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1) Correlators and Conformal Field Theory

Background and Motivation:

Consider a stochastical experiment:

A space Ω of possible configurations ω.

A probability function P : Ω→ R, maybe non-normalized

Some observables (i.e. random variables) Oi : Ω→ C.

Our main output are expectation values

〈Oi 〉 =

∫
Ω P(ω) Oi (ω) dω∫

Ω P(ω) dω

and more generally the n-correlators

〈Oi1 · · · Oin〉 =

∫
Ω P(ω) Oi1(ω) · · · Oin(ω) dω∫

Ω P(ω) dω



1) Correlators and Conformal Field Theory

In physics, Ω as set of ”states of the world” (positions, speed,...)

P(ω) = e−
1
T

L[ω] with L the total energy in the state ω
and T the temperature of a thermodynamical system.

P(ω) = e−
i
~ L[ω] with L the Langrangian of the system.

Now P is a complex-valued amplitude of a quantum system.

In the classical limit ~,T → 0 the system remains at minimal L[ω].
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1) Correlators and Conformal Field Theory

Now we consider quantum field theory on a manifold Σ:

Ω is e.g. the set of all functions φ1, . . . , φn : Σ→ C etc.

The expectation value
∫

Ω is the ill-defined path integral.

L[ω] is a functional and finding minimal ω is a variational
problem, leading to Euler-Langrange equations for φclassicali

Typical observables O are the evaluations φi (z)
and their derivatives at a fixed point z ∈ Σ.

In conformal field theory the manifold is a surface Σg of genus g
and correlators 〈φi1(z1) · · ·φin(zn)〉 are invariant under conformal maps.

We split the correlators into holomorphic and antiholomorphic
chiral correlators 〈φi1(z1) · · ·φin(zn)〉, which are multivalued.
They are function on the moduli space of complex structures of Σg ,n.
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1) Correlators and Conformal Field Theory

Example

A single free field on Σ with values in C.

Ω is the space of functions φ : Σ→ C
L[φ] = 1

2

∫
Σ |∇φ|

2 dxdy (no interaction, no external fields)

The minima φclassical are waves, solving
(
∂2

∂x2 + ∂2

∂y2

)
φ = 0

Chiral correlators for z = x + iy , for example of ∂φ(z) with itself:

〈∂φ(z1)〉 = 0

〈∂φ(z2)∂φ(z1)〉 =
1

(z2 − z1)2

〈∂φ(z3)∂φ(z2)∂φ(z1)〉 = 0

〈∂φ(z4)∂φ(z3)∂φ(z2)∂φ(z1)〉 = 1
(z4−z3)2

1
(z2−z1)2 + 1

(z4−z2)2
1

(z3−z1)2 + 1
(z4−z1)2

1
(z3−z2)2

Calculate?....Axiomatize!
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1) Correlators and Conformal Field Theory
A statistical example: Critical Percolation

Take a rectangle with corners z1, z2, z3, z4 ∈ C.
Fill it with a hexagonal lattice of mesh ε→ 0.
Color each hexagon randomly with probability p.

With which probability P(p) exists a colored path left-to-right?
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Cardy (1992) conjectured from quantum field theory the formula

P(p) =


0 for p < pcrit

Γ(2/3)
Γ(1/3)Γ(4/3) z1/3 · 2F1(z) for p = pcrit

1 for p > pcrit

For p = pcrit we have invariance under conformal transformations,
in particular P(p) only depends on the crossratio z := z1−z2

z1−z3

z3−z4
z2−z4

.

Smirnov (2001) proved this for the hexagonal lattice, pcrit := 50%.

This and other observables of critical percolation are manifestation
of a conformal field theory W2,3 with logarithmic singularities.

Course of action

Axiomatize conformal field theory (e.g. Wighteman Axioms)
Axiomatize chiral conformal field theory (e.g. Vertex Algebra)
Study “only” their representation theory (modular tensor category)
=⇒ topological invariants DJW (1990) and modular form data.
Conversely reconstruct conformal field theories (screening method).



Cardy (1992) conjectured from quantum field theory the formula

P(p) =


0 for p < pcrit

Γ(2/3)
Γ(1/3)Γ(4/3) z1/3 · 2F1(z) for p = pcrit

1 for p > pcrit

For p = pcrit we have invariance under conformal transformations,
in particular P(p) only depends on the crossratio z := z1−z2

z1−z3

z3−z4
z2−z4

.

Smirnov (2001) proved this for the hexagonal lattice, pcrit := 50%.

This and other observables of critical percolation are manifestation
of a conformal field theory W2,3 with logarithmic singularities.

Course of action

Axiomatize conformal field theory (e.g. Wighteman Axioms)
Axiomatize chiral conformal field theory (e.g. Vertex Algebra)
Study “only” their representation theory (modular tensor category)
=⇒ topological invariants DJW (1990) and modular form data.
Conversely reconstruct conformal field theories (screening method).



2) Vertex algebras

Definition

A Vertex Operator Algebra (VOA) is a collection of data:

a graded vector space V
a vacuum vector 1

a linear operator ∂ : V 7→ V
a map called vertex operator

Y : V ⊗C V → V[[z , z−1]]

an action of the Virasoro algebra spanned by Ln, n ∈ Z,

fulfilling several compatibility axioms.



Definition

A module M of a VOA V is a vector space together with a map

YM : V ⊗CM→M[[z , z−1]]

and an action of the Virasoro algebra,
fulfilling similar compatibility axioms.

Definition

An intertwiner between VOA modules M,N ,L is a map

YM, N , L : M⊗C N → L{z}[log(z)]

where {z} are power series with exponentials in C,
fulfilling again similar compatibility axioms.
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Theorem (Huang ’08, Huang, Lepowsky, Zhang ’11)

Let V be C2-cofinite, then Rep(V) is a braided tensor category.

Idea of the proof.

The tensor product M⊗V N is defined by having an intertwiner

YM⊗N : M⊗C N → (M⊗V N ){z}[log(z)]

and being universal with respect to this property.

The braiding cM,N :M⊗V N → N ⊗VM is roughly defined by

cM,N ◦YM⊗N (z) = YN⊗M(−z)

where we analytically continue z to −z counterclock-wise.

Compare this to the tensor product ⊗V over a commutative ring.

Rep(V) is a modular tensor category (conj. for nonsemisimple).



2) Vertex Algebras: The Heisenberg Algebra

Example

Take the vector space VH := C[∂φ, ∂2φ, · · · ] with vertex operator

Y(∂φ)∂φ = z−2 · 1 +
∑
k≥0

zk

k!
∂φ ∂1+kφ

For every a ∈ C there is an irreducible module:

Va := C[∂φ, ∂2φ, · · · ]eaφ, YVa(∂φ)eaφ = az−1 · eaφ + · · ·

The tensor product product follows from some intertwiners

Va⊗Vb = Va+b YVa⊗Vb(eaφ)ebφ = zab · e(a+b)φ + · · ·

Hence the braiding is

cVa,Vb : Va ⊗ Vb
e iπab

−→ Vb ⊗ Va



2) Vertex Algebras: The Heisenberg Algebra

Example

The modular category of semisimple modules of VH is hence

Vectσ,ωC , with σ(λ, µ) = eπi λµ, ω = 1

The modular category of finite-length modules of VH is

Rep(C[X ],∆,R) with ∆(X ) = 1⊗ X + X ⊗ 1, R = eπi X⊗X

A typical 2-point correlation function on the sphere Σ0,2(z1, z2) is

〈1,Y(∂φ, z1)Y(∂φ, z2)1〉 =
∑
j≥0

(−1)j
(
−2

j

)
z−2−j

1 z j
2 = (z2 − z1)−2

The 0-point correlation functions on the torus Σ1,0(τ), q = e2πiτ

Tr〈1,Y(a1, z1)Y(a2, z2)1〉 = q−1/24
∑
n≥0

dim(VH)n = qλ
2/2/η(q)



3) Vertex Algebras: The Lattice Vertex Algebra

Build a finite theory by simple-current-extension Reploc(Λ)
(
Vectσ,ωCn

)
Example

For an even integral lattice Λ, there is a Lattice VOA VΛ with

Vectσ,ωΛ∗/Λ with σ(λ, µ) := eπi(λ,µ)Λ ω(λ, µ, ν) 6= 0

Each module Vλ+Λ is a sum of Heisenberg modules
⊕

λ+α∈λ+Λ

Vλ+α

The 0-point correlation functions on the torus Σ1,0(τ) are

χλ+Λ(q) =
∑

λ+α ∈ λ+Λ

q|λ+α|2/2/η(q)rank = Θλ+Λ(z)/η(z)rank

These functions give a vector valued modular form

χλ+Λ

(
az + b

cz + d

)
=
∑
l

ρ

(
a b
c d

)
λ,µ

· χµ+Λ(z) for

(
a b
c d

)
∈ SL2(Z)

for a mapping class group representation ρ, visible in MTC & TFT.



3) The screening method

Goal: Free field realization

Realize a complicated vertex algebra, such as W2,3

as a subalgebra of a Heisenberg VOA, Lattice VOA, or similar.

Dotsenko/Fadeev, Wakimoto, Feigin/Frenkel, Felder,....

Goal: Logarithmic conformal field theory

Construct one or all vertex algebras V, such that Rep(V)
is a given (nonsemisimple!) modular tensor category C,
in particular the representation theory of a quantum group.

Feigin/Semikhatov/Tipunin/Gainutdinov, Adamovic/Milas,
Tsuchiya/Nagatomo/Wood, Creutzig/Gainutdinov/Runkel, L....



3) The screening method

Definition

Let V be a VOA and M, N modules.
The tensor product M⊗V N is defined by having an intertwiner

YM⊗N : M⊗C N → (M⊗V N ){z}[log(z)].

Now, we fix m ∈M and for all modules N , we get a map

YM⊗N (m, z) : N → (M⊗V N ){z}[log(z)].

Integrating around z = 0 defines the screening operator

Zm : N →M⊗V N m ∈M

E.g. the Heisenberg VOA has screening operators Zλ for all λ ∈ Crank

Local screening operators M = V generate actions of Lie algebras,
for example the Virasoro algebra, a semisimple Lie algebra g,...



3) The screening method

What are the relations of non-local screening operators in V?

Theorem (L. 17, Huang-L. in progress)

If the involved singularities are not too severe in some sense,
then the screening operators Zm fulfill the relations
in the Nichols algebra B(M) in the braided tensor category Rep(V)

Example (L. 17)

If λ1, · · · , λn ∈ Cn are small enough in some sense,
then the screening operators Zλ1 , · · · ,Zλn on the Heisenberg VOA
fulfill the relations of the diagonal Nichols algebra with braiding

qij = eπi(λi ,λj )

Conjecture

Does the VOA constructed as kernel of screening operators on V
always have the modular tensor category

B(M)
B(M)YD(Rep(V))...?



3) The screening method - some words on the proof

The theorem amounts to proving a statement in complex analysis
that a relation in the Nichols algebra for qij = eπimij implies
a linear relation between the generalized Selberg integrals

F(mij ,mi ) :=

∫
· · ·
∫

[e0,e2πi]n

∏
i

zmi
i

∏
i<j

(zi − zj)
mij z.1 . . . z.n

For example in degree 2 we have explicitly

F(m1,m2,m12) =
e2πim2 − 1

2πi

e2πim1+2πim12 − 1

2πi

1

m1 + m2 + m12 + 2
·

·
(
B(m2 + 1,m12 + 1) +

sinπm1

sinπ(m1 + m12)
B(m1 + 1,m12 + 1)

)

We can see the Nichols algebra relation x2
1 = 0 for m12 odd integer

and the Nichols algebra relation [x1, x2]± = 0 for 2m12 an integer
outsides the poles at m12 ∈ −N, where we get extensions.



Additional material

Structure of the Heisenberg algebra C[∂φ, ∂2φ, . . .]
as module over the Virasoro algebra [Feigin Fuks 1982]

As Hilbert series we get the inverse eta function∑
n≥0

dim(Vn)qn =
∑
n≥0

p(n)qn =
∏
n≥0

(1− qn)−1



Additional material

Structure of the Lattice Vertex algebra VΛ, Λ =
√

2A1

and a second module of its four modules



Additional material

Actions of the screening operator Z−α/
√

2 with (Z−α/
√

2)2 = 0
and in grey kernel of the screening, the triplet algebra W2,1


