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History

k = k algebraically closed field.
Let G be a finite group and H = kG its group algebra.

Theorem (Golod 1959, Evens 1961, Venkov 1959)

1 The cohomology ring H(H; k) is finitely generated.
2 For any finitely generated H-module M, H(H,M) is a finitely

generated module over H(H, k).

The result is meaningful when char k > 0.

If char k = 0, then H is semisimple (Maschke theorem). Also,
any cocommutative fd Hopf algebra is like this.
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p = char k > 0: more cocommutative fd Hopf algebras.

Example

Let g be a finite-dimensional restricted Lie algebra; i.e. it comes
with a suitable map x 7→ x [p].Let

H = u(g) = U(g)/〈xp − x [p] : x ∈ g〉

(the restricted enveloping algebra of g).

Theorem (Friedlander & Parshall 1983)

1 The cohomology ring H(H; k) is finitely generated.
2 For any finitely generated H-module M, H(H,M) is a finitely

generated module over H(H, k).
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Cocommutative fd. Hopf algebras←→ finite group schemes,
difficult to classify, some structure theorems.

Theorem (Friedlander & Suslin 1997)

Let H be a cocommutative finite-dimensional Hopf algebra.

1 The cohomology ring H(H; k) is finitely generated.
2 For any finitely generated H-module M, H(H,M) is a finitely

generated module over H(H, k).

They also observe that the cohomology ring of a finite-dimensional
commutative Hopf algebra is easily seen to be finite generated
using the structure and add:

We do not know whether it is reasonable to expect fi-
nite generation of the cohomology of an arbitrary finite-
dimensional Hopf algebra.
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Definition
We say that a finite-dimensional Hopf algebra H has finite
generation of the cohomology (fgc) if

1 The cohomology ring H(H; k) is finitely generated.
2 For any finitely generated H-module M, H(H,M) is a finitely

generated module over H(H, k).

Previous experience suggests to split in families and use proper
structure of this family.

Definition
H a finite-dimensional Hopf algebra.

H basic: every simple H-module has dim 1.

H pointed: every simple H-comodule has dim 1 ≡ H∗ basic.
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Here we have some Hopf algebras H that have (fgc):

Ginzburg & Kumar 1993 char k = 0, H = uq(g), g a simple Lie
algebra, q ∈ G∞ with restrictions on the order.
Actually H(H; k) is isomorphic to the algebra of
rational functions on the nilpotent cone of g.

Gordon 2000 char k = 0, H = uq(g)
∗, g a simple Lie algebra,

q ∈ G∞ with restrictions on the order.

Bendel, Nakano, Parshall & Pillen 2014 char k = 0, H = uq(g), g a
simple Lie algebra, q ∈ G∞ of any order.

Drupieski 2011 char k > 0, H = uq(g), g a simple Lie algebra,
q ∈ G∞ with restrictions on the order.

Drupieski 2016 char k > 0, H =finite supergroup scheme.
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Mastnak, Petvsova, Schauenburg & Witherspoon 2010
(char k = 0). H fd pointed Hopf algebra, G(H)
abelian and (|G(H)|, 210) = 1.
Proof based on the classification of
Andruskiewitsch-Schneider

Stefan & Vay 2016 (char k = 0). H = B(V)#kS3, dimB(V) = 12
Fomin-Kirillov algebra, non-abelian group.

· · · · · · · · ·

Negron & Plavnik 2018 Some reduction arguments for (fgc) for
finite tensor categories.

Conjecture (Etingof & Ostrik 2005)

Finite generation of cohomology (fgc) holds for finite tensor
categories.
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Main result and scheme of the proof

From now on char k = 0.

Theorem (AAPW 2020)

Let H be a finite-dimensional pointed Hopf algebra such that G(H)
is abelian (but no restrictions on |G(H)|). Then H has (fgc).

Corollary (AAPW 2020)

Let H be a finite-dim. basic Hopf algebra such that HomAlg(H, k) is
abelian. Then H has (fgc).

Corollary (AAPW 2020)

Let H be a finite-dim. Hopf algebra such that H fits into an
extension k→ K → H → B → k with K semisimple and B pointed
or basic as above. Then H has (fgc).



Main result and scheme of the proof

From now on char k = 0.

Theorem (AAPW 2020)

Let H be a finite-dimensional pointed Hopf algebra such that G(H)
is abelian (but no restrictions on |G(H)|). Then H has (fgc).

Corollary (AAPW 2020)

Let H be a finite-dim. basic Hopf algebra such that HomAlg(H, k) is
abelian. Then H has (fgc).

Corollary (AAPW 2020)

Let H be a finite-dim. Hopf algebra such that H fits into an
extension k→ K → H → B → k with K semisimple and B pointed
or basic as above. Then H has (fgc).



Main result and scheme of the proof

From now on char k = 0.

Theorem (AAPW 2020)

Let H be a finite-dimensional pointed Hopf algebra such that G(H)
is abelian (but no restrictions on |G(H)|). Then H has (fgc).

Corollary (AAPW 2020)

Let H be a finite-dim. basic Hopf algebra such that HomAlg(H, k) is
abelian. Then H has (fgc).

Corollary (AAPW 2020)

Let H be a finite-dim. Hopf algebra such that H fits into an
extension k→ K → H → B → k with K semisimple and B pointed
or basic as above. Then H has (fgc).



Approach I

Proposition (Negron & Plavnik 2018)

Let H a Hopf subalgebra of a fd Hopf algebra L. If L has (fgc),
then so does H.

H ∼Mor H′ :⇐⇒ D(H) ' D(H′) as quasitriangular Hopf algebras.
For example, let H be a finite-dimensional Hopf algebra.

H ∼Mor H∗ since D(H) ' D(H∗).

F ∈ H ⊗ H twist =⇒ RepH '⊗ RepHF =⇒ H ∼Mor HF .

σ : H ⊗ H → k 2-cocycle =⇒ H ∼Mor Hσ.

Corollary

H ∼Mor H′ & D(H) satisfies (fgc), then so does H′.
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Approach II

Let H be a fd pointed Hopf algebra with G(H) abelian.
Let grH be the graded Hopf algebra arising from the coradical
filtration of H: H0 = kG(H) ⊂ H1 ⊂ H2 · · · ⊂ Hn . . .

Theorem (A. 2013)

grH ' B(V)#kG(H), where V is of diagonal type. B(V) is the
Nichols algebra of V .

Theorem (A. & Garcı́a Iglesias 2019)

There exists a 2-cocycle σ : H ⊗ H → k such that grH ' Hσ.
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Approach III

We now can present the different steps.

Step 1 If V is of diagonal type and dimB(V) < ∞, then B(V)
has (fgc). B(V) is the Nichols algebra of V .

Step 2 If V is of diagonal type, V ∈ K
KYD with K semisimple

and dimB(V) < ∞, then B(V)#K has (fgc).

Step 3 If Γ is a finite abelian group, V ∈ kΓ
kΓ
YD (hence of

diagonal type), and dimB(V ⊕ V) < ∞, then the
Drinfeld double D(B(V)#kΓ) has (fgc).

Step 4 H fd pointed Hopf algebra, G(H) abelian.

H∗ ∼Mor H AGI ’19
∼ Mor grH

A ’13
' B(V)#kG(H).

By Step 1, B(V ⊕ V) has (fgc).
By Step 3, D(B(V)#kG(H)) has (fgc).
By (Negron & Plavnik 2018), H and H∗ have (fgc).
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Proof of Step 1: If V is of diagonal type and
dimB(V) < ∞, then B(V) has (fgc)

V ∈ kΓ
kΓ
YD =⇒ Nichols algebra B(V) = ⊕n∈N0B

n(V):
(graded) Hopf algebra in kΓ

kΓ
YD such that

B0(V) ' k, B1(V) ' V , B(V) = k〈V〉, Prim(B(V)) = B1(V).

Kharchenko proved ∃ a PBW-basis: ∅ , S ⊂ B(V) with a
total order <, h : S 7→ N ∪ {∞} (the height), such that

B =
{
se1

1 . . . set
t : t ∈ N0, s1 > · · · > st ∈ S, 0 < ei < h(si)

}
.

is a basis of B(V). Each s ∈ S is a PBW-generator of B(V).
We can choose the order < to be convex: the monomial
filtration is an algebra filtration =⇒ the associated graded
ring grB(V) is a quantum linear space.
The cohomology ring of grB(V) is well-known, but we provide
a computation using the Anick resolution to relate it to
permanent cycles in a suitable spectral sequence.
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Since the Anick resolution is compatible with the mentioned
filtration on B(V), we use a spectral sequence argument to
reduce the finite generation of H(B(V), k) to the statement:

For every positive root α, there is Lα ∈ N such that
the chains

(
x

LαNα
α

)∗
are cocycles representing elements in

H(B(V), k).

We reduce the verification of the statement to claims on root
systems of Nichols algebras of diagonal type.

We check these claims on each Nichols algebra of diagonal
type in the list of Heckeberger, using the specific form of the
PBW-basis as in the survey (A-Angiono).
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Proof of Step 2: If V is of diagonal type, V ∈ K
KYD with K

semisimple and dimB(V) < ∞, then B(V)#K has (fgc)

(MPSW) H a Hopf algebra, R a bialgebra in H
HYD. Assume

that either H or R is finite-dimensional. Then the (opposite of)
the Hochschild cohomology HH(R , k) is a braided
commutative graded algebra in H

HYD.

Γ a finite group, A a braided commutative algebra in kΓ
kΓ
YD

such that A is fg (as an algebra). Then A is Noetherian.

K a ss Hopf algebra, A = ⊕n∈N0An a graded K -module
algebra. If A is connected and (left) Noetherian, then AK is
finitely generated.

(Stefan & Vay 2016) K a ss Hopf algebra, R a fd K -module
algebra. Then H(R#K , k) = H(R , k)K .

Putting together all these facts we get Step 2.
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Proof of Step 3: If Γ is finite abelian, V ∈ kΓkΓYD and
dimB(V) < ∞, then D(B(V)#kΓ) has (fgc)

V ∈ kΓ
kΓ
YD is of diagonal type. By (Beattie 2003)

grD (B(V)#kG(H)) ' B(V ⊕ V)#k
(
G(H) × Ĝ(H)

)
.

Then grD (B(V)#kG(H)) has (fgc) by Step 2.

Now the cohomology of D (B(V)#kG(H)) is controlled by the
cohomology of grD (B(V)#kG(H)) by a classical spectral
sequence argument (that requires however a detailed verification).
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