Algebras of non-local screenings and diagonal Nichols algebras

Ilaria Flandoli

University of Hamburg

joint work with Simon Lentner, arXiv:1911.11040

Workshop: Hopf Algebras and Tensor Categories

21.08.2020

Outline of the project

- Let $v_1, \ldots, v_n \in \mathbb{C}^n$ spanning a non-integral lattice Λ .
- We study the screening operators $\mathfrak{Z}_{v_1}, \ldots, \mathfrak{Z}_{v_n}$.

Question: What are the algebra relations between them?

[Lent17]: Under a certain smallness condition on (v_i, v_j) , the screening operators generate the **Nichols algebra** \mathcal{B} associated to the braiding $q_{ij} = e^{i\pi(v_i, v_j)}$.

Outline of the project

- Let $v_1, \ldots, v_n \in \mathbb{C}^n$ spanning a non-integral lattice Λ .
- We study the screening operators $\mathfrak{Z}_{v_1}, \ldots, \mathfrak{Z}_{v_n}$.

Question: What are the algebra relations between them?

[Lent17]: Under a certain smallness condition on (v_i, v_j) , the screening operators generate the **Nichols algebra** \mathcal{B} associated to the braiding $q_{ij} = e^{i\pi(v_i, v_j)}$.

Goal 1

[Heck06] contains a classification of diagonal braidings q_{ij} that lead to finite dimensional Nichols algebras. Our goal is to find all realising lattices Λ for every braiding q_{ij} .

Goal 2

If the smallness condition on (v_i, v_j) fails, which algebra do we get instead of the Nichols algebra?

Motivation

<u>Programme:</u> construct examples of logarithmic / non-semisimple chiral conformal field theories / vertex algebras.

Conjecture (Waki86, FGST06, AM08, FT10)

The vertex algebra defined as

$$\mathcal{W} := \bigcap_{i} ker \mathfrak{Z}_{v_i}$$

has the following representation theory:

W-Rep \simeq (Quantum Group_B)-Rep

i.e. \mathcal{W} is a logarithmic chiral conformal field theory.

Example

For
$$\Lambda = \sqrt{2p}\Lambda_R(\mathfrak{sl}_2) \to \mathsf{the}$$
 triplet algebra $\mathcal{W}_{p,1} = ker\mathfrak{Z}_{-rac{\alpha}{\sqrt{p}}}$

FGST, NT: As abelian categories $W_{p,1}$ -Rep $\simeq u_q(\mathfrak{sl}_2)$ -Rep, where q is a 2p-th root of unity.

GR, CGR: Conjecturally $\mathcal{W}_{p,1}$ -Rep $\simeq \tilde{u}_q(\mathfrak{sl}_2)$ -Rep as modular tensor categories where $\tilde{u}_q(\mathfrak{sl}_2)$ quasi Hopf algebra variant of $u_q(\mathfrak{sl}_2)$.

Example

For
$$\Lambda = \sqrt{2p}\Lambda_R(\mathfrak{g}) o \mathcal{W} := \bigcap_i ker\mathfrak{Z}_{-rac{\alpha_i}{\sqrt{p}}}$$

Conjecturally: \mathcal{W} -Rep $\simeq \tilde{u}_q(\mathfrak{g})$ -Rep where q is 2p-th root of unity.

GLO: constructed $\tilde{u}_q(\mathfrak{g})$.

Screening operators: definition

- 2 Nichols algebras
- 3 Algebra of screenings: theorems
- ④ Goal 1: realise braidings by lattices
- 5 Goal 2: study the algebra of screenings

Screening operators

Definition

Let \mathcal{V} be a VOA and \mathcal{M} , \mathcal{N} modules. The tensor product $\mathcal{M} \otimes_{\mathcal{V}} \mathcal{N}$ is defined by having an intertwiner

$$\mathrm{Y}_{\mathcal{M}\otimes\mathcal{N}}:\ \mathcal{M}\otimes_{\mathbb{C}}\mathcal{N}
ightarrow (\mathcal{M}\otimes_{\mathcal{V}}\mathcal{N})\{z\}[\log(z)].$$

Now, we fix $m \in \mathcal{M}$ and for all modules \mathcal{N} , we get a map

$$\mathrm{Y}_{\mathcal{M}\otimes\mathcal{N}}(m,z): \ \mathcal{N} \to (\mathcal{M}\otimes_{\mathcal{V}}\mathcal{N})\{z\}[\log(z)].$$

Integrating around z = 0, we get

$$\mathfrak{Z}_m:\mathcal{N}\to\overline{\mathcal{M}\otimes_\mathcal{V}\mathcal{N}}$$

which we call (non-local) screening operator associated to $m \in M$.

Example

We consider the *n*-dimensional Heisenberg VOA $\mathcal{V}_{\mathcal{H}}$.

- For every a ∈ Cⁿ there is an irreducible module V_a generated by an element e^a
- \bullet The tensor product is $\mathcal{V}_{a}\otimes\mathcal{V}_{b}=\mathcal{V}_{a+b}$
- The braiding is $c_{\mathcal{V}_a,\mathcal{V}_b}: \mathcal{V}_a \otimes \mathcal{V}_b \stackrel{e^{\mathrm{i}\pi(a,b)}}{\longrightarrow} \mathcal{V}_b \otimes \mathcal{V}_a$
- For $v_1, \ldots, v_n \in \mathbb{C}^n$ we consider the screening operators \mathfrak{Z}_{v_i} associated to the elements $e^{v_i} \in \mathcal{V}_{v_i}$:

$$\mathfrak{Z}_{v_i}: \ \mathcal{V}_a \longmapsto \overline{\mathcal{V}}_{a+v_i}$$

Example

We consider the *n*-dimensional Heisenberg VOA $\mathcal{V}_{\mathcal{H}}$.

- For every a ∈ Cⁿ there is an irreducible module V_a generated by an element e^a
- The tensor product is $\mathcal{V}_a \otimes \mathcal{V}_b = \mathcal{V}_{a+b}$
- The braiding is $c_{\mathcal{V}_a,\mathcal{V}_b}: \mathcal{V}_a \otimes \mathcal{V}_b \stackrel{e^{i\pi(a,b)}}{\longrightarrow} \mathcal{V}_b \otimes \mathcal{V}_a$
- For v₁,..., v_n ∈ Cⁿ we consider the screening operators 3_{vi} associated to the elements e^{vi} ∈ V_{vi}:

$$\mathfrak{Z}_{v_i}: \ \mathcal{V}_a \longmapsto \overline{\mathcal{V}}_{a+v_i}$$

In particular we will consider $v_1, \ldots, v_n \in \mathbb{C}^n$ spanning a non-integral lattice Λ .

Screening operators: definition

2 Nichols algebras

3 Algebra of screenings: theorems

④ Goal 1: realise braidings by lattices

5 Goal 2: study the algebra of screenings

Nichols algebras

• Let (V, q_{ij}) be a vector space with diagonal braiding

 $c: x_i \otimes x_i \longmapsto q_{ij} \cdot x_j \otimes x_i$

with $q_{ij} \in \mathbb{C}^{\times}$ and $\{x_1, \ldots, x_n\}$ basis of V.

- We write (q_{ij}) as diagram, e.g. $\cdots \xrightarrow{q_{11} q_{12}q_{21} q_{22}} \cdots$
- Let $\mathcal{B}(q_{ij})$ be the Nichols algebra of (V, q_{ij}) .

Example $(\dim V = n)$

Let \mathfrak{g} be a finite dimensional complex semisimple Lie algebra of rank n, with simple roots $\{\alpha_1, \ldots, \alpha_n\}$ and root lattice Λ . Let q be a primitive ℓ -th root of unity and $q_{ij} := q^{(\alpha_i, \alpha_j)}$ on V. Then $\mathcal{B}(q_{ij}) = u_q(\mathfrak{g})^+$ is the positive part of the small quantum group.

2 Nichols algebras

3 Algebra of screenings: theorems

4 Goal 1: realise braidings by lattices

5 Goal 2: study the algebra of screenings

Algebra of screenings

Theorem (Lent17)

Given a non-integral lattice Λ , a basis $\{v_1, \ldots, v_n\}$, $m_{ij} := (v_i, v_j)$, consider elements e^{v_i} in modules \mathcal{V}_{v_i} of the Heisenberg VOA $\mathcal{V}_{\mathcal{H}}$. The braiding is

$$e^{m{v}_i}\otimes e^{m{v}_j}\mapsto q_{ij}\;e^{m{v}_j}\otimes e^{m{v}_i},\qquad q_{ij}:=e^{\mathrm{i}\pi\,m_{ij}}$$

If the following condition on m_{ij} is satisfied:

$$\sum_{i < j} m_{ij} > -|J| + 1$$
 $orall J \subseteq I, \; |J| \ge 2, \; i,j \in J, \;$ (I index set)

the screening operators $\mathfrak{Z}_{v_1}, \ldots, \mathfrak{Z}_{v_n}$ form the diagonal Nichols algebra $\mathcal{B}(q_{ij})$.

Example

If Λ is the rescaled root lattice of \mathfrak{g} , $m_{ij} = (\alpha_i, \alpha_j)r$, $r \in \mathbb{Q}$, then the smallness condition holds if $0 \leq r < \frac{1}{(\alpha_i, \alpha_j)}$, and the algebra of screenings is the Nichols algebra $u_q(\mathfrak{g})^+$.

Otherwise the algebra of screenings is an extension of the Nichols algebra.

Algebra of screenings

Theorem (F. - Lentner '19 -refinement)

In the setting of the previous theorem we have:

• The truncation relation $(\mathfrak{Z}_{v_i})^d = 0$ holds if:

$$m_{ii}
ot \in -\mathbb{N}rac{2}{k} \qquad k=1,\ldots,d=\mathrm{ord}(q_{ii}).$$

• The quantum Serre relation $[\mathfrak{Z}_{v_i}, [\dots [\mathfrak{Z}_{v_i}, \mathfrak{Z}_{v_j}]] \dots] = 0$ holds if:

$$egin{aligned} m_{ii}
ot\in -\mathbb{N}rac{2}{k} & k=1,\ldots,-a_{ij}+1 \ m_{ij}+krac{m_{ii}}{2}
ot\in -\mathbb{N} & k=0,\ldots,-a_{ij} \end{aligned}$$

Proven by analytic continuation of the generalized Selberg integral.

- 2 Nichols algebras
- 3 Algebra of screenings: theorems
- Goal 1: realise braidings by lattices
- 5 Goal 2: study the algebra of screenings

Goal 1

Definition (Semik11, FL19)

Let Λ be a lattice, basis $\{v_1, \ldots, v_n\}$, $m_{ij} := (v_i, v_j)$. We say that (Λ, m_{ij}) realise a given braiding q_{ij} iff

$$e^{\mathrm{i}\pi m_{ij}} = q_{ij}$$
 $q_{ii} \quad q_{ij} q_{ji} \quad q_{jj}$
 $m_{ii} \quad 2m_{ii} \quad m_{jj}$

and m_{ij} is compatible with Nichols algebra reflections as follows:

$$2m_{ij} = a_{ij}m_{ii}$$
 or $(1 - a_{ij})m_{ii} = 2$ (1)

Moreover all the reflected matrices $\mathcal{R}^k(m_{ij})$ must fulfil (1) again.

Goal 1: find all lattices realising Nichols algebra braidings.

Example $(u_q(\mathfrak{sl}_3)^+)$

Consider the braiding
$$\bigcirc q^2 q^{-2} q^2$$
 where $q = e^{\mathrm{i}\pi r}$.

 If q² ≠ −1 it is realised by rescaling by r ∈ Q a Lie algebra root lattice of type A₂, g = sl₃

$$\begin{array}{ccc} q^2 & q^{-2} & q^2 \\ \bigcirc & & \bigcirc \\ 2r & -2r & 2r \end{array}$$

Example $(u_q(\mathfrak{sl}_3)^+)$

Consider the braiding
$$\bigcirc q^2 \quad q^{-2} \quad q^2$$
 where $q = e^{\mathrm{i}\pi r}$.

 If q² ≠ −1 it is realised by rescaling by r ∈ Q a Lie algebra root lattice of type A₂, g = sl₃

$$\begin{array}{ccc} q^2 & q^{-2} & q^2 \\ \bigcirc & & \bigcirc \\ 2r & -2r & 2r \end{array}$$

• If $q^2 = -1$ it is *also* realised by rescaling by $r = \frac{p'}{2}$, $p' \in \mathbb{Z}$ odd a Lie superalgebra root lattice of type A(1,0), $\mathfrak{g} = \mathfrak{sl}(2|1)$,

$$\begin{array}{cccc} -1 & -1 & -1 \\ \odot & & \odot \\ 2r & -2r & 1 \end{array} \longrightarrow \begin{array}{cccc} -1 & -1 & -1 \\ \odot & & 0 \\ 1 & -2+2r & 1 \end{array}$$

Row	Braiding	Conditions	Solutions
2'	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		One solution according to A_2 (see 2"). One solution according to $A(1,0)$ (see 3).
2″	$\begin{array}{ccc} q & q^{-1} & q \\ 0 & r & -r & 0 \\ r & -r & r \end{array}$	$q eq \pm 1$	Cartan, A2
3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$q eq \pm 1$	Super Lie, A(1,0)
4'	$ \begin{array}{c} \dot{b} & -1 & -1 \\ \dot{r} & -2r & 2r \\ \dot{b} & -1 & -1 \\ \dot{r} & -2r & 1 & -r + 1 \\ \dot{r} & -2r & 1 & -r + 1 \\ \end{array} $		One solution according to B_2 (see $4^{\prime\prime\prime}$). One solution according to $B(1,1)$ (see 5).
4″	$\begin{cases} \zeta & \zeta & \zeta^{-1} \\ r & -2r & 2r \\ \delta & \zeta & \zeta^{-1} \\ \frac{\zeta}{2} & -2r & 2r \\ \frac{\zeta}{3} & -2r & 2r \\ \end{array}$	$\zeta\in \mathcal{R}_3$	One solution according to B_2 (see $4^{\prime\prime\prime}$). One solution according to 6.
4‴	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$q \neq \pm 1, \ q \notin \mathcal{R}_3, \mathcal{R}_4$	Cartan, B2

5	$ \begin{array}{c} q & q^{-2} & -1 & -q^{-1} & q^2 & -1 \\ 0 & & & 0 \\ r & -2r & 1 & 1 - r & -2 + 2r1 \end{array} $	$q eq \pm 1, \; q ot\in \mathcal{R}_4$	Super Lie, B(1,1)
6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\zeta \notin \mathcal{R}_3, \ q \neq 1, \zeta, \zeta^2$	
7	$ \underbrace{ \begin{pmatrix} & -\zeta & -1 \\ \bullet & & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta^{-1} \\ \bullet & & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet & \bullet \end{pmatrix} }_{\mathbf{O}} \underbrace{ \begin{pmatrix} \zeta^{-1} & -\zeta \\ \bullet$	$\zeta\in \mathcal{R}_3$	No solution
8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\zeta \in \mathcal{R}_{12}$	No solution
9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\zeta \in \mathcal{R}_{12}$	
10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\zeta \in \mathcal{R}_9$	
11	$ \overset{q}{\underset{r}{\overset{q^{-3}}{}}} \overset{q^3}{\underset{r}{\overset{q^3}{}}} $	$q ot\in \mathcal{R}_3, \; q ot= \pm 1$	Cartan, G2
12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\zeta \in \mathcal{R}_8$	

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\zeta \in \mathcal{R}_{24}$	
14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\zeta \in \mathcal{R}_5$	
	$^{\zeta} \xrightarrow{\zeta^{-3}} \xrightarrow{-1} \xrightarrow{-\zeta} \xrightarrow{-\zeta^{-3}} \xrightarrow{-1} 0$		
15	$\overbrace{O}^{-2} \overbrace{O}^3 \xrightarrow{-1} \overbrace{O}^{-2} \overbrace{O}^{-3} \xrightarrow{-1} \overbrace{O}^{-2}$	$\zeta \in \mathcal{R}_{20}$	No solution
	$\overset{-\zeta-\zeta^{-3}}{\circ} \overset{\zeta^5}{\circ} \overset{\zeta^3}{\circ} \overset{-\zeta^4}{\circ} \overset{-\zeta^{-4}}{\circ} \overset{-\zeta^{-4}$		
16	$ \overbrace{0}^{5} \xrightarrow{-\zeta^{-2}} \xrightarrow{-1} \overbrace{0}^{3} \xrightarrow{-\zeta^{2}} \xrightarrow{-1} $	$\zeta \in \mathcal{R}_{15}$	No solution
17	$ \begin{array}{c} -\zeta & -\zeta^{-3} & -1 \\ \frac{\varphi}{14} & -\frac{\varphi}{7} & 1 \\ \frac{\varphi}{14} & -\frac{\varphi}{7} & 1 \end{array} \begin{array}{c} -\zeta^{-2} & -\zeta^{3} & -1 \\ \frac{\varphi}{24} & -\frac{\varphi}{7} & 1 \end{array} $	$\zeta \in \mathcal{R}_7$	

19 / 24

Screening operators: definition

- 2 Nichols algebras
- 3 Algebra of screenings: theorems
- ④ Goal 1: realise braidings by lattices
- 5 Goal 2: study the algebra of screenings

Goal 2

 If the braiding is realised by rescaling a Lie algebra root lattice by r ∈ Q, then one has:

Theorem

In the screening algebra:

- For $r \ge 0$ all Nichols algebra relations hold (conjecturally also the non-simple truncation relations). \implies Small quantum group $u_q(\mathfrak{g})^+$
- For r < 0 all Nichols algebra relations hold except the truncation relations.
 - \implies Conjecturally quantum group with infinite centre $U_q(\mathfrak{g})^+$

• If the braiding is realised by rescaling a Lie superalgebra

root lattice by
$$r', r'' \in \mathbb{Q}$$
, $m_{ij} = \begin{cases} (\alpha_i, \alpha_j)_{\mathfrak{g}'} r' & \text{if } i \leq f, \ j < f \\ 1 & \text{if } i = f = j \\ (\alpha_i, \alpha_j)_{\mathfrak{g}''} r'' & \text{if } i \geq f, \ j > f \end{cases}$

Theorem

In the screening algebra: For $r', r'' \ge 0$ all Nichols algebra relations hold (conjecturally also the non-simple truncation relations).

For r', r'' < 0 all Nichols algebra relations hold except the bosonic truncation relations.

For r' > 0, r'' < 0 or r' < 0, r'' > 0 the bosonic truncation relations on one side of the Dynkin diagram of the standard chamber fail.

• Otherwise: the algebra of screenings is always the Nichols algebra.

Thank you!

References

[FL19] I. Flandoli, S. Lentner (2019)

Algebras of non-local screenings and diagonal Nichols algebras arXiv:1911.11040

[Heck06] I. Heckenberger (2006)

Classification of arithmetic root systems

Advances in Mathematics 220.

[Lent17] S. Lentner (2017)

Quantum Groups and Nichols Algebras acting on Conformal Quantum Field Theories

arXiv:1702.06431v1.

[Semik11] A.M. Semikhatov (2011)

Virasoro Central Charges For Nichols Algebras

in Conformal field theories and tensor categories.