....Axiomatize!

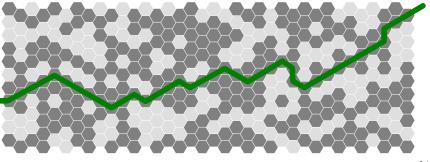
Take a rectangle with corners $z_1, z_2, z_3, z_4 \in \mathbb{C}$. Fill it with a hexagonal lattice of mesh $\epsilon \to 0$. Color each hexagon randomly with probability p.



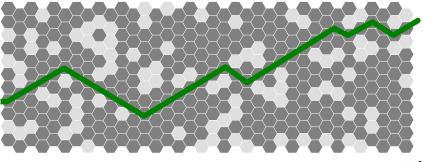
Take a rectangle with corners $z_1, z_2, z_3, z_4 \in \mathbb{C}$. Fill it with a hexagonal lattice of mesh $\epsilon \to 0$. Color each hexagon randomly with probability p.



Take a rectangle with corners $z_1, z_2, z_3, z_4 \in \mathbb{C}$. Fill it with a hexagonal lattice of mesh $\epsilon \to 0$. Color each hexagon randomly with probability p.



Take a rectangle with corners $z_1, z_2, z_3, z_4 \in \mathbb{C}$. Fill it with a hexagonal lattice of mesh $\epsilon \to 0$. Color each hexagon randomly with probability p.



Cardy (1992) conjectured from quantum field theory the formula

$$\mathbb{P}(p) = \begin{cases} 0 & \text{for } p < p_{crit} \\ \frac{\Gamma(2/3)}{\Gamma(1/3)\Gamma(4/3)} z^{1/3} \cdot {}_2\mathrm{F}_1(z) & \text{for } p = p_{crit} \\ 1 & \text{for } p > p_{crit} \end{cases}$$

For $p = p_{crit}$ we have invariance under conformal transformations, in particular $\mathbb{P}(p)$ only depends on the crossratio $z := \frac{z_1 - z_2}{z_1 - z_3} \frac{z_3 - z_4}{z_2 - z_4}$. Smirnov (2001) proved this for the hexagonal lattice, $p_{crit} := 50\%$.

This and other observables of critical percolation are manifestation of a conformal field theory $W_{2,3}$ with logarithmic singularities.

Cardy (1992) conjectured from quantum field theory the formula

$$\mathbb{P}(p) = \begin{cases} 0 & \text{for } p < p_{crit} \\ \frac{\Gamma(2/3)}{\Gamma(1/3)\Gamma(4/3)} z^{1/3} \cdot {}_{2}\mathrm{F}_{1}(z) & \text{for } p = p_{crit} \\ 1 & \text{for } p > p_{crit} \end{cases}$$

For $p = p_{crit}$ we have invariance under conformal transformations, in particular $\mathbb{P}(p)$ only depends on the crossratio $z := \frac{z_1-z_2}{z_1-z_3} \frac{z_3-z_4}{z_2-z_4}$. Smirnov (2001) proved this for the hexagonal lattice, $p_{crit} := 50\%$.

This and other observables of critical percolation are manifestation of a conformal field theory $W_{2,3}$ with logarithmic singularities.

Course of action

Axiomatize conformal field theory (e.g. Wighteman Axioms) Axiomatize chiral conformal field theory (e.g. Vertex Algebra) Study "only" their representation theory (modular tensor category) \implies topological invariants <u>DJW</u> (1990) and modular form data. Conversely reconstruct conformal field theories (screening method).

2) Vertex algebras

Definition

A Vertex Operator Algebra (VOA) is a collection of data:

- \blacksquare a graded vector space ${\cal V}$
- a vacuum vector 1
- a linear operator $\partial : \mathcal{V} \mapsto \mathcal{V}$
- a map called vertex operator

$$Y: \mathcal{V} \otimes_{\mathbb{C}} \mathcal{V} \to \mathcal{V}[[z, z^{-1}]]$$

• an action of the Virasoro algebra spanned by $L_n, n \in \mathbb{Z}$,

fulfilling several compatibility axioms.

Definition

A module ${\mathcal M}$ of a VOA ${\mathcal V}$ is a vector space together with a map

$$Y_{\mathcal{M}}: \mathcal{V} \otimes_{\mathbb{C}} \mathcal{M} \to \mathcal{M}[[z, z^{-1}]]$$

and an action of the Virasoro algebra, fulfilling similar compatibility axioms.

Definition

A module ${\mathcal M}$ of a VOA ${\mathcal V}$ is a vector space together with a map

$$Y_{\mathcal{M}}: \ \mathcal{V} \otimes_{\mathbb{C}} \mathcal{M} \to \mathcal{M}[[z, z^{-1}]]$$

and an action of the Virasoro algebra, fulfilling similar compatibility axioms.

Definition

An *intertwiner* between VOA modules $\mathcal{M}, \mathcal{N}, \mathcal{L}$ is a map

$$\mathrm{Y}_{\mathcal{M}, \mathcal{N}, \mathcal{L}}: \mathcal{M} \otimes_{\mathbb{C}} \mathcal{N} \to \mathcal{L}\{z\}[\log(z)]$$

where $\{z\}$ are power series with exponentials in \mathbb{C} , fulfilling again similar compatibility axioms.

Theorem (Huang '08, Huang, Lepowsky, Zhang '11)

Let \mathcal{V} be C_2 -cofinite, then $\operatorname{Rep}(\mathcal{V})$ is a braided tensor category.

Idea of the proof.

The tensor product $\mathcal{M} \otimes_{\mathcal{V}} \mathcal{N}$ is defined by having an intertwiner

$$\mathrm{Y}_{\mathcal{M}\otimes\mathcal{N}}: \ \mathcal{M}\otimes_{\mathbb{C}}\mathcal{N} o (\mathcal{M}\otimes_{\mathcal{V}}\mathcal{N})\{z\}[\log(z)]$$

and being universal with respect to this property.

The braiding $c_{\mathcal{M},\mathcal{N}}: \mathcal{M} \otimes_{\mathcal{V}} \mathcal{N} \to \mathcal{N} \otimes_{\mathcal{V}} \mathcal{M}$ is roughly defined by

$$c_{\mathcal{M},\mathcal{N}} \circ \mathrm{Y}_{\mathcal{M}\otimes\mathcal{N}}(z) = \mathrm{Y}_{\mathcal{N}\otimes\mathcal{M}}(-z)$$

where we analytically continue z to -z counterclock-wise.

Compare this to the tensor product $\otimes_{\mathcal{V}}$ over a commutative ring. Rep(\mathcal{V}) is a modular tensor category (conj. for nonsemisimple).

2) Vertex Algebras: The Heisenberg Algebra

Example

Take the vector space $\mathcal{V}_{\mathcal{H}}:=\mathbb{C}[\partial\phi,\partial^2\phi,\cdots]$ with vertex operator

$$Y(\partial \phi)\partial \phi = z^{-2} \cdot 1 + \sum_{k \ge 0} \frac{z^k}{k!} \partial \phi \ \partial^{1+k} \phi$$

For every $a \in \mathbb{C}$ there is an irreducible module:

$$\mathcal{V}_{\mathbf{a}} := \mathbb{C}[\partial \phi, \partial^2 \phi, \cdots] e^{\mathbf{a}\phi}, \qquad \mathcal{Y}_{\mathcal{V}_{\mathbf{a}}}(\partial \phi) e^{\mathbf{a}\phi} = \mathbf{a} \mathbf{z}^{-1} \cdot e^{\mathbf{a}\phi} + \cdots$$

• The tensor product product follows from some intertwiners $\mathcal{V}_a \otimes \mathcal{V}_b = \mathcal{V}_{a+b}$ $Y_{\mathcal{V}_a \otimes \mathcal{V}_b}(e^{a\phi})e^{b\phi} = z^{ab} \cdot e^{(a+b)\phi} + \cdots$

Hence the braiding is

$$c_{\mathcal{V}_a,\mathcal{V}_b}: \mathcal{V}_a \otimes \mathcal{V}_b \stackrel{e^{i\pi ab}}{\longrightarrow} \mathcal{V}_b \otimes \mathcal{V}_a$$

2) Vertex Algebras: The Heisenberg Algebra

Example

The modular category of semisimple modules of $\mathcal{V}_{\mathcal{H}}$ is hence

$$\operatorname{Vect}_{\mathbb{C}}^{\sigma,\omega}, \quad ext{with} \quad \sigma(\lambda,\mu) = e^{\pi \mathrm{i} \lambda \mu}, \quad \omega = 1$$

The modular category of finite-length modules of $\mathcal{V}_{\mathcal{H}}$ is

 $\operatorname{Rep}(\mathbb{C}[X],\Delta,R)$ with $\Delta(X) = 1 \otimes X + X \otimes 1$, $R = e^{\pi i X \otimes X}$

A typical 2-point correlation function on the sphere $\Sigma_{0,2}(z_1, z_2)$ is

$$\langle 1, Y(\partial \phi, z_1) Y(\partial \phi, z_2) 1 \rangle = \sum_{j \ge 0} (-1)^j {\binom{-2}{j}} z_1^{-2-j} z_2^j = (z_2 - z_1)^{-2}$$

The 0-point correlation functions on the torus $\Sigma_{1,0}(\tau)$, $q = e^{2\pi i \tau}$ $\operatorname{Tr}\langle 1, \mathrm{Y}(a_1, z_1) \mathrm{Y}(a_2, z_2) 1 \rangle = q^{-1/24} \sum_{n \ge 0} \dim(\mathcal{V}_{\mathcal{H}})_n = q^{\lambda^2/2} / \eta(q)$

3) Vertex Algebras: The Lattice Vertex Algebra

Build a finite theory by simple-current-extension $Rep^{loc}(\Lambda)$ ($\operatorname{Vect}_{\mathbb{C}^n}^{\sigma,\omega}$)

Example

For an even integral lattice $\Lambda,$ there is a Lattice VOA \mathcal{V}_Λ with

$$\operatorname{Vect}_{\Lambda^*/\Lambda}^{\sigma,\omega}$$
 with $\sigma(\lambda,\mu) := e^{\pi i (\lambda,\mu)_{\Lambda}} \quad \omega(\lambda,\mu,\nu) \neq 0$

Each module $\mathcal{V}_{\lambda+\Lambda}$ is a sum of Heisenberg modules $\bigoplus_{\lambda+\alpha\in\lambda+\Lambda}\mathcal{V}_{\lambda+\alpha}$

The 0-point correlation functions on the torus $\Sigma_{1,0}(au)$ are

$$\chi_{\lambda+\Lambda}(q) = \sum_{\lambda+lpha\,\in\,\lambda+\Lambda} q^{|\lambda+lpha|^2/2}/\eta(q)^{\mathrm{rank}} = \Theta_{\lambda+\Lambda}(z)/\eta(z)^{\mathrm{rank}}$$

These functions give a vector valued modular form

$$\chi_{\lambda+\Lambda}\left(\frac{az+b}{cz+d}\right) = \sum_{I} \rho \begin{pmatrix} a & b \\ c & d \end{pmatrix}_{\lambda,\mu} \cdot \chi_{\mu+\Lambda}(z) \quad \text{for } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$$
for a mapping class group representation ρ , visible in MTC & TFT.

Goal: Free field realization

Realize a complicated vertex algebra, such as $\mathcal{W}_{2,3}$ as a subalgebra of a Heisenberg VOA, Lattice VOA, or similar.

Dotsenko/Fadeev, Wakimoto, Feigin/Frenkel, Felder,....

Goal: Logarithmic conformal field theory

Construct one or all vertex algebras \mathcal{V} , such that $\operatorname{Rep}(\mathcal{V})$ is a given (nonsemisimple!) modular tensor category \mathcal{C} , in particular the representation theory of a quantum group.

Feigin/Semikhatov/Tipunin/Gainutdinov, Adamovic/Milas, Tsuchiya/Nagatomo/Wood, Creutzig/Gainutdinov/Runkel, L....

Definition

Let \mathcal{V} be a VOA and \mathcal{M} , \mathcal{N} modules.

The tensor product $\mathcal{M} \otimes_{\mathcal{V}} \mathcal{N}$ is defined by having an intertwiner

$$\mathrm{Y}_{\mathcal{M}\otimes\mathcal{N}}: \ \mathcal{M}\otimes_{\mathbb{C}}\mathcal{N} o (\mathcal{M}\otimes_{\mathcal{V}}\mathcal{N})\{z\}[\log(z)].$$

Now, we fix $m \in \mathcal{M}$ and for all modules \mathcal{N} , we get a map

$$\mathrm{Y}_{\mathcal{M}\otimes\mathcal{N}}(m,z): \ \mathcal{N} \to (\mathcal{M}\otimes_{\mathcal{V}}\mathcal{N})\{z\}[\log(z)].$$

Integrating around z = 0 defines the screening operator

$$\mathfrak{Z}_m:\mathcal{N}\to\overline{\mathcal{M}\otimes_\mathcal{V}\mathcal{N}}\quad m\in\mathcal{M}$$

E.g. the Heisenberg VOA has screening operators \mathfrak{Z}_{λ} for all $\lambda \in \mathbb{C}^{rank}$ Local screening operators $\mathcal{M} = \mathcal{V}$ generate actions of Lie algebras,

for example the Virasoro algebra, a semisimple Lie algebra \mathfrak{g},\ldots

3) The screening method

What are the relations of non-local screening operators in $\mathcal{V}?$

Theorem (L. 17, Huang-L. in progress)

If the involved singularities are not too severe in some sense, then the screening operators \mathfrak{Z}_m fulfill the relations in the Nichols algebra $\mathcal{B}(\mathcal{M})$ in the braided tensor category $\operatorname{Rep}(\mathcal{V})$

Example (L. 17)

If $\lambda_1, \dots, \lambda_n \in \mathbb{C}^n$ are small enough in some sense, then the screening operators $\mathfrak{Z}_{\lambda_1}, \dots, \mathfrak{Z}_{\lambda_n}$ on the Heisenberg VOA fulfill the relations of the diagonal Nichols algebra with braiding

$$q_{ij}=e^{\pi\mathrm{i}(\lambda_i,\lambda_j)}$$

Conjecture

Does the VOA constructed as kernel of screening operators on \mathcal{V} always have the modular tensor category ${}^{\mathcal{B}(\mathcal{M})}_{\mathcal{B}(\mathcal{M})}\mathcal{YD}(\operatorname{Rep}(\mathcal{V}))...?$

3) The screening method - some words on the proof

The theorem amounts to proving a statement in complex analysis that a relation in the Nichols algebra for $q_{ij} = e^{\pi i m_{ij}}$ implies a linear relation between the generalized Selberg integrals

$$\mathrm{F}(m_{ij},m_i) := \int \cdots \int_{[e^0,e^{2\pi \mathrm{i}}]^n} \prod_i Z_i^{m_i} \prod_{i< j} (z_i - z_j)^{m_{ij}} \underline{z}_1 \dots \underline{z}_n$$

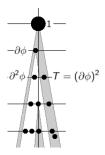
For example in degree 2 we have explicitly

$$F(m_1, m_2, m_{12}) = \frac{e^{2\pi i m_2} - 1}{2\pi i} \frac{e^{2\pi i m_1 + 2\pi i m_{12}} - 1}{2\pi i} \frac{1}{m_1 + m_2 + m_{12} + 2} \cdot \left(B(m_2 + 1, m_{12} + 1) + \frac{\sin \pi m_1}{\sin \pi (m_1 + m_{12})}B(m_1 + 1, m_{12} + 1)\right)$$

We can see the Nichols algebra relation $x_1^2 = 0$ for m_{12} odd integer and the Nichols algebra relation $[x_1, x_2]_{\pm} = 0$ for $2m_{12}$ an integer outsides the poles at $m_{12} \in -\mathbb{N}$, where we get extensions.

Additional material

Structure of the Heisenberg algebra $\mathbb{C}[\partial \phi, \partial^2 \phi, \ldots]$ as module over the Virasoro algebra [Feigin Fuks 1982]

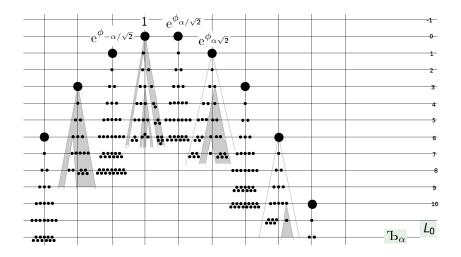


As Hilbert series we get the inverse eta function

$$\sum_{n \ge 0} \dim(V_n) q^n = \sum_{n \ge 0} p(n) q^n = \prod_{n \ge 0} (1 - q^n)^{-1}$$

Additional material

Structure of the Lattice Vertex algebra \mathcal{V}_{Λ} , $\Lambda = \sqrt{2}A_1$ and a second module of its four modules



Additional material

Actions of the screening operator $\mathfrak{Z}_{-\alpha/\sqrt{2}}$ with $(\mathfrak{Z}_{-\alpha/\sqrt{2}})^2 = 0$ and in grey kernel of the screening, the triplet algebra $\mathcal{W}_{2,1}$

