Pre-Nichols algebras of Cartan, super and standard type with finite Gelfand-Kirillov dimension

Emiliano Campagnolo CIEM-FaMAF Universidad Nacional de Córdoba.

Workshop: Hopf Algebras and Tensor Categories

18 de agosto de 2020

Following the same idea as in the previous talk, given a braided vector space V we are interested in finding all the pre-Nichols algebras of V with finite GK-dimension.

Now we will give a crucial definition of the talk:

Definition [ASa]

Let V be a braided vector space such that the Nichols algebra $\mathscr{B}_{\mathfrak{q}}$ satisfies that GKdim $\mathscr{B}_{\mathfrak{q}} < \infty$. All pre-Nichols algebra of V form a poset $\mathfrak{Pre}(V)$ with T(V) minimal and $\mathscr{B}_{\mathfrak{q}}$ maximal. Denote $\mathfrak{Pre}_{\mathsf{GKd}}(V)$ the subposet of $\mathfrak{Pre}(V)$ with all finite GK-dimensional pre-Nichols algebras. We say that a pre-Nichols algebra is eminent if it is a minimum in $\mathfrak{Pre}_{\mathsf{GKd}}(V)$.

Calculating eminent pre-Nichols algebras $\widehat{\mathscr{B}}_{\mathfrak{q}}$ reduces the problem of finding pre-Nichols algebras of V to finding quotients of $\widehat{\mathscr{B}}_{\mathfrak{q}}$.

In [AA] the braidings of diagonal type (of finite dimension) are grouped into the following types

- 1. Cartan type3. Standard type5. S2. Super type4. Modular type6. U
 - 5. Supermodular type
 - 6. UFO.

イロト イヨト イヨト イヨ

Let's remember

Definition [An2]

The distinguished pre-Nichols algebra of $\mathscr{B}_{\mathfrak{q}}$ results from removing some kind of relations and adding quantum Serre relations in the given presentation. See [An1].

The theorem that we prove is the following

Theorem [ASa][ACSa]

Let \mathfrak{q} a matrix of Cartan, super or else standard type with connected Cartan matrix. Suppose further that \mathfrak{q} is not of type:

- A_{θ} with q = -1.
- D_{θ} with q = -1.
- A_2 with $q \in \mathbb{G}'_3$.
- $A_3(q|\{2\})$ with $q \in \mathbb{G}_{\infty}$.
- $A_3(q|\{1,2,3\})$ with $q \in \mathbb{G}_{\infty}$.

then the distinguished pre-Nichols algebra $\widetilde{\mathscr{B}}_{\mathfrak{q}}$ is eminent.

We are currently working on the rest of the type of braidings.

To proof these results, we needed this conjecture:

Conjenture [AAH1, Conjeture 1.5]

The root system of a Nichols algebra of diagonal type with finite GKdim is finite.

The classification of all matrices with finite root system was provided in [H]. Also

Theorem [AAH2, Theorem 1.1]

If $\theta = 2$ or V is Cartan affine type, then the conjeture is true.

Moreover it holds in general for Cartan type and there are advances for $\theta = 3$. (Angiono-García Iglesias work in progress).

イロト イポト イヨト イヨ

Emiliano Campagnolo CIEM-FaMAF Universidad NacidPre-Nichols algebras of Cartan, super and standard typ

Let $q = (q_{ij})_{i,j \in \mathbb{I}_{\theta}}$ a braiding matrix with connected Dynkin diagram, $\theta \ge 2$, V = (V, c) is a associated braided vector space with fixed basis $(x_i)_{i \in \mathbb{I}_{\theta}}$ and \mathscr{B} is a pre-Nichols algebra of q such that GKdim $\mathscr{B} < \infty$.

Let $q = (q_{ij})_{i,j \in \mathbb{I}_{\theta}}$ a braiding matrix with connected Dynkin diagram, $\theta \ge 2$, V = (V, c) is a associated braided vector space with fixed basis $(x_i)_{i \in \mathbb{I}_{\theta}}$ and \mathscr{B} is a pre-Nichols algebra of q such that GKdim $\mathscr{B} < \infty$. We determine conditions under which some defining relations from the presentation of Nichols algebras in [An1, Theorem 3.1] are annihilated in \mathscr{B} .

< 口 > < 同 > < 三 > <

General sketch of proof

Emiliano Campagnolo CIEM-FaMAF Universidad NacidPre-Nichols algebras of Cartan, super and standard typ

イロト イヨト イヨト イヨ

For a given relation x_u the strategy of the proof is the following:

- (a) We suppose that $x_u \neq 0$, and either we check that $x_u \in \mathcal{P}(\mathscr{B})$ or we assume this fact.
- (b) Let W be a braided subespace of P(ℬ). Then GKdim ℬ(W) < ∞. We compute the braiding matrix q' of V ⊕ kx_u, then GKdim ℬ_{q'} < ∞.</p>
- (c) On the other hand we prove that GKdim $\mathscr{B}_{\mathfrak{q}'} = \infty$ using previous results, so we get a contradiction, so $x_u = 0$.

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Here are some examples of the results obtained for some relations by the previous sketch

Lemma

Let $i \in \mathbb{I}_{\theta}$ be a vertex of non-Cartan type such that $q_{ii} \in \mathbb{G}'_N$. Then $x_i^N = 0$ in \mathscr{B} .

Lemma

Let
$$i, j \in \mathbb{I}_{\theta}$$
 be such that $\widetilde{q}_{ij} = 1$, $q_{ii}q_{jj} \neq 1$. Then $x_{ij} = 0$ in \mathscr{B} .

Lemma

Let $i, j \in \mathbb{I}_{\theta}$ be such that $q_{ii}q_{jj} = 1$, $\tilde{q}_{ij} = 1$ and either $q_{ii}^2 \neq 1$ or $q_{jj}^2 \neq 1$. Then $x_{ij} = 0$ in \mathscr{B} .

< □ > < □ > < □ > < □ > < □ >

Lemma

Let $i, j \in \mathbb{I}_{\theta}$ be such that $q_{ii}q_{jj} = 1$, $\tilde{q}_{ij} = 1$ and there exists $\ell \in I_{\theta} - \{i, j\}$ such that $\tilde{q}_{i\ell}\tilde{q}_{j\ell} \neq 1$. Then $x_{ij} = 0$ in \mathscr{B} .

Lemma

Let $i, j \in \mathbb{I}_{\theta}$ be such that $m_{ij} > 0$, $q_{ij}^{m_{ij}+1} \neq 1$ and one of the following hold:

(a) $q_{ii}^{m_{ij}+2} \neq 1$. (b) $q_{ii}^{-m_{ij}(m_{ij}+1)}q_{jj}^2 \neq 1$.

Then $(\operatorname{ad}_{c} x_{i})^{m_{ij}+1}x_{j} = 0$ in \mathscr{B} .

Lemma

Let $i, j, k \in \mathbb{I}_{\theta}$ be such that $q_{jj} = -1$, $\tilde{q}_{ij} = \tilde{q}_{jk}^{-1} \neq \pm 1$, $\tilde{q}_{ik} = 1$. If either $q_{ii} = -1$ or $q_{kk} = -1$, then $[x_{ijk}, x_j]_c = 0$ in \mathscr{B} .

イロト イヨト イヨト イヨト

This finishes the proof of our main result. Recall the theorem

Theorem [ASa][ACSa]

Let \mathfrak{q} a matrix of Cartan, super or else standard type with connected Cartan matrix. Suppose further that \mathfrak{q} is not of type:

- A_{θ} with q = -1.
- D_{θ} with q = -1.
- A_2 with $q \in \mathbb{G}'_3$.
- $A_3(q|\{2\})$ with $q \in \mathbb{G}_{\infty}$.
- $A_3(q|\{1,2,3\})$ with $q \in \mathbb{G}_{\infty}$.

then the distinguished pre-Nichols algebra $\widetilde{\mathscr{B}}_{\mathfrak{q}}$ is eminent.

Next we study the exceptional cases where the eminent pre-Nichols algebra is not the distinguished one.

Proposition [ASa]

Consider q of type A_2 with $q \in \mathbb{G}'_3$. Let

$$\widehat{\mathscr{B}}_{\mathfrak{q}}=T(V)/\langle x_{1112},x_{2112},x_{2221},x_{1221}\rangle.$$

Then $\widehat{\mathscr{B}}_{\mathfrak{q}}$ is the eminent pre-Nichols algebra of \mathfrak{q} . Moreover, GKdim $\widehat{\mathscr{B}}_{\mathfrak{q}} = 5$.

イロト イヨト イヨト イ

Porposition [ACSa]

Consider \mathfrak{q} of type $\mathbf{A}_3(q|\{2\})$. Let

$$\widehat{\mathscr{B}}_{\mathfrak{g}} = T(V)/\langle x_2^2, x_{13}, x_{112}, x_{332} \rangle.$$

Then $\widehat{\mathscr{B}}_{\mathfrak{q}}$ is the eminent pre-Nichols algebra of \mathfrak{q} . Let $x_u = [x_{123}, x_2]_c$. The set

 $B = \left\{ x_3^a x_{23}^b x_2^c x_u^d x_{123}^e x_{12}^f x_1^g : b, c, e, f \in \{0, 1\}, a, d, g \in \mathbb{N}_0 \right\}$

is a basis of $\widehat{\mathscr{B}}_{\mathfrak{q}}$, so GKdim $\widehat{\mathscr{B}}_{\mathfrak{q}} = 3$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proposition [ACSa]

Consider \mathfrak{q} of type $\mathbf{A}_3(q|\{1,2,3\})$.Let

$$\widehat{\mathscr{B}}_{\mathfrak{q}} = T(V)/\langle x_1^2, x_2^2, x_3^2, x_{213}, [x_{123}, x_2]_c \rangle.$$

Then $\widehat{\mathscr{B}}_{\mathfrak{q}}$ is eminent pre-Nichols algebra of \mathfrak{q} . The set

 $B = \big\{ x_3^a x_{23}^b x_2^c x_{13}^d x_{123}^e x_{12}^f x_1^g : a, c, e, g \in \{0, 1\}, b, d, f \in \mathbb{N}_0 \big\}.$

is basis of $\widehat{\mathscr{B}}_{\mathfrak{q}}$, so GKdim $\widehat{\mathscr{B}}_{\mathfrak{q}} = 3$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Thanks!

Emiliano Campagnolo CIEM-FaMAF Universidad NacidPre-Nichols algebras of Cartan, super and standard typ

æ

イロト イヨト イヨト イヨト

- [An1] I. Angiono. *On Nichols algebras of diagonal type*, J. Reine Angew. Math. **683** (2013), 189–251.
- [An2] I. Angiono. *Distinguished Pre-Nichols algebras*. Transf. Groups **21** (2016), 1-33.
- [ACSa] I. Angiono, E. Campagnolo, G. Sanmarco *Pre-Nichols algebras of super* and *Standard type with finite Gelfand-Kirillov dimension*. In progress.
- [ASa] N. Andruskiewitsch and G. Sanmarco *Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type.* arXiv 2002.11087.
- [AA] N. Andruskiewitsch and I. Angiono. *On Finite dimensional Nichols algebras of diagonal type*. Bull. Math. Sci. **7** 353–573 (2017).
- [AAH1] N. Andruskiewitsch, I. Angiono and I. Heckenberger. On finite
- *GK-dimensional Nichols algebras over abelian groups*. arXiv:1606.02521. Mem. Amer. Math. Soc., to appear.
- [AAH2] . On finite GK-dimensional Nichols algebras of diagonal type. Contemp. Math. **728** 1–23 (2019).
- [H] I. Heckenberger. *Classification of arithmetic root systems*, *Adv. Math.* **220** (2009), 59–124.

< ロ > < 同 > < 回 > < 回 >