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Background

2-dimensional gapped quantum many-body systems with a locally
interacting Hamiltonian:

The Hilbert space H =
⊗

i Hi of such a system is composed of a
set of finite-dimensional Hilbert spaces (Hi )i , describing local
degrees of freedom, associated to the vertices i of a hypergraph
embedded in a surface.

Hi

Hj

Example: Hi = C2 is a spin- 1
2 system.

The Hamiltonian h =
∑

k hk is a sum of local interaction terms hk
that each involve only a bounded number of subsystems Hi .
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Kitaev model

The Kitaev model is a family of such quantum many-body systems
defined on any compact oriented surface Σ with cell decomposition.

Σ2 : set of 2-cells

Σ1 : set of edges

Σ0 : set of vertices

The local degrees of freedom are associated to the edges

and are
given by a finite-dimensional semisimple complex Hopf C ∗-algebra
H. The Hilbert space is

H =
⊗
e∈Σ1

H.

Example: The Kitaev model for H = CZ2 = C2, considered on the
torus, is known as the toric code (Kitaev, 1997).
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Hopf algebras

Let k be an algebraically closed field of characteristic zero.
Every vector space we consider is finite-dimensional over k.

Definition

A Hopf algebra is an algebra H together with algebra maps
∆ : H −→ H ⊗ H and ε : H −→ k turning H into a coalgebra such
that there exists an antipode S : H −→ H.

Example

The group algebra kG for a finite group G

The dual Hopf algebra H∗ for any Hopf algebra H

Remark

The representation category H–mod is a tensor category.
Conversely, the Hopf algebra H can be reconstructed from the
tensor category H–mod with the forgetful functor
H–mod→ vect(k).
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The Haar integral

Proposition

If H is a semisimple Hopf algebra, then there exists a unique Haar
integral ` ∈ H, i.e.:

x` = ε(x)` = `x for all x ∈ H,

ε(`) = 1.

The defining properties of the Haar integral imply that it is an
idempotent: `2 = `.

Example

Let G be a finite group.
Then the Haar integral of kG is 1

|G |
∑

g∈G g .
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Commuting-projector Hamiltonian

Using the given Hopf-algebraic structure, one constructs
(Buerschaper-Mombelli-Christandl-Aguado 2010):

a finite-dimensional vector space HΣ =
⊗

e∈Σ1 H,

a family of local commuting projectors (Av )v∈Σ0 and (Bp)p∈Σ2

on HΣ, using the Haar integrals of H and of H∗, respectively,

Av
Bp

giving rise to the Hamiltonian

h :=
∑
v∈Σ0

(id−Av ) +
∑
p∈Σ2

(id−Bp) : HΣ −→ HΣ
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Ground-state space of the Kitaev model

The ground-state space

H0 := ker(h) = im(
∏
v∈Σ0

Av

∏
p∈Σ2

Bp)

is the state space of the three-dimensional topological field theory
of Turaev-Viro type for the spherical fusion category H–mod. As
such, it carries a mapping class group action.

Remark

In applications to topological quantum computing, information is
encoded in the subspace H0 ⊂ H. Sufficiently local errors are
dynamically corrected by the Hamiltonian. Quantum gates are
implemented by the mapping class group action.
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Defects in topological field theories

Topological field theories with defects (and boundaries) are defined
on decorated stratified manifolds.

For theories of Turaev-Viro type, the defect label data are given in
category-theoretic terms as follows (e.g. Kitaev-Kong 2011):

M1

M2

M3

A2

A1

A3

Z

Ai : tensor category

Mi : bimodule category over the
adjacent tensor categories

Z : object in a cyclic relative
Deligne product
×	A1(M1 �A2 · · ·�An Mn)
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Defects in Kitaev models
Based on arXiv:2001.10578

For the construction of a Kitaev model with defects, one first
needs to realize the category-theoretic defect data in
Hopf-algebraic terms:

tensor category A Hopf algebra H

A1-A2-bimodule category M H1-H2-bicomodule algebra K

For a vertex

K1

K2
K3

H2

H1

H3

v

we define a k-algebra Cv := (H∗1 ⊗ · · · ⊗ H∗n) = (K1 ⊗ · · · ⊗ Kn),
which we call the vertex algebra for v .
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Defects in Kitaev models

Consider a vertex

K1

K2
K3

H2

H1

H3

v

and recall that Ki–mod are bimodule categories.

Theorem

There is a canonical equivalence of categories
Cv–mod ∼= ×	H1–mod(K1–mod�H2–mod · · ·�Hn–mod Kn–mod).

Remark

×	A1(M1 �A2 · · ·�An Mn) is the category of vertex labels for the
state-sum construction of the modular functor by
Fuchs-Schaumann-Schweigert (2019).
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Defects in Kitaev models

The input to our construction is:

A compact oriented surface Σ with cell decomposition (Σ0,
Σ1, Σ2),

A decoration of the cells by:

a semisimple Hopf algebra Hp for p ∈ Σ2,

a semisimple bicomodule algebra Ke for e ∈ Σ1

over the adjacent Hopf algebras,

a representation Zv of the vertex algebra
Cv = (H∗

1 ⊗· · ·⊗H∗
n ) = (K1⊗· · ·⊗Kn) for every v ∈ Σ0.
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Defects in Kitaev models

Let Σ be a compact oriented surface with a decorated cell
decomposition (Σ0,Σ1,Σ2).

Theorem

From these data, we construct a family of local commuting
projectors (Av )v∈Σ0 and (Bp)p∈Σ2 on the finite-dimensional vector
space

H̃Σ = (
⊗
e∈Σ1

K ∗e )⊗ (
⊗
v∈Σ0

Zv ),

giving rise to the Hamiltonian

h :=
∑
v∈Σ0

(id−Av ) +
∑
p∈Σ2

(id−Bp)

on H̃Σ.
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Defects in Kitaev models

One crucial step in our construction of commuting projectors is the
suitable generalization of the Haar integral to semisimple
bicomodule algebras.

It is known that

Proposition

Any finite-dimensional semisimple k-algebra A possesses a unique
symmetric separability idempotent

∑
p1 ⊗ p2 ∈ A⊗ Aop, i.e.:∑

xp1 ⊗ p2 =
∑

p1 ⊗ p2x for all x ∈ A,∑
p1p2 = 1,∑
p1 ⊗ p2 =

∑
p2 ⊗ p1. (symmetry)

We furthermore need (and show) for our construction that

Lemma

If H is a Hopf algebra and A is an H-comodule algebra, then the
symmetric separability idempotent

∑
p1 ⊗ p2 is contained in the

H-coinvariant subspace (A⊗ Aop)coH ⊆ A⊗ Aop.
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Defects in Kitaev models
Outlook

Upshot:
We have constructed a quite explicit Hamiltonian model within a
rather general framework for defects.

Further work can be:
Show explicitly that the ground-state spaces of our Hamiltonians
are naturally isomorphic to the vector spaces assigned to defect
surfaces by the modular functor constructed by
Fuchs-Schaumann-Schweigert 2019.
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Idempotents for non-semisimple Hopf algebras
Based on arXiv:1910.13161 jointly authored with Ehud Meir and Christoph Schweigert

Example

Let H = kG for a finite group G . The central orthogonal

idempotents (pi )i for the isotypic decomposition kG =
⊕

i S
dim(Si )
i

of the regular representation are expressed by the
character-projector formula:

pi = dim(Si )
1

|G |
∑
g∈G

χi (g
−1)g

For any semisimple Hopf algebra H, the orthogonal idempotents
for the isotypic decomposition of the regular H-module are
expressed by:

pi := dim(Si )(S(χi )⊗ idH)∆(`),

where ` ∈ H is the Haar integral, (Si )i are the isomorphism classes
of simple H-modules and (χi )i their characters.
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Idempotents for non-semisimple Hopf algebras

What about not necessarily semisimple Hopf algebras?

It is known that:

If H non-semisimple, then the Haar integral does not exist.
(Any integral ` ∈ H, x` = ε(x)` = `x for all x ∈ H, is
nilpotent, since ε(`) = 0 due to Maschke’s theorem.)

However, if H semisimple, then ` = 1
dimHχH∗ due to

Larson-Radford.

If H is non-semisimple, then p := 1
dimHχH∗ is still an

idempotent.

Our idea is hence to replace ` by p:

pi := dim(Si )(S(χi )⊗ idH)∆(p)

Question: Does this still give orthogonal idempotents?
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Idempotents for non-semisimple Hopf algebras

Example

Let H = k〈g , x〉/(g2 = 1, x2 = 0, gx = −xg) be the
four-dimensional Sweedler Hopf algebra.

It has two simple (one-dimensional) modules: k+ and k−
With our formula we indeed get orthogonal idempotents:
p+ = 1

2 (1 + g) and p− = 1
2 (1− g)

Furthermore, H = Hp+ ⊕ Hp− is a decomposition of the
regular H-module, such that Hp± is a projective cover of k±

H is called basic if all simple H-modules are one-dimensional.

More generally: A Hopf algebra H is said to have the Chevalley
property if the tensor product of any two semisimple H-modules is
again semisimple.
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regular H-module, such that Hp± is a projective cover of k±

H is called basic if all simple H-modules are one-dimensional.

More generally: A Hopf algebra H is said to have the Chevalley
property if the tensor product of any two semisimple H-modules is
again semisimple.
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This motivates:

Conjecture

Let H be a finite-dimensional Hopf algebra over k with the
Chevalley property. Then we conjecture that the elements

pi := dim(Si )χi (S(p(1)))p(2) ∈ H,

for i ∈ I , where I is the set of isomorphism classes of simple
H-modules, define a set of orthogonal idempotents of H such that

H =
⊕
i∈I

Hpi

is an isotypic decomposition of the regular H-module, i.e. Hpi is a

projective cover of S
⊕ dim(Si )
i .
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Let H be a Hopf algebra with the Chevalley property.

Theorem

Let χ : H → k be the character of a non-zero one-dimensional
(hence, simple) H-module. Then pχ = (S(χ)⊗ idH)(∆(p)) ∈ H is
an idempotent such that Hpχ ⊆ H is a χ-isotypic component of H.

Let Λ0 ∈ H∗ be the Haar integral of the maximal semisimple
sub-Hopf-algebra H∗0 = (H/J)∗ ⊆ H∗. Define the Hecke algebra
H(H∗,H∗0 ) as the subalgebra Λ0H

∗Λ0 ⊆ H∗.

Theorem ∑
i∈I

pi = 1H (completeness relation)

if and only if the Hecke algebra Λ0H
∗Λ0 has up to isomorphism

only one simple module.
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Let H∗0 be the maximal semisimple sub-Hopf-algebra of H∗.

Corollary

Let the Hopf algebra H be basic. Assume further that the
associated Hecke algebra H(H∗,H∗0 ) has, up to isomorphism, a
unique simple H(H∗,H∗0 )-module.
Then the conjecture holds for H, i.e.
(pi = dim(Si )χi (S(p(1)))p(2))i∈I are orthogonal idempotents such
that H =

⊕
i∈I Hpi is an isotypic decomposition for H.

Remark

There are counter-examples to the conjecture for
non-Chevalley Hopf algebras.

We have computed an example of a 72-dimensional Hopf
algebra, for which the conjecture holds, which is Chevalley but
not basic. For this we used the computer algebra system
Magma.
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Outlook

Two natural open problems remain:

Full proof the conjecture

Application to the construction of a Kitaev model in the
non-semisimple case
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Cienc. (Córdoba) 65 (2000), 51–60.

O. Buerschaper, J. M. Mombelli, M. Christandl and M. Aguado, A
hierarchy of topological tensor network states. J. Math. Phys. 54, 012201
(2013). arXiv:1007.5283 [cond-mat.str-el]

J. Fuchs, G. Schaumann and C. Schweigert, A modular functor from state
sums for finite tensor categories and their bimodules. arXiv:1911.06214
[math.QA]

A. Kitaev, Fault-tolerant quantum computation by anyons. Annals Phys.
303 (2003) 2–30. arXiv:quant-ph/9707021

A. Kitaev and L. Kong, Models for gapped boundaries and domain walls.
Comm. Math. Phys. 313 (2012), no. 2, 351–373. arXiv:1104.5047
[cond-mat.str-el]

R. G. Larson, D. E. Radford, Semisimple cosemisimple Hopf algebras.
Amer. J. Math. 110 (1988), no. 1, 187–195.


	Background
	Defects in Kitaev models
	Idempotents for non-semisimple Hopf algebras

