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Warm up: Cartan A3, q = −1

Γ finite abelian group (we fix the coradical L0)

gi ∈ Γ, χi ∈ Γ̂, i = 1, 2, 3, V = ⊕kχi
gi ∈ kΓ

kΓYD (we fix the
infinitesimal braiding ; L1)

q =
(−1 1 1
−1 −1 1
1 −1 −1

)
where χj(i) = qij , the diagram is

−1◦ −1 −1◦ −1 −1◦ .

Bq = T (V )/〈x2
i , i = 1, 2, 3; x13, [x123, x2]c ; x2

12, x
2
23, x

2
123〉.

; T (V )#kΓ,Bq#kΓ

Question

How to compute all liftings L?

Generation in degree one: L lifting, gr L ' Bq#kΓ.
∃π : T (V )#kΓ � L a lifting map (Andruskiewitsch-Vay):
π identifies L0 = kΓ, L1 = V#kΓ⊕ kΓ.
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Cartan A3, q = −1

H0 = T (V )#kΓ = A0 = L0, B0 = T (V ) = E0.

In H0 we have skew primitives:

∆(x2
i ) = x2

i ⊗ 1 + g2
i ⊗ x2

i , ∆(x13) = x13 ⊗ 1 + g1g3 ⊗ x13 :

=⇒ π(x2
i ) = λi (1− g2

i ), π(x13) = λ13(1− g1g3), λi , λ13 ∈ k.

(need a computation to prove it is a trivial skew-primitive).

As gx2
i = χi (g)2x2

i g , gx13 = χ1χ3(g)2x13g ,
g(1− h) = (1− h)g (Γ abelian):

λi = 0 if χ2
i 6= ε, λ13 = 0 if χ1χ3 6= ε.

L1(λi , λ13) = L0/〈x2
i − λi (1− g2

i ), x13 − λ13(1− g1g3)〉.

=⇒ ∃ π : L1(λi , λ13) � L.
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Set r1232 = [x123, x2]c , compute ∆〈[x123, x2]c〉 in H0 and
project: r1232 not skew primitve, but
r̃1232 = r1232 − 4q12λ13λ2(1− g2

2 )g1g3 is so.
=⇒ π(r̃1232) = λ1232(1− g1g

2
2 g3), λ1232 ∈ k.

λ1232 = 0 if χ1χ
2
2χ3 6= ε.

L2(λi , λ13, λ1232) = L1/〈r̃1232 − λ1232(1− g1g
2
2 g3)〉.

=⇒ ∃ π : L2(λi , λ13, λ1232) � L.

Similarly, ∃ skew primitives r̃12, r̃23, r̃123 (deformations of x2
12,

x2
23, x2

123), set scalars λ12, λ23, λ123,

L3(λ) = L2/〈r̃β − λβ(1− gβ)〉 =⇒ ∃ π : L3(λ) � L.

Question

dimL3(λ)? or first... L3(λ) 6= 0?
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Solution: L3(λ) = L(A3,H3) for H3 = Bq#kΓ,
A3(λ) = E3(λ)#kΓ a Galois object.

Same for other liftings, from r skew primitive relation in an
intermediate quotient of Bq, we get modified relation r̃ , skew
primitive in the intermediate deformation.

Andruskiewitsch-Schneider classification (2010): |Γ| coprime
with 210, grH = Bq#kΓ, Bq ' u+

q (g); quantum Serre
relations not deformed inside each connected component.

Masuoka (2011): H is a cocycle deformation of grH.
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The strategy

1 Stratify a minimal set G of defining relations of Bq as follows:
G = G0 t G1 t · · · t G` so that for each r ∈ Gt ,

∆(r̄) = r̄ ⊗ 1 + 1⊗ r̄ in Bt := T (V )/〈 ∪t−1
i=0 Gi 〉.

2 Fix Λ = {λ = (λr )|λr = 0 if χr 6= ε or gr = 1} ⊆ kG .

3 E0(λ) = T (V ), A0 = E0#kΓ. Recursively, if Et−1 6= 0, then
At−1 is a cleft object. Fix a section γt−1 : Ht−1 → At−1 with
nice properties: restricts to γt−1 : Bt−1 → Et−1. The coaction
gives also an algebra map ρ : Et−1 → Et−1 ⊗ Bt−1. For
r ∈ Gt−1 let r̂ = γt−1(r): ρ(r̂) = r̂ ⊗ 1 + 1⊗ r .

Et(λ) = Et−1(λ)/〈r̂ − λr , r ∈ Gt−1〉 6= 0, At(λ) = Et(λ)#kΓ.
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The family of liftings

By a result of Schauenburg, for each A(λ) there exists a Hopf
algebra L(λ) = L(A(λ),H) such that A(λ) is a
(L(λ),H)-Galois object.

By [AAGMV], grL(λ) = H (that is, we construct a family of
liftings of H).

We may also construct L(λ) recursively as quotients:
Lt = L(At ,H) is a quotient of Lt−1, and L(λ) is the last
step of this descending chain of Hopf algebras.



The family of liftings

By a result of Schauenburg, for each A(λ) there exists a Hopf
algebra L(λ) = L(A(λ),H) such that A(λ) is a
(L(λ),H)-Galois object.

By [AAGMV], grL(λ) = H (that is, we construct a family of
liftings of H).

We may also construct L(λ) recursively as quotients:
Lt = L(At ,H) is a quotient of Lt−1, and L(λ) is the last
step of this descending chain of Hopf algebras.



The family of liftings

By a result of Schauenburg, for each A(λ) there exists a Hopf
algebra L(λ) = L(A(λ),H) such that A(λ) is a
(L(λ),H)-Galois object.

By [AAGMV], grL(λ) = H (that is, we construct a family of
liftings of H).

We may also construct L(λ) recursively as quotients:
Lt = L(At ,H) is a quotient of Lt−1, and L(λ) is the last
step of this descending chain of Hopf algebras.



This setup is depicted in the following snapshot from
[AAGMV,p.696]:

H0
γ0=id //

πk−1

����
πk ≡

�� ��

A0

τk−1

����
τk≡

����

// L(A0,H0) ' H0

���� ≡

||||

Hk−1
γk−1 //

π′k����

Ak−1

τ ′k ����

// L(Ak−1,Hk−1)

����
Hk

γk // Ak
// L(Ak ,Hk)



Cleft objects for quotients

Gunther: description of cleft objects of Ht = Ht−1/〈Gt−1〉, using
cleft objects At−1 of Ht−1. Let πt : Ht−1 � Ht .

1 If you are able to compute Xt :=coπt Ht−1 and the set

Alg
Ht−1

Ht−1
(Xt ,At−1), then define for each f

At(f ) := At−1/〈f (X+
t )〉.

2 No? Take Yt ⊆coπt Ht−1 such that Ht = Ht−1/〈Y +
t 〉,

AlgHt−1(Yt ,At−1), define for each f

At(f ) := At−1/〈f (Y +
t )〉 if the quotient is 6= 0.

Gunther’s results have technical assumptions solved in [AAGMV].
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Example (t = `+ 1)

B`+1 = Bq, B` = B̃q the distinguished pre-Nichols algebra,

X`+1 = Zq a q-polynomial algebra, generated by (some) x
Nβ
β ,

and is a Hopf subalgebra of B̃q,

f ∈ AlgH`H`(X`+1,A`) is given by f (x
Nβ
β ) = λβ ∈ k (with the

desired condition on these scalars).

Hence we apply (1).

Remark

Otherwise Xt =coπt Ht−1 even more difficult to compute (and also
the algebra maps), we deal with the non-zero condition for the
quotient in (2).
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We may assume for first steps of the stratification that |Gt | = 1
(up tp refine the stratification).

Lemma (AG)

If Et(λ0, · · · , λt−2, 0) 6= 0 and Et(0, · · · , 0, λt−1) 6= 0, then
Et(λ0, · · · , λt−2, λt−1) 6= 0.

Sketch of proof: Use that Et−1(0, · · · , 0) = Bt−1 and the
factorization:

Et−1(λ0, · · · , λt−2)
ρ //

����

Et−1(λ0, · · · , λt−2)⊗ Bt−1

����
Et(λ0, · · · , λt−2, λt−1) // Et(λ0, · · · , λt−2, 0)⊗ Et(0, · · · , 0, λt−1).



Remark

Last result may be used to reduce the non-zero condition for
each connected component of the Dynkin diagram.

Also, it essentially reduces to check non-zero condition for
each quotient with only one deformed relation (moreover
reduction to support of the relation).

First steps we check Et 6= 0 by hand, other steps using GAP.

Theorem (AG)

E(λ) 6= 0 for all λ ∈ Λ.
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Theorem (AAG)

If E(λ) 6= 0 for all λ ∈ Λ, then every lifting is L ' L(A(λ),H).

Sketch of proof:

Generation in degree one says that gr L ' Bq#kΓ.
∃π : T (V )#kΓ � L a lifting map (Andruskiewitsch-Vay):
π identifies L0 = kΓ, L1 = V#kΓ⊕ kΓ.

By induction we prove ∃π : Lt(λ) � L. If so, for the last step
we have an isomorphism since dimLt = dimHt = dim L.

For the inductive step fix r ∈ Gt ; r̃ ∈ Lt−1 skew-primitive
(Ht−1 ' Lt−1 as coalgebras) =⇒ π(r̃) ∈ L1.
By A.-Kochetov-Mastnak, HomΓ

Γ(kr ,V ) = 0, and this implies
π(r̃) ∈ L0. Hence π(r̃) = λr (1− gr ).
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Classification

Theorem (AAG,AG)

Let A be a finite-dimensional pointed Hopf algebra with abelian
group of group-likes.
Then there is λ ∈ Λ such that A ' uq(λ).

isoclasses are parametrized by equivalence classes in Λ/ ∼.

A is a cocycle deformation of grA.

Remark

∃ algorithm to compute uq(λ) explicitly, based on results of
Schauemburg and AAGMV. That is, an algorithm to compute r̃
recursively.
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Consequences

Cleft objects are not only a tool for the computation of liftings, we
also obtain that the categories of comodules of H and grH are
tensor equivalent. Applications?

Reduces properties of cohomology rings to the graded Hopf
algebras (better for some needed computations).

For Generalized Lifting Method (Andruskiewitsch-Cuadra),
when the coradical is not a subalgebra we take the Hopf
coradical (subalgebra generated by the coradical). If it is basic,
then (Andruskiewitsch-A.) we describe finite-dimensional
Nichols algebras.
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Muchas gracias

Danke schön

Thanks!


