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@ If chark = 0, then H is semisimple (Maschke theorem). Also,
any cocommutative fd Hopf algebra is like this.
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Let H be a cocommutative finite-dimensional Hopf algebra.

@ The cohomology ring H(H; k) is finitely generated.
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They also observe that the cohomology ring of a finite-dimensional
commutative Hopf algebra is easily seen to be finite generated
using the structure and add:

We do not know whether it is reasonable to expect fi-
nite generation of the cohomology of an arbitrary finite-
dimensional Hopf algebra.
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Definition
We say that a finite-dimensional Hopf algebra H has finite
generation of the cohomology (fgc) if

@ The cohomology ring H(H; k) is finitely generated.

© For any finitely generated H-module M, H(H, M) is a finitely
generated module over H(H, k).

Previous experience suggests to split in families and use proper
structure of this family.

Definition
H a finite-dimensional Hopf algebra.

@ H basic: every simple H-module has dim 1.
@ H pointed: every simple H-comodule has dim 1 = H* basic.
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Drupieski 2016 chark > 0, H =finite supergroup scheme.
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Conijecture (Etingof & Ostrik 2005)

Finite generation of cohomology (fgc) holds for finite tensor
categories.
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Corollary (AAPW 2020)

Let H be a finite-dim. Hopf algebra such that H fits into an
extensionk - K - H — B — k with K semisimple and B pointed
or basic as above. Then H has (fgc).
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Proposition (Negron & Plavnik 2018)

Let H a Hopf subalgebra of a fd Hopf algebra L. If L has (fgc),
then so does H.

H ~vor H : < D(H) ~ D(H’) as quasitriangular Hopf algebras.
For example, let H be a finite-dimensional Hopf algebra.

® H ~wmor H* since D(H) ~ D(H").
@ Fe H® Htwist = RepH ~g RepHF = H ~yor H.
@ 0: H®H — k2-cocycle = H ~por H,-

H ~mor H & D(H) satisfies (fgc), then so does H'.
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Let H be a fd pointed Hopf algebra with G(H) abelian.
Let gr H be the graded Hopf algebra arising from the coradical
filtration of H: Hy = kG(H) c Hi c Ha--- C Hy...

Theorem (A. 2013)
gr H ~ B(V)#kG(H), where V is of diagonal type. (V) is the
Nichols algebra of V.

Theorem (A. & Garcia Iglesias 2019)

There exists a 2-cocycle o : H® H — k such that gr H ~ H,,.
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Step 2 If V is of diagonal type, V € KYD with K semisimple
and dim B(V) < oo, then B(V)#K has (fgc).

Step 3 If I is a finite abelian group, V € gMZ) (hence of
diagonal type), and dim B(V & V) < oo, then the
Drinfeld double D(8B(V)#kI") has (fgc).

Step 4 H fd pointed Hopf algebra, G(H) abelian.

H* ~mor H AG’I‘!19Mor grH A;3 B( V)#kG(H)'

By Step 1, B(V @ V) has (fgc).
By Step 3, D(B(V)#kG(H)) has (fgc).
By (Negron & Plavnik 2018), H and H* have (fgc).
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o VefYD — Nichols algebra B(V) = &na,8"(V):
(graded) Hopf algebra in gMZ) such that

B(V)=k, B(V)=V, B(V)=KkV), Prim(8B(V))=38"(V).

@ Kharchenko proved 3 a PBW-basis: 0 # S c B(V) with a
total order <, h : S — N U {oo} (the height), such that

B:{sf1...sff:teNo,s1 >--->steS,0<ei<h(s;)}.

is a basis of B(V). Each s € S is a PBW-generator of B(V).

@ We can choose the order < to be convex: the monomial
filtration is an algebra filtration — the associated graded
ring gr B(V) is a quantum linear space.

@ The cohomology ring of gr B(V) is well-known, but we provide
a computation using the Anick resolution to relate it to
permanent cycles in a suitable spectral sequence.
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@ Since the Anick resolution is compatible with the mentioned
filtration on B(V), we use a spectral sequence argument to
reduce the finite generation of H(8B(V), k) to the statement:

For every positive root «, there is L, € N such that
the chains (xé“N” are cocycles representing elements in

H(B(V),k).

@ We reduce the verification of the statement to claims on root
systems of Nichols algebras of diagonal type.

@ We check these claims on each Nichols algebra of diagonal
type in the list of Heckeberger, using the specific form of the
PBW-basis as in the survey (A-Angiono).
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commutative graded algebra in ﬂyZ).
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such that A is fg (as an algebra). Then A is Noetherian.

@ K ass Hopf algebra, A = @pey, A" a graded K-module
algebra. If A is connected and (left) Noetherian, then AKX is
finitely generated.

@ (Stefan & Vay 2016) K a ss Hopf algebra, R a fd K-module
algebra. Then H(R#K.,k) = H(R, k).

Putting together all these facts we get Step 2.



Proof of Step 3: If I' is finite abelian, V € .Y D and
dim B(V) < oo, then D(B(V)#kI") has (fgc)

V e LY Dis of diagonal type. By (Beattie 2003)
gr D (B(V)#kG(H)) = B(V & V)#k(G(H) x G(H)).
Then gr D (B(V)#kG(H)) has (fgc) by Step 2.

Now the cohomology of D (B(V)#kG(H)) is controlled by the
cohomology of gr D (B(V)#kG(H)) by a classical spectral
sequence argument (that requires however a detailed verification).
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