The lifting method II

Iván Angiono

Workshop: Hopf algebras and Tensor categories. August 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

This talk is based on the articles

AAGMV Lifting via cocycle deformation. J. Pure Appl. Alg. (2014), with N. Andruskiewitsch, A. García Iglesias, A. Masuoka and C. Vay;

This talk is based on the articles

AAGMV Lifting via cocycle deformation. J. Pure Appl. Alg. (2014), with N. Andruskiewitsch, A. García Iglesias, A. Masuoka and C. Vay;

AAG Liftings of Nichols algebras of diagonal type I. Cartan type A. Int. Math. Res. Notices (2016), with Nicolás Andruskiewitsch and A. García Iglesias;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This talk is based on the articles

AAGMV Lifting via cocycle deformation. J. Pure Appl. Alg. (2014), with N. Andruskiewitsch, A. García Iglesias, A. Masuoka and C. Vay;

- AAG Liftings of Nichols algebras of diagonal type I. Cartan type A. Int. Math. Res. Notices (2016), with Nicolás Andruskiewitsch and A. García Iglesias;
 - AG Liftings of Nichols algebras of diagonal type II. All liftings are cocycle deformations. *Selecta Math. (2019)*, with A. García Iglesias.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Γ finite abelian group (we fix the coradical L_0)

- Γ finite abelian group (we fix the coradical L_0)
- $g_i \in \Gamma$, $\chi_i \in \widehat{\Gamma}$, i = 1, 2, 3, $V = \bigoplus \Bbbk_{g_i}^{\chi_i} \in \Bbbk_{\Gamma}^{\mathcal{L}} \mathcal{YD}$ (we fix the infinitesimal braiding $\rightsquigarrow L_1$)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Γ finite abelian group (we fix the coradical L_0)
- $g_i \in \Gamma$, $\chi_i \in \widehat{\Gamma}$, i = 1, 2, 3, $V = \bigoplus \Bbbk_{g_i}^{\chi_i} \in \Bbbk_{\Gamma}^{\mathcal{K}} \mathcal{YD}$ (we fix the infinitesimal braiding $\rightsquigarrow L_1$)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Γ finite abelian group (we fix the coradical L_0)
- $g_i \in \Gamma$, $\chi_i \in \widehat{\Gamma}$, i = 1, 2, 3, $V = \bigoplus \Bbbk_{g_i}^{\chi_i} \in \Bbbk_{\Gamma}^{\mathcal{K}\Gamma} \mathcal{YD}$ (we fix the infinitesimal braiding $\rightsquigarrow L_1$)

• $\mathcal{B}_{q} = T(V)/\langle x_{i}^{2}, i = 1, 2, 3; x_{13}, [x_{123}, x_{2}]_{c}; x_{12}^{2}, x_{23}^{2}, x_{123}^{2} \rangle.$ $\rightarrow T(V) \# \mathbb{k} \Gamma, \mathcal{B}_{q} \# \mathbb{k} \Gamma$

- Γ finite abelian group (we fix the coradical L_0)
- $g_i \in \Gamma$, $\chi_i \in \widehat{\Gamma}$, i = 1, 2, 3, $V = \bigoplus \Bbbk_{g_i}^{\chi_i} \in \Bbbk_{\Gamma}^{\mathcal{K}} \mathcal{YD}$ (we fix the infinitesimal braiding $\rightsquigarrow L_1$)

•
$$\mathcal{B}_{q} = T(V)/\langle x_{i}^{2}, i = 1, 2, 3; x_{13}, [x_{123}, x_{2}]_{c}; x_{12}^{2}, x_{23}^{2}, x_{123}^{2} \rangle$$

 $\rightarrow T(V) \# \mathbb{k} \Gamma, \mathcal{B}_{q} \# \mathbb{k} \Gamma$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

How to compute all liftings L?

- Γ finite abelian group (we fix the coradical L_0)
- $g_i \in \Gamma$, $\chi_i \in \widehat{\Gamma}$, i = 1, 2, 3, $V = \bigoplus \Bbbk_{g_i}^{\chi_i} \in \Bbbk_{\Gamma}^{\mathcal{K}} \mathcal{YD}$ (we fix the infinitesimal braiding $\rightsquigarrow L_1$)

•
$$\mathcal{B}_{q} = T(V)/\langle x_{i}^{2}, i = 1, 2, 3; x_{13}, [x_{123}, x_{2}]_{c}; x_{12}^{2}, x_{23}^{2}, x_{123}^{2} \rangle$$

 $\rightarrow T(V) \# \mathbb{k} \Gamma, \mathcal{B}_{q} \# \mathbb{k} \Gamma$

Question

How to compute all liftings L?

• Generation in degree one: L lifting, gr $L \simeq \mathcal{B}_{\mathfrak{q}} \# \Bbbk \Gamma$. $\exists \pi : T(V) \# \Bbbk \Gamma \twoheadrightarrow L$ a *lifting map* (Andruskiewitsch-Vay): π identifies $L_0 = \Bbbk \Gamma$, $L_1 = V \# \Bbbk \Gamma \oplus \Bbbk \Gamma$.

•
$$\mathcal{H}_0 = T(V) \# \mathbb{k} \Gamma = \mathcal{A}_0 = \mathcal{L}_0, \ \mathcal{B}_0 = T(V) = \mathcal{E}_0.$$

•
$$\mathcal{H}_0 = T(V) \# \mathbb{k} \Gamma = \mathcal{A}_0 = \mathcal{L}_0, \ \mathcal{B}_0 = T(V) = \mathcal{E}_0.$$

• In \mathcal{H}_0 we have skew primitives:

$$\begin{split} \Delta(x_i^2) &= x_i^2 \otimes 1 + g_i^2 \otimes x_i^2, \quad \Delta(x_{13}) = x_{13} \otimes 1 + g_1 g_3 \otimes x_{13} :\\ \implies \pi(x_i^2) &= \lambda_i (1 - g_i^2), \pi(x_{13}) = \lambda_{13} (1 - g_1 g_3), \lambda_i, \lambda_{13} \in \Bbbk. \end{split}$$

(need a computation to prove it is a trivial skew-primitive).

•
$$\mathcal{H}_0 = T(V) \# \mathbb{k} \Gamma = \mathcal{A}_0 = \mathcal{L}_0, \ \mathcal{B}_0 = T(V) = \mathcal{E}_0.$$

• In \mathcal{H}_0 we have skew primitives:

$$\begin{split} \Delta(x_i^2) &= x_i^2 \otimes 1 + g_i^2 \otimes x_i^2, \quad \Delta(x_{13}) = x_{13} \otimes 1 + g_1 g_3 \otimes x_{13} : \\ \implies \pi(x_i^2) &= \lambda_i (1 - g_i^2), \pi(x_{13}) = \lambda_{13} (1 - g_1 g_3), \lambda_i, \lambda_{13} \in \Bbbk. \end{split}$$

(need a computation to prove it is a trivial skew-primitive).

• As
$$gx_i^2 = \chi_i(g)^2 x_i^2 g$$
, $gx_{13} = \chi_1 \chi_3(g)^2 x_{13} g$,
 $g(1-h) = (1-h)g$ (Γ abelian):

$$\lambda_i = 0 \text{ if } \chi_i^2 \neq \epsilon, \qquad \lambda_{13} = 0 \text{ if } \chi_1 \chi_3 \neq \epsilon.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\mathcal{H}_0 = T(V) \# \mathbb{k} \Gamma = \mathcal{A}_0 = \mathcal{L}_0, \ \mathcal{B}_0 = T(V) = \mathcal{E}_0.$$

• In \mathcal{H}_0 we have skew primitives:

$$egin{aligned} \Delta(x_i^2) &= x_i^2 \otimes 1 + g_i^2 \otimes x_i^2, \quad \Delta(x_{13}) = x_{13} \otimes 1 + g_1 g_3 \otimes x_{13}: \ & \Longrightarrow \ \pi(x_i^2) &= \lambda_i (1 - g_i^2), \pi(x_{13}) = \lambda_{13} (1 - g_1 g_3), \lambda_i, \lambda_{13} \in \Bbbk. \end{aligned}$$

(need a computation to prove it is a trivial skew-primitive).

• As
$$gx_i^2 = \chi_i(g)^2 x_i^2 g$$
, $gx_{13} = \chi_1 \chi_3(g)^2 x_{13} g$,
 $g(1-h) = (1-h)g$ (Γ abelian):

$$\lambda_i = 0 \text{ if } \chi_i^2 \neq \epsilon, \qquad \lambda_{13} = 0 \text{ if } \chi_1 \chi_3 \neq \epsilon.$$

• $\mathcal{L}_1(\lambda_i, \lambda_{13}) = \mathcal{L}_0/\langle x_i^2 - \lambda_i(1 - g_i^2), x_{13} - \lambda_{13}(1 - g_1g_3) \rangle.$

$$\implies \exists \pi : \mathcal{L}_1(\lambda_i, \lambda_{13}) \twoheadrightarrow L.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

• Set $r_{1232} = [x_{123}, x_2]_c$, compute $\Delta \langle [x_{123}, x_2]_c \rangle$ in \mathcal{H}_0 and project: r_{1232} not skew primitve, but $\tilde{r}_{1232} = r_{1232} - 4q_{12}\lambda_{13}\lambda_2(1 - g_2^2)g_1g_3$ is so. $\implies \pi(\tilde{r}_{1232}) = \lambda_{1232}(1 - g_1g_2^2g_3), \ \lambda_{1232} \in \mathbb{k}.$ $\lambda_{1232} = 0$ if $\chi_1\chi_2^2\chi_3 \neq \epsilon$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Set $r_{1232} = [x_{123}, x_2]_c$, compute $\Delta \langle [x_{123}, x_2]_c \rangle$ in \mathcal{H}_0 and project: r_{1232} not skew primitve, but $\tilde{r}_{1232} = r_{1232} - 4q_{12}\lambda_{13}\lambda_2(1 - g_2^2)g_1g_3$ is so. $\implies \pi(\tilde{r}_{1232}) = \lambda_{1232}(1 - g_1g_2^2g_3), \lambda_{1232} \in \mathbb{K}.$ $\lambda_{1232} = 0$ if $\chi_1\chi_2^2\chi_3 \neq \epsilon$.
- $\mathcal{L}_2(\lambda_i, \lambda_{13}, \lambda_{1232}) = \mathcal{L}_1/\langle \tilde{r}_{1232} \lambda_{1232}(1 g_1g_2^2g_3) \rangle.$

$$\implies \exists \quad \pi: \mathcal{L}_2(\lambda_i, \lambda_{13}, \lambda_{1232}) \twoheadrightarrow L.$$

(日) (日) (日) (日) (日) (日) (日) (日)

• Similarly, \exists skew primitives \tilde{r}_{12} , \tilde{r}_{23} , \tilde{r}_{123} (deformations of x_{12}^2 , x_{23}^2 , x_{123}^2), set scalars λ_{12} , λ_{23} , λ_{123} ,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Similarly, \exists skew primitives \tilde{r}_{12} , \tilde{r}_{23} , \tilde{r}_{123} (deformations of x_{12}^2 , x_{23}^2 , x_{123}^2), set scalars λ_{12} , λ_{23} , λ_{123} ,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\mathcal{L}_3(\boldsymbol{\lambda}) = \mathcal{L}_2/\langle \widetilde{r}_{\beta} - \lambda_{\beta}(1-g_{\beta}) \rangle \implies \exists \pi : \mathcal{L}_3(\boldsymbol{\lambda}) \twoheadrightarrow L.$

• Similarly, \exists skew primitives \tilde{r}_{12} , \tilde{r}_{23} , \tilde{r}_{123} (deformations of x_{12}^2 , x_{23}^2 , x_{123}^2), set scalars λ_{12} , λ_{23} , λ_{123} ,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\mathcal{L}_3(\boldsymbol{\lambda}) = \mathcal{L}_2/\langle \widetilde{r}_{\beta} - \lambda_{\beta}(1-g_{\beta}) \rangle \implies \exists \pi : \mathcal{L}_3(\boldsymbol{\lambda}) \twoheadrightarrow \mathcal{L}.$

Question

dim $\mathcal{L}_3(\boldsymbol{\lambda})$? or first... $\mathcal{L}_3(\boldsymbol{\lambda}) \neq 0$?

Solution: $\mathcal{L}_3(\lambda) = \mathcal{L}(\mathcal{A}_3, \mathcal{H}_3)$ for $\mathcal{H}_3 = \mathcal{B}_{\mathfrak{q}} \# \Bbbk \Gamma$, $\mathcal{A}_3(\lambda) = \mathcal{E}_3(\lambda) \# \Bbbk \Gamma$ a Galois object.

 Same for other liftings, from r skew primitive relation in an intermediate quotient of B_q, we get modified relation r̃, skew primitive in the intermediate deformation.

Solution: $\mathcal{L}_3(\lambda) = \mathcal{L}(\mathcal{A}_3, \mathcal{H}_3)$ for $\mathcal{H}_3 = \mathcal{B}_{\mathfrak{q}} \# \Bbbk \Gamma$, $\mathcal{A}_3(\lambda) = \mathcal{E}_3(\lambda) \# \Bbbk \Gamma$ a Galois object.

- Same for other liftings, from r skew primitive relation in an intermediate quotient of B_q, we get modified relation r̃, skew primitive in the intermediate deformation.
- Andruskiewitsch-Schneider classification (2010): $|\Gamma|$ coprime with 210, gr $H = \mathcal{B}_{\mathfrak{q}} \# \Bbbk \Gamma$, $\mathcal{B}_{\mathfrak{q}} \simeq \mathfrak{u}_q^+(\mathfrak{g})$; quantum Serre relations not deformed *inside* each connected component.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Solution: $\mathcal{L}_3(\lambda) = \mathcal{L}(\mathcal{A}_3, \mathcal{H}_3)$ for $\mathcal{H}_3 = \mathcal{B}_{\mathfrak{q}} \# \Bbbk \Gamma$, $\mathcal{A}_3(\lambda) = \mathcal{E}_3(\lambda) \# \Bbbk \Gamma$ a Galois object.

- Same for other liftings, from r skew primitive relation in an intermediate quotient of B_q, we get modified relation r̃, skew primitive in the intermediate deformation.
- Andruskiewitsch-Schneider classification (2010): |Γ| coprime with 210, gr H = B_q#kΓ, B_q ≃ u⁺_q(g); quantum Serre relations not deformed *inside* each connected component.

• Masuoka (2011): *H* is a cocycle deformation of gr *H*.

The strategy

Stratify a minimal set G of defining relations of B_q as follows:
 G = G₀ ⊔ G₁ ⊔ · · · ⊔ G_ℓ so that for each r ∈ G_t,

 $\Delta(\bar{r}) = \bar{r} \otimes 1 + 1 \otimes \bar{r} \quad \text{ in } \quad \mathfrak{B}_t := \mathcal{T}(V) / \langle \cup_{i=0}^{t-1} \mathcal{G}_i \rangle.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The strategy

Stratify a minimal set G of defining relations of B_q as follows:
 G = G₀ ⊔ G₁ ⊔ · · · ⊔ G_ℓ so that for each r ∈ G_t,

 $\Delta(\bar{r}) = \bar{r} \otimes 1 + 1 \otimes \bar{r} \quad \text{in} \quad \mathfrak{B}_t := T(V) / \langle \bigcup_{i=0}^{t-1} \mathcal{G}_i \rangle.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\textbf{2} \ \ \mathsf{Fix} \ \Lambda = \{ \boldsymbol{\lambda} = (\lambda_r) | \lambda_r = 0 \ \, \mathsf{if} \ \chi_r \neq \epsilon \ \mathsf{or} \ g_r = 1 \} \subseteq \Bbbk^{\mathcal{G}}.$$

The strategy

Stratify a minimal set G of defining relations of B_q as follows:
 G = G₀ ⊔ G₁ ⊔ · · · ⊔ G_ℓ so that for each r ∈ G_t,

$$\Delta(ar{r}) = ar{r} \otimes 1 + 1 \otimes ar{r} \quad ext{ in } \quad \mathfrak{B}_t := T(V) / \langle \cup_{i=0}^{t-1} \mathcal{G}_i
angle.$$

2 Fix
$$\Lambda = {\lambda = (\lambda_r) | \lambda_r = 0 \text{ if } \chi_r \neq \epsilon \text{ or } g_r = 1} \subseteq \Bbbk^{\mathcal{G}}$$

*E*₀(*λ*) = *T*(*V*), *A*₀ = *E*₀#kΓ. Recursively, if *E*_{t-1} ≠ 0, then *A*_{t-1} is a cleft object. Fix a section γ_{t-1} : *H*_{t-1} → *A*_{t-1} with *nice properties*: restricts to γ_{t-1} : *B*_{t-1} → *E*_{t-1}. The coaction gives also an algebra map ρ : *E*_{t-1} → *E*_{t-1} ⊗ *B*_{t-1}. For *r* ∈ *G*_{t-1} let *r* = γ_{t-1}(*r*): ρ(*r*) = *r* ⊗ 1 + 1 ⊗ *r*.

$$\mathcal{E}_t(oldsymbol{\lambda}) = \mathcal{E}_{t-1}(oldsymbol{\lambda})/\langle \widehat{r} - \lambda_r, r \in \mathcal{G}_{t-1}
angle
eq 0, \hspace{0.2cm} \mathcal{A}_t(oldsymbol{\lambda}) = \mathcal{E}_t(oldsymbol{\lambda}) \# \Bbbk \Gamma_t$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The family of liftings

• By a result of Schauenburg, for each $\mathcal{A}(\lambda)$ there exists a Hopf algebra $\mathcal{L}(\lambda) = \mathcal{L}(\mathcal{A}(\lambda), \mathcal{H})$ such that $\mathcal{A}(\lambda)$ is a $(\mathcal{L}(\lambda), \mathcal{H})$ -Galois object.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The family of liftings

- By a result of Schauenburg, for each $\mathcal{A}(\lambda)$ there exists a Hopf algebra $\mathcal{L}(\lambda) = \mathcal{L}(\mathcal{A}(\lambda), \mathcal{H})$ such that $\mathcal{A}(\lambda)$ is a $(\mathcal{L}(\lambda), \mathcal{H})$ -Galois object.
- By [AAGMV], gr L(λ) = H (that is, we construct a family of liftings of H).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The family of liftings

- By a result of Schauenburg, for each $\mathcal{A}(\lambda)$ there exists a Hopf algebra $\mathcal{L}(\lambda) = \mathcal{L}(\mathcal{A}(\lambda), \mathcal{H})$ such that $\mathcal{A}(\lambda)$ is a $(\mathcal{L}(\lambda), \mathcal{H})$ -Galois object.
- By [AAGMV], gr L(λ) = H (that is, we construct a family of liftings of H).
- We may also construct $\mathcal{L}(\lambda)$ recursively as quotients: $\mathcal{L}_t = \mathcal{L}(\mathcal{A}_t, \mathcal{H})$ is a quotient of \mathcal{L}_{t-1} , and $\mathcal{L}(\lambda)$ is the last step of this descending chain of Hopf algebras.

This setup is depicted in the following *snapshot* from [AAGMV,p.696]:

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 回 ● の Q ()・

Cleft objects for quotients

Gunther: description of cleft objects of $\mathcal{H}_t = \mathcal{H}_{t-1}/\langle \mathcal{G}_{t-1} \rangle$, using cleft objects \mathcal{A}_{t-1} of \mathcal{H}_{t-1} . Let $\pi_t : \mathcal{H}_{t-1} \twoheadrightarrow \mathcal{H}_t$.

• If you are able to compute $X_t := {}^{\operatorname{co} \pi_t} \mathcal{H}_{t-1}$ and the set $\operatorname{Alg}_{\mathcal{H}_{t-1}}^{\mathcal{H}_{t-1}}(X_t, \mathcal{A}_{t-1})$, then define for each f

$$\mathcal{A}_t(f) := \mathcal{A}_{t-1}/\langle f(X_t^+) \rangle.$$

Gunther's results have technical assumptions solved in [AAGMV].

Cleft objects for quotients

Gunther: description of cleft objects of $\mathcal{H}_t = \mathcal{H}_{t-1}/\langle \mathcal{G}_{t-1} \rangle$, using cleft objects \mathcal{A}_{t-1} of \mathcal{H}_{t-1} . Let $\pi_t : \mathcal{H}_{t-1} \twoheadrightarrow \mathcal{H}_t$.

• If you are able to compute $X_t := {}^{\operatorname{co} \pi_t} \mathcal{H}_{t-1}$ and the set $\operatorname{Alg}_{\mathcal{H}_{t-1}}^{\mathcal{H}_{t-1}}(X_t, \mathcal{A}_{t-1})$, then define for each f

$$\mathcal{A}_t(f) := \mathcal{A}_{t-1}/\langle f(X_t^+) \rangle.$$

② No? Take $Y_t ⊆^{\operatorname{co} \pi_t} \mathcal{H}_{t-1}$ such that $\mathcal{H}_t = \mathcal{H}_{t-1} / \langle Y_t^+ \rangle$, Alg^{\mathcal{H}_{t-1}}(Y_t, \mathcal{A}_{t-1}), define for each f

$$\mathcal{A}_t(f):=\mathcal{A}_{t-1}/\langle f(Y_t^+)
angle \qquad ext{if the quotient is}
eq 0.$$

Gunther's results have technical assumptions solved in [AAGMV].

•
$$\mathcal{B}_{\ell+1} = \mathcal{B}_{\mathfrak{q}}, \ \mathcal{B}_{\ell} = \widetilde{\mathcal{B}}_{\mathfrak{q}}$$
 the distinguished pre-Nichols algebra,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- $\mathcal{B}_{\ell+1} = \mathcal{B}_q$, $\mathcal{B}_\ell = \widetilde{\mathcal{B}}_q$ the distinguished pre-Nichols algebra,
- $X_{\ell+1} = Z_q$ a *q*-polynomial algebra, generated by (some) $x_{\beta}^{N_{\beta}}$, and is a Hopf subalgebra of $\widetilde{\mathcal{B}}_q$,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- $\mathcal{B}_{\ell+1} = \mathcal{B}_q$, $\mathcal{B}_\ell = \widetilde{\mathcal{B}}_q$ the distinguished pre-Nichols algebra,
- X_{ℓ+1} = Z_q a q-polynomial algebra, generated by (some) x_β^{N_β}, and is a Hopf subalgebra of B_q,
- $f \in Alg_{\mathcal{H}_{\ell}}^{\mathcal{H}_{\ell}}(X_{\ell+1}, \mathcal{A}_{\ell})$ is given by $f(x_{\beta}^{N_{\beta}}) = \lambda_{\beta} \in \mathbb{k}$ (with the desired condition on these scalars).

(日) (日) (日) (日) (日) (日) (日) (日)

- $\mathcal{B}_{\ell+1} = \mathcal{B}_q$, $\mathcal{B}_\ell = \widetilde{\mathcal{B}}_q$ the distinguished pre-Nichols algebra,
- X_{ℓ+1} = Z_q a *q*-polynomial algebra, generated by (some) x_β^{N_β}, and is a Hopf subalgebra of B_q,
- $f \in Alg_{\mathcal{H}_{\ell}}^{\mathcal{H}_{\ell}}(X_{\ell+1}, \mathcal{A}_{\ell})$ is given by $f(x_{\beta}^{N_{\beta}}) = \lambda_{\beta} \in \mathbb{k}$ (with the desired condition on these scalars).

Hence we apply (1).

Remark

Otherwise $X_t = {}^{\cos \pi_t} \mathcal{H}_{t-1}$ even more difficult to compute (and also the algebra maps), we deal with the *non-zero condition* for the quotient in (2).

We may assume for first steps of the stratification that $|G_t| = 1$ (up tp refine the stratification).

Lemma (AG)

If
$$\mathcal{E}_t(\lambda_0, \cdots, \lambda_{t-2}, 0) \neq 0$$
 and $\mathcal{E}_t(0, \cdots, 0, \lambda_{t-1}) \neq 0$, then $\mathcal{E}_t(\lambda_0, \cdots, \lambda_{t-2}, \lambda_{t-1}) \neq 0$.

Sketch of proof: Use that $\mathcal{E}_{t-1}(0, \dots, 0) = \mathcal{B}_{t-1}$ and the factorization:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Last result may be used to reduce the non-zero condition for each connected component of the Dynkin diagram.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Last result may be used to reduce the non-zero condition for each connected component of the Dynkin diagram.
- Also, it essentially reduces to check non-zero condition for each quotient with only one deformed relation (moreover reduction to support of the relation).

- Last result may be used to reduce the non-zero condition for each connected component of the Dynkin diagram.
- Also, it essentially reduces to check non-zero condition for each quotient with only one deformed relation (moreover reduction to support of the relation).
- First steps we check $\mathcal{E}_t \neq 0$ by hand, other steps using GAP.

- Last result may be used to reduce the non-zero condition for each connected component of the Dynkin diagram.
- Also, it essentially reduces to check non-zero condition for each quotient with only one deformed relation (moreover reduction to support of the relation).
- First steps we check $\mathcal{E}_t \neq 0$ by hand, other steps using GAP.

Theorem (AG)

 $\mathcal{E}(\boldsymbol{\lambda}) \neq 0$ for all $\boldsymbol{\lambda} \in \Lambda$.

If $\mathcal{E}(\lambda) \neq 0$ for all $\lambda \in \Lambda$, then every lifting is $L \simeq \mathcal{L}(\mathcal{A}(\lambda), \mathcal{H})$.

Sketch of proof:

If $\mathcal{E}(\lambda) \neq 0$ for all $\lambda \in \Lambda$, then every lifting is $L \simeq \mathcal{L}(\mathcal{A}(\lambda), \mathcal{H})$.

Sketch of proof:

 Generation in degree one says that gr L ≃ B_q#kΓ.
 ∃π : T(V)#kΓ → L a lifting map (Andruskiewitsch-Vay): π identifies L₀ = kΓ, L₁ = V#kΓ ⊕ kΓ.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

If $\mathcal{E}(\lambda) \neq 0$ for all $\lambda \in \Lambda$, then every lifting is $L \simeq \mathcal{L}(\mathcal{A}(\lambda), \mathcal{H})$.

Sketch of proof:

- Generation in degree one says that gr L ≃ B_q#kΓ.
 ∃π : T(V)#kΓ → L a lifting map (Andruskiewitsch-Vay):
 π identifies L₀ = kΓ, L₁ = V#kΓ ⊕ kΓ.
- By induction we prove ∃π : L_t(λ) → L. If so, for the last step we have an isomorphism since dim L_t = dim H_t = dim L.

If $\mathcal{E}(\lambda) \neq 0$ for all $\lambda \in \Lambda$, then every lifting is $L \simeq \mathcal{L}(\mathcal{A}(\lambda), \mathcal{H})$.

Sketch of proof:

- Generation in degree one says that gr L ≃ B_q#kΓ.
 ∃π : T(V)#kΓ → L a lifting map (Andruskiewitsch-Vay): π identifies L₀ = kΓ, L₁ = V#kΓ ⊕ kΓ.
- By induction we prove ∃π : L_t(λ) → L. If so, for the last step we have an isomorphism since dim L_t = dim H_t = dim L.
- For the inductive step fix $r \in \mathcal{G}_t \rightsquigarrow \tilde{r} \in \mathcal{L}_{t-1}$ skew-primitive $(\mathcal{H}_{t-1} \simeq \mathcal{L}_{t-1} \text{ as coalgebras}) \implies \pi(\tilde{r}) \in L_1$. By A.-Kochetov-Mastnak, $\operatorname{Hom}_{\Gamma}^{\Gamma}(\Bbbk r, V) = 0$, and this implies $\pi(\tilde{r}) \in L_0$. Hence $\pi(\tilde{r}) = \lambda_r(1 - g_r)$.

Theorem (AAG,AG)

Let A be a finite-dimensional pointed Hopf algebra with abelian group of group-likes. Then there is $\lambda \in \Lambda$ such that $A \simeq \mathfrak{u}_q(\lambda)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (AAG,AG)

Let A be a finite-dimensional pointed Hopf algebra with abelian group of group-likes. Then there is $\lambda \in \Lambda$ such that $A \simeq \mathfrak{u}_{q}(\lambda)$.

• isoclasses are parametrized by equivalence classes in Λ/\sim .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (AAG,AG)

Let A be a finite-dimensional pointed Hopf algebra with abelian group of group-likes. Then there is $\lambda \in \Lambda$ such that $A \simeq \mathfrak{u}_{q}(\lambda)$.

• isoclasses are parametrized by equivalence classes in Λ/\sim .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• A is a cocycle deformation of gr A.

Theorem (AAG,AG)

Let A be a finite-dimensional pointed Hopf algebra with abelian group of group-likes. Then there is $\lambda \in \Lambda$ such that $A \simeq \mathfrak{u}_{\mathfrak{g}}(\lambda)$.

- isoclasses are parametrized by equivalence classes in Λ/\sim .
- A is a cocycle deformation of gr A.

Remark

 \exists algorithm to compute $\mathfrak{u}_{q}(\lambda)$ explicitly, based on results of Schauemburg and AAGMV. That is, an algorithm to compute \tilde{r} recursively.

Consequences

Cleft objects are not only a *tool* for the computation of liftings, we also obtain that the categories of comodules of H and gr H are tensor equivalent. Applications?

• Reduces properties of cohomology rings to the graded Hopf algebras (better for some needed computations).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consequences

Cleft objects are not only a *tool* for the computation of liftings, we also obtain that the categories of comodules of H and gr H are tensor equivalent. Applications?

- Reduces properties of cohomology rings to the graded Hopf algebras (better for some needed computations).
- For Generalized Lifting Method (Andruskiewitsch-Cuadra), when the coradical is not a subalgebra we take the Hopf coradical (subalgebra generated by the coradical). If it is basic, then (Andruskiewitsch-A.) we describe finite-dimensional Nichols algebras.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Muchas gracias

Danke schön

Thanks!

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @