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The Cauchy problem for a parallel null vector field

Given a Riemannian manifold (M, g), can we embed (M, g) as a Cauchy
hypersurface into a Lorentzian manifold (M, g) of the formM ⊂ R ×M and

g = −λ2 dt2 + gt , (∗)

such that (M, g) admits a parallel null vector field V , i.e., with

∇V = 0 and g(V ,V) = 0 ?

Here gt = family of Riemannian metrics onM with g0 = g, λ = λ(t , x) “lapse fct”.

I Without requiring V being null finding g with V parallel is trivial: The metric
g = −dt2 + g on R ×M has a parallel time-like vector field ∂t .

I If V is null and parallel, g has to satisfy the constraint equation

∇U = uW,

with u = g(U,U) and W the Weingarten operator [Helga’s talk].

I For a Riemannian manifold (M, g) satisfying the constraints, find a (globally
hyperbolic) Lorentzian manifold of the form (∗) with parallel null vector field.



Motivation 1: Special Lorentzian holonomy (more details in Helga’s talk)

Let (M, g) be a semi-Riemannian manifold, and

Hol(M, g) =
{
P∇γ ∈ O(TpM, gp) | γ(0) = γ(1) = p

}
its holonomy group with Lie algebra hol(M, g).

I (M, g) has “special holonomy” ⇐⇒ hol $ so(p, q) but the manifold is
indecomposable, i.e., does not (locally) decompose as a product.

I Riemannian special holonomy: U(p) SU(p), Sp(q), Sp(q)·Sp(1), G2,
Spin(7) [Berger, Bryant, ...] + isotropy groups of symmetric spaces.

I Lorentzian special holonomy: @ irreducible subalgebras of so(1, n + 1)! =⇒

hol ⊂ stab(null line) = (R ⊕ so(n)) n Rn =


 a v> 0

0 A −v
0 0> −a


∣∣∣∣∣∣∣∣

a ∈ R
v ∈ Rn ,

A ∈ so(n)

.
There is a classification of Lorentzian special holonomy algebras:

I indecomposable subalgebras of so(1, n + 1) [Berard-Bergery & Ikemakhen ’93]
I prso(n)(hol) is a Riemannian holonomy algebra [L ’03]{ Berger’s list
I Construction of local metrics for all possible holonomy algebras [ ... Galaev ’05]



Construction of Lorentzian manifolds with special holonomy

I Let (M, g, µ) be a Riemannian manifold with closed 1-form µ. Then

g = µ dv + g,

is a Lorentzian metric onM× R with parallel null vector field ∂v .

I Most constructions for prescribed holonomy are based on the local form of a
Lorentzian manifold with parallel null vector field

g = 2du(dv + f du + fi dx i) + hij dx idx j ,

with f , f i and hij functions of x1, . . . xn−2, u. Then ∂v is null and parallel.

I Need ‘global’ constructions for globally hyperbolic manifolds with complete
Cauchy hypersurfaces and with special holonomy [Baum-Müller ’08]

I A Lorentzian manifold (M, g) is globally hyperbolic if it admits a Cauchy
hypersurfaceM, i.e., a spacelike hypersurface that is met by every maximal
timelike curve exactly once. They are of the formM = R ×M with

g = −λ2dt2 + gt .

[Geroch ’70, ..., Bernal-Sánchez ’03]



Motivation 2: Parallel spinors on Lorentzian manifolds

Let (M, g) be a Lorentzian spin manifold with spinor bundle S→M. and
ψ ∈ Γ(S) a parallel spinor, with induced causal and parallel Dirac current Vψ.

I g(Vψ,Vψ) = −1: (M, g) locally is a product −dt2 + h with h Riemannian,
Rich = 0 and with a parallel spinor
{ special holonomy Riemannian manifolds: SU(p), Sp(q), G2, Spin(7).

I g(Vψ,Vψ) = 0: TM is filtered RVψ ⊂ V⊥ψ ⊂ TM
No induced product structure and not Ricci-flat but Ricg = f (V [

ψ)2.

I Constraints: Each spacelike hypersurface (M, g) admits a spinor field ϕ with

∇Xϕ = i
2 W(X) · ϕ, ∀X ∈ TM, Uϕ · ϕ = i uϕ ϕ, (1)

in which Uϕ is defined by g(Uϕ,X) = −i(X · ϕ, ϕ), uϕ =
√

g(Uϕ,Uϕ) = ‖ϕ‖2.

I A spinor with (1) is called generalised imaginary Killing spinor (GIKS).

I Uϕ = prTMVψ satisfies the constraint ∇X Uϕ = uϕW(X).

Solve the Cauchy problem for Lorentzian manifolds with parallel null vector field V
and extend GIKS on (M, g) to parallel spinor on (M, g) by parallel transport.



Motivation 3: (Generalised) Killing spinors on Riemannian manifolds

(M, g) Riemannian mfd., ϕ a Killing spinor with Killing number λ, i.e.

∇Xϕ = λX · ϕ, λ ∈ R ∪ iR.

I Killing spinor⇒ (M, g) Einstein with scal = 4n(n − 1)λ2.

I
{
Killing spinors

}
'

{
parallel spinors on the cone (R+ ×M, ĝ = 2λ2dr2 + r2g)

}
I Parallel spinors are fixed under spin rep of Hol{ use holonomy

classification in order to classify mfd’s with Killing spinors.

I λ ∈ R [Bär ’93] : Riemannian cones are flat or irreducible [Gallot ’79],
Berger’s list⇒ (M, g) = Sn, (3-)Sasaski, 6-dim nearly Kähler, nearly
parallel G2

I λ ∈ iR: (M, g) = Hn or (M = R × F , g = ds2 + e4iλsh) and (F , h) admits a
parallel spinor [Baum ’89]. This can be obtained using the time-like cone and
a generalisation of Gallot’s result [Alekseevski, Cortés, Galaev, L ’08].

Use same approach — with the cone replaced by the solution to a more general
Cauchy problem — and the classification of Lorentzian holonomy, to locally
classify Riemannian manifolds with generalised imaginary Killing spinor.



Example: Cauchy problem for Ric(g) = 0

Let g = −λ2dt2 + gt on I ×M and T = 1
λ
∂t be the timelike unit normal.

I W := −∇T |TM the Weingarten operator, W = − 1
2λ ġ, where dot = ∂t .

I Fundamental curvature equations, R = curvature tensor of g:

R|TM = R + W ∧W Gauß
R(·, ·, ·,T)|TM = d∇W Codazzi

R(T , ·, ·,T)|TM = 1
λ

(
Ẇ + ∇2(λ)

)
+ W2 Mainardi

I Ricci-tensor of g, Ric = Ric(g):

Ric(T ,T) = 1
λ

(
tr(Ẇ) + ∆(λ)

)
+ tr(W2)

Ric(T , .)|TM = d(trW) + divW
Ric|TM×TM = − 1

λ

(
Ẇ + ∇2(λ)

)
+ Ric +tr(W)W − 2W2

(2)

I Scalar curvature:

scal = scal + (tr(Wt ))2 − 3‖W‖2 − 2
λ

(
tr(Ẇ) + ∆(λ)

)
(3)

I Set (2) and (3) to zero and replace tr(Ẇ) in (2) by (3).



Constraint and evolution equations for Ric(g) = 0

I Ric = 0 ⇐⇒

 scal = tr(W2) − tr(W)2

d tr(W) = −div(W)

 (constraints) and

Ẇ = λ
(

Ric +tr(W)W − 2W2
)
− ∇2(λ) (evolution equations)

I Constraints are preserved under evolution equations.

I The evolution equations are of the form:

g̈ = F(g, ġ, ∂ig, ∂i ġ, ∂i∂jg),

with initial data g|t=0 = g, ġ|t=0 = −2λW.
I If λ and initial data are real analytic: apply Cauchy-Kowalevski to get unique

solution:
I for Lorentzian metrics [Darmois ’27, Lichnerowicz ’39], this can be generalised to

the smooth setting: Choquet-Bruhat (50’s, second part of the talk).
I Riemannian: solution for analytic data [Koiso ’81], but in general no solution for

smooth, non-analytic [counterexamples by Bryant ’10, also Ammann, Moroianu
& Moroianu ’13] .



Constraint and evolution equations for a parallel vector field

OnM = R ×M we can write a vector field V ∈ Γ(TM) as

V = uT + U with U ∈ Γ(T⊥) and u ∈ C∞(R ×M).

V is null for g = −λ2 dt2 + gt =⇒ u = −g(T ,V) =
√

g(U,U).

∇X V = du(X)T − uW(X) + ∇X U︸︷︷︸
= ∇X U −W(X ,U)T

for X ∈ TM

∇X V = 0 ⇐⇒ ∇U − uW = 0 & du −W = 0

constraint equations (t = 0)

∇∂t V = u̇T + u ∇∂t T︸︷︷︸
= ∇λ

+ ∇∂t U︸︷︷︸
= [∂t ,U] − λW(U) + dλ(U)T

∇∂t V = 0 ⇐⇒ U̇ + u∇λ + 1
2 ġt (U) = 0 & u̇ + dλ(U) = 0

evolution equations



Second order evolution equations for a parallel null vector field

I If ∇V = 0, then for X ,Y ∈ TM it is

R(∂t ,X ,Y ,V) = R(∂t ,X ,V , ∂t ) = 0 { evolution for g via Codazzi-Mainardi (∗)

∇∂t∇∂t V = 0 { evolution for for U = prTM(V)

∇X V |{0}×M = 0 { constraint for U (initial condition for ġ)

∇∂t V |{0}×M = 0 { initial condition for U̇

I We can show that this is in fact equivalent to ∇V = 0 and leads to equivalent
2nd order evolution equations in Cauchy-Kowalevski form:(

g̈, Ü, ü
)

= F (g, ġ, ∂ig, ∂i ġ, ∂i∂jg,U, U̇, . . . , ∂i∂ju),

however the first component of F is not necessarily symmetric!

I Observation:
In the analytic case, (∗) can be replaced by R(X ,V ,V ,Y) = 0 for all
X ,Y ∈ TM.



Evolution equations for a parallel null vector field [Baum, Lischewski, L ’14]

Let (M, g) be a Riemannian mfd, W a symmetric endomorphisms field, U a
vector field, u function onM, all real analytic, with constraints

∇iU j = −uW j
i , g(U,U) = u2 > 0.

Then for any analytic fct. λ = λ(t , x) the Lorentzian metric g = −λ2dt2 + gt has
parallel null vector field V = ut

λ
∂t − Ut ⇐⇒

g̈ij = 1
u Uk

(
λ∇[k ġ(j]i) − ġ(i[j)∇k ]λ

)
+ 1

2 ġik ġk
j + λ̇

λ
ġij + 2λ∇i∇jλ + 2λ2

u2 Uk U`Rik`j

Üi = 1
2u Uk Ul

(
ġl[k∇i]λ − λ∇[i ġk ]l

)
− Uk

(
ġki −

λ̇
λ2 ġki − λ∇k∇iλ − ∇kλ∇iλ

)
+ ugki∇

k λ̇ + u
2 ġki∇

kλ + 2u̇∇iλ

ü = Uk
(
gkl∇

l λ̇ + 3
2 ġkl∇

lλ
)

+ 2U̇k∇kλ − u∇kλ∇
kλ

with initial conditions


gij(0) = gij , ġij(0) = −2λWij ,

U(0) = U, U̇i(0) = u ∇iλ + λUk Wki

u(0) = u u̇(0) = Uk∇kλ

.



Theorem 1 (Baum, Lischewski, L ’14)

If (M, g,U) are real analytic satisfying the constraint equations, λ real analytic,
then (M, g) can be embedded as Cauchy hypersurface into a Lorentzian
manifold (M ⊂ R ×M, g = −λ2dt2 + gt ) with parallel null vector field. For given
initial conditions as above, g is unique and (M, g) is globally hyperbolic.

I Apply Cauchy-Kowalevski to the evolution equations in coordinate
neighbourhoods inM. By uniqueness these patch together to a unique
global solution onM defining the Lorentzian metric g on M̃ ⊂ R ×M.

I Every p ∈ M then admits a neighbourhoodUp in M̃ such thatM∩U is a
Cauchy hypersurface inU

I ThenM = ∪p∈MUp contains M as a Cauchy hypersurface.

Example [Baum & Müller ’08]

λ ≡ 1, W Codazzi tensor, i.e. ∇[iW k
j] = 0. Solution to the above system:

gij(t) = gij − 2tWij + t2Wik Wk
j

Ui(t) = Ai
k (t)Uk , mit Ai

k inverse of (δ j
i − tW j

i )

u(t) = u



Application to parallel null spinors

Corollary 1

Let (M, g, ϕ) be an analytic Riemannian spin manifold with an analytic GIKS ϕ.
=⇒ On the Lorentzian manifold in Theorem 1 there exists a parallel null spinor.

Proof: Take the Lorentzian manifold obtained as solution with parallel null vector
field. Translate the initial GIKS ϕ parallel along t-lines{ spinor ψ with ∇∂tψ = 0.

I E :=
(
T ∗M⊗ S

)
⊕

(
Λ2T ∗M⊗ S

)
−→M,

I

 A := ∇ψ

B := R(·, ·)ψ

 ∈ Γ(E)

I Check that

AB
 satisfies a PDE ∇∂t

AB
 = Q

AB
, with Q linear on E.

I A = B = 0 along initial hypersurface and hence for all t .



Smooth case: the Cauchy problem for Ric(g) = 0

I In the smooth setting we relax the condition on the explicit form of g: Given a
Riemannian manifold (M, g) and symmetric endomorphism W satisfying the
constraints

R = tr(W2) − tr(W)2, d tr(W) = −div(W),

find a Lorentzian manifold (M, g) with Ric(g) = 0 and such that (M, g)

injects into (M, g) with Weingarten operator W.

I A system of PDEs for vector valued functions u : Rn+1 → RN of x0 = t and
x = (x i)i=1,...,n

A0(xµ, u) ∂0u =
n∑

i=1

A i(xµ, u) ∂iu + B(xµ, u), (4)

is a 1st order quasilinear symmetric hyperbolic system of PDEs if
I the Aµ(xµ, u) are symmetric N × N matrices, and
I A0(xµ, u) is positive definite with a uniform positive lower bound.

Such systems have a unique smooth solution for given initial conditions.



Hyperbolic reduction [Friedrich-Rendall]:

I In coordinates the Ricci tensor looks like

Ric(g)µν = −
1
2

gαβ∂α∂βgµν + ∂(µΓν)︸︷︷︸
= gαβ∂µ∂νgαβ +LOTs

+LOTs

where Γµ = Γαµα.

I Not fixing time coordinate and the form of the metric{ full diffeomorphism
invariance

φ ∈ Diff(M) =⇒ Ric(φ∗g) = φ∗Ric(g) = 0.

I Hyperbolic reduction to break the diffeomorphism invariance:
Fix background metric

ĝ = −λ2dt2 + g

on R ×M with λ ∈ C∞(R ×M), define C = ∇ − ∇̂ and

Eµ = gµνg
αβCν

αβ,

and replace Ric(g) = 0 by the equation

R̂ic(g)µν := Ric(g)µν + ∇(µEν) = 0.



Einstein equation as quasilinear symmetric hyperbolic system

I Locally, R̂ic(g)µν is of the form

R̂ic(g)µν = Ric(g)µν + ∇(µEν) = − 1
2 gαβ∂α∂βgµν + LOTs.

I R̂ic(g) = 0 is a 1st order quasilinear symmetric hyperbolic system of PDEs,

A0(xµ,G)∂0G =
n∑

i=1

A i(xµ,G)∂iG + B(t , x,G), (5)

for functions G =

 g
∂µg

 of x0 = t and x = (x i)i=1,...,n, i.e., and hence has a

unique smooth solution for given smooth initial conditions.

I Then R̂ic(g) = 0 implies that E satisfies a wave equation

∆Eµ = ∇
α
∇αEµ = − 2∇

α
Rαµ︸  ︷︷  ︸
= ∇µscal = −∇µ∇

α
Eα

−∇
α
∇µEα = R

α β

µ α Eβ = R
α

µ Eα. (6)

Hence E ≡ 0 if E |M = 0 and ∇E |M = 0.



Initial conditions

I original initial data: gij |M = gij , ∂0gij |M = −2λWij ,

I choice: g00|M = −λ2|M, g0i |M = 0, i.e., gµν|M = ĝµν.

I determine initial data for ∂t g00 and ∂t g0i such that E |M = 0:

∂t g00|M = −2F0|M − tr(W), ∂t g0i |M = −Fi |M + 1
2 gkl(2∂k gil − ∂igkl),

where Fµ = gµνg
αβΓ̂ναβ.

I With E |M = 0 we have ∇iEµ|M = 0. The constraints give

0 = Ric(g)0i |M = 1
2∇0Ei |M, 0 = Ric(g)00 = ∇0E0|M,

and hence ∇E |M = 0.

I With E |M = 0, ∇E |M = 0 and wave equation (6), we get E = 0.

We obtain a local solutions to R̂ic(g) = Ric(g) = 0 that patch together to a
globally hyperbolic solution.



The smooth case: parallel vector field [Lischewski & L, in prep.]

Given a smooth Riemannian manifold (M, g) with U and W satisfying the
constraints

∇U = uW, u =
√

g(U,U),

can we find a Lorentzian manifold (M, g) with parallel, null vector field V such
that prTM(V) = U and W is the Weingarten operator ofM ⊂M?

I Let V be a parallel vector field on (M, g) and µ = V [ = g(V , .) ∈ Ω1(M).
Then

I V (∇
(k)

Ric(g)) = 0 for k = 0, 1, . . . hence there is a bilinear form Q with

Ric(g) = Q , V Q = 0, ∇V Q = 0. (7)

I ∇µ = 0 and in particular (d + δg)µ = 0. Recall that d + δg = c ◦ ∇, where c is
the Clifford multiplication on forms

c : TM⊗Ω∗ 3 X ⊗ ω 7→ X [ ∧ ω − X ω ∈ Ω∗

I Given a initial manifold (M, g) and a function λ ∈ C∞(R ×M), fix a
background metric ĝ = −λ2dt2 + g on R ×M that defines R̂ic(g) as for the
Einstein equations.



I Consider the PDE system

R̂ic(g) = Q : µ] Q = 0
∇µ]Q = 0

(d + δg)µ = 0

(8)

for a metric g, a one-form µ, and a symmetric BLF Q . Note that
I R̂ic(g) does not contain derivatives of Q , i.e., 1st eq. in (8) is like Einstein

equation with energy-momentum tensor Q .
I d + δ = c ◦ ∇ : Λ∗ → Λ∗ is of Dirac type.

I (8) reduces to a 1st order quasilinear symmetric hyperbolic system of the
form A0

1 0 0
0 A0

2 0
0 0 1


∂0G
∂0µ

∂0Q

 =

A i
1 0 0

0 A i
2 0

0 0 a i
3 1


∂iG
∂iµ

∂iQ

 +

B1

B2

B3

,
for G = (g, ∂t g, ∂ig), µ and Q , with A0

1/2 symmetric positive definite, A i
1/2

symmetric, that has a unique solution for given initial data alongM.
I Ψ :=

(
∇V ,E

)
is a solution to a wave eq. PΨ = 0 , for normally hyperbolic P.

I Again, the initial data are determined by

g|M = ĝ, µ|M = ĝ( u
λ
∂t − U, .), ∂t g|TM×TM = −2λW,

and the requirement that ∇V |M = 0 and E |M = 0.



Cauchy problems for Lorentzian manifolds and special holonomy
—

Part 2



Recall from part 1:

Given a Riemannian manifold (M, g), with a vector field U and a symmetric
endomorphism field W satisfying the constraint equation

∇U = uW, with u =
√

g(U,U),

and a function λ ∈ C∞(R ×M), we wanted to construct a Lorentzian manifold
(M, g) which

I contains (M, g = g|M) as Cauchy hypersurface, with Weingarten operator
W,

I admits a parallel null vector field V such that prTM(V) = U,

I possibly of the form
g = −λ2dt2 + gt ,

for a family of Riemannian metrics.



Theorem 2 (Lischewski-L, in progr.)

Let (M, g) be a smooth Riemannian manifold with a vector field U and a
symmetric endomorphism field W satisfying the constraint equation ∇U = uW
and a function λ ∈ C∞(R ×M).
Then there isM ⊂ R ×M with a Lorentzian metric

g = −λ̃2dt2 + gt with λ̃|M = λ, g0 = g,

such that (M, g) admits a parallel null vector field V with prTM(V) = U, and such
that (M, g) is globally hyperbolic withM as Cauchy hypersurface with
Weingarten operator W.
Moreover, let ĝ = −λ2dt2 + g be the background metric on R ×M defined by the
initial data λ and g. Then g is the unique metric satisfying the additional
conditions

I g|M = −ĝ|M,

I trg(C) = 0, where C(X ,Y) = ∇X Y − ∇̂X Y is the difference tensor between
the Levi-Civita connections of g and ĝ.



Proof, step 1: the quasilinear symmetric hyperbolic system

Fix the background metric ĝ = λ2dt2 + g on R ×M. For a Lorentzian metric g
define the difference difference tensor C between the Levi-Civita connections of g
and ĝ, the 1-form E and the modified Ricci tensor by

E = g(trg(C), .), R̂ic(g)αβ = Ric(g)αβ + ∇(αEβ).

Consider the PDE system

R̂ic(g) = Q ◦ pr µ
]

TM ∇µ]Q = 0, (d + δg)µ = 0 (9)

for a metric g, a one-form µ, and a symmetric BLF Q .
In local coordinates x0 = t , x = (x i)i=1,...,n, this is equivalent to a 1st order
quasilinear symmetric hyperbolic system of the formA0

1 0 0
0 A0

2 0
0 0 1


∂0G
∂0µ

∂0Q

 =

A i
1 0 0

0 A i
2 0

0 0 a i
3 1


∂iG
∂iµ

∂iQ

 +

B1

B2

B3

,
for G = (g, ∂αg), µ and Q , with Aα

1/2 = Aα
1/2(xβ,G, µ,Q) and A0

1/2 symmetric
positive definite, A i

1/2 symmetric.



Proof, step 2: the wave equation

For g, Q and µ = V [ be a solution of the system (9) we define the quantities

Φ =
(
∇V ,E,∇V E,∇E(V)

)
.

Ψ = divg
(
Q − 1

2 trg(Q)g
)
.

Then show that Φ and Ψ satisfy the following PDEs

∆Φ = L1(Φ,∇Φ,Ψ), ∇V Ψ = L2(Φ,∇Φ), (10)

where ∆ = ∇
2

is defined by the Bochner Laplacian on the appropriate bundle
and L1 and L2 are linear.
Again, in local coordinates the system (10) is a equivalent to a 1st order linear
symmetric hyperbolic system for Φ, ∂Φ and Ψ, and hence has a unique solution
for given initial values.
If we can show that Φ, ∇Φ and Ψ vanish alongM, then they vanish for all t .



Proof, step 3: Initial conditions

(i) the original initial conditions:

g|M = ĝ|M, ∂t g|TM×TM = 2λW, µ|M = uĝ( u
λ
∂t − U, .)

(ii) initial conditions for Q :

U Q |M = d tr(W) = −div(W)

Q = Ric−W2 + tr(W)W − R(N, ., .N) + W(.,N)W(.,N) −W(N,N)W

where N = 1
u U and the second equation holds for U⊥ × U⊥ alongM.

(iii) initial data for ∂t g00 and ∂t g0i :

∂t g00|M = −2λ|2
M

(F0|M − λ|Mtr(W)) ,

∂t g0i |M = λ|2
M

(
−Fi |M + 1

2 gkl(2∂k gil − ∂igkl) + ∂i(log λ|M)
)

where Fµ = gµνg
αβΓ̂ναβ.

The initial conditions (ii) and (iii) imply that Φ, ∇Φ and Ψ from the previous slide
vanish alongM.



Proof, step 4: the global metric and its form

From local to global:

I For each p ∈ M there is a globally hyperbolic neighbourhoodUp and
solutions g, V , Q with E = 0 and ∇V = 0 .

I On overlaps, these solutions coincide and thus give rise to a globally
hyperbolic solution onM = ∪p∈MUp containingM as Cauchy hypersurface.

The form of the metric as g = −λ̃2dt2 + gt :
Consider the vector field F = 1

dt(∇t)
∇t , i.e., with dt(F) = 1.

I The leafs of F⊥ are given asMt = {t} ×M ⊂ M ⊂ R ×M.

I The flow φ of F satisfies φs(Mt ) =Mt+s because

d
ds

(t(φs(p))) = dt |φs (p)(F) = 1, and hence t(φs(p)) = s + t(p).

I Then the metric Φ∗g for Φ(t , p) = φt (p) ∈ M satisfies

Φ∗g(∂t ,X) = g(F , dΦ(X)) = 0 ∀X ∈ TMt ,

with λ̃2 = Φ∗g(∂t , ∂t ) = g(F ,F) = 1
dt(∇t)

.



Extension of the spinor

Extend generalised imaginary Killing spinor (GIKS) along (M, g) to parallel spinor
on (M, g) by parallel transport along the flow of V =⇒

Corollary 2 (Lischewski ’15)

Let (M, g, ϕ) be a smooth Riemannian mfd with smooth GIKS ϕ and
λ ∈ C∞(R ×M). Then the above Lorentzian manifoldM ⊂ R ×M with Lorentzian
metric g admits a a parallel spinor φ such that φ|M = ϕ.

The corollary was obtained independently by Lischewski by studying the system

Ric(g) = f (V [
φ)2, /Dg

φ = 0, df(Vφ) = 0

for a spinor φ, a metric g and a function f . The wave operator in step 2 of the
proof is made of multiple copies of /D2 and ∇

2
.



Riemannian manifolds satisfying the constraints

Let (M, g) be a Riemannian manifold with a vector field U such that ∇[iUj] = 0
and u2 := g(U,U) , 0.

I dU[ = 0 and U⊥ is integrable.

I Locally, U = grad(f), and the leaves of U⊥ are the level sets of f .

I For Z = 1
u2 U we have LZ U[ = dU[(Z , .) = 0. Hence, the flow φ of Z is a

diffeomorphism between the leaves of U⊥ and there is a diffeomorphism

Φ : I ×U 3 (s, x)→ φs(x) ∈ W ⊂ M, I an interval,

I The diffeomorphism Φ satisfies dΦ|(s,x)(∂s) = Z |φs (x) and

Φ∗g(∂s , ∂s) = g(Z ,Z) = 1
g(U,U)

,

Φ∗g(∂s ,X) = g(Z , dΦ(X)) = 0, for X ∈ U⊥



Riemannian manifolds satisfying the constraints, ctd.

If Z is complete, its flow is defined on R. On the universal cover M̃ ofM ,
U = grad(f) globally, and hence there is a diffeomorphism

Φ : R ×U 3 (s, x) → φs(x) ∈ M̃
↑

level sets of f = integral mfds of U⊥.

Theorem 3

(M, g,U) satisfies the constraint ∇[iUj] = 0 ⇐⇒ it is locally isometric to(
I × F , g = 1

u2 ds2 + hs

)
, hs family of Riemannian metrics on F .

This isometry maps U to u2∂s . Moreover: If the vector field 1
u2 U is complete, then

M̃ is globally isometric to R × F .
Conversely, if F is compact and u ∈ C∞(F × R) bounded, then for any family of
Riemannian metrics hs (

M = R × F , g = 1
u2 ds2 + hs

)
is complete.



Lorentzian holonomy reductions and the screen bundle

Let (M, g) be a Lorentzian mfd. of dim (n + 2) with parallel null vector field V .

I holp(M, g) ⊂ stab(Vp) = so(n) n Rn =


 0 v> 0

0 A −v
0 0> 0


∣∣∣∣∣∣∣∣ v ∈ Rn ,

A ∈ so(n)


I Screen bundle overM:

S = V⊥/R · V , hS([X ], [Y ]) = g(X ,Y), ∇SX [Y ] =
[
∇X Y

]
,

is a vector bundle with positive def. metric and compatible connection ∇S.

I hol(∇S) = prso(n)hol(M, g) is a Riemannian holonomy algebra, i.e., equal to
(a product of) so(k), u(k), sp(1) ⊕ sp(k), su(k), sp(k), g2 or spin(7), or the
isotropy of a Riemannian symmetric space.

I Fixing a time-like unit vf T ∈ Γ(M) gives a canonical identification of S with a
tangent subbundle

V⊥ ∩ T⊥ = S ⊂ TM



I If (M, g,V) arises as solution to the Cauchy problem for V from (M, g,U)

we identify S|M with U⊥ ⊂ TM and get

∇SXσ|M = ∇⊥Xσ,

σ ∈ Γ(S|M) = Γ(U⊥), X ∈ TM and ∇⊥ = prU⊥ ◦ ∇
g the induced connection.

I Locally (M, g) = (I × F , 1
u2 ds2 + hs) and we can interpret σ ∈ Γ(U⊥) as

family {σs}s∈I

I We have the following vector bundles of the same rank

(TF ,∇hs ) (U⊥,∇⊥) (S,∇S)

↓ ↓ ↓

F ⊂ M ⊂ M

I Lorentzian holonomy reductions from so(1, n + 1) to g n Rn with g ⊂ so(n)

are given by a parallel null vector field V and a parallel sections of
⊗a,bS→M such as a complex structure, a stable 3-form, etc.



The relation to Lorentzian holonomy reductions

Theorem 4

Let (M, g,U) be a Riemannian mfd. satisfying the constraints and (M, g,V) the
Lorenzian mfd. arising as solution of the Cauchy problem. Then there is a 1-1
correspondence between

 η̂ ∈ Γ(⊗a,bS) :

∇Sη̂ = 0

 (∗)
↔

 η ∈ Γ(⊗a,bU⊥) :

∇⊥η = 0

↔


ηs ∈ Γ(⊗a,bTF ) :

∇hsηs = 0 (i)
η̇s = 1

2 ḣ]s · ηs (ii)


Hence, hol(∇S) = prso(n)hol(M, g) lies in the stabiliser of a tensor on S if and only
if on F there is an induced s-dependent family of hs-parallel tensors ηs with (ii).

Proof of (∗,←): Extend η ∈ Γ(⊗a,bU⊥ →M) to η̂ ∈ Γ(⊗a,bS→M) by parallel
transport along the flow of V . Then A := ∇Sη ∈ Γ(T⊥ ⊗ ⊗a,bS) satisfies ∇SA = 0,
which is a linear symmetric hyperbolic system for A with initial condition A |M = 0.
Hence, not only ∇SV η̂ = 0 but also ∇SX η̂ = 0 for X ∈ TM.



Flows of special Riemannian structures

Let hs be a family of Riemannian metrics admitting a family ηs of parallel tensors
defining a holonomy reduction. What about condition (ii) η̇s = 1

2 ḣ]s · ηs?

I hs is family of Kähler metrics: there is a complex structure ηs = Js and
Kähler form ωs with

J̇s = 1
2 ḣ]s · Js , ω̇s = 1

2 ḣ]s · ωs ,

so (ii) is automatically satisfied for Js .

I hs is family of Ricci-flat Kähler metrics with divhs (ḣs) = 0.

I hs = h1
s + h2

s is a family of product metrics ⇐⇒ ∃ ∇hs -parallel
decomposable p-forms µi

s = volhi
s . Volume forms evolve as µ̇s = 1

2 ḣ]s · µs .

I hs is a family of holonomy g2 metrics defined by a family of stable 3-forms ϕs .
Problem: Given a family hs of holonomy g2 metrics, does there exist a family
of stable 3-forms ϕs defining hs such that ϕ̇s = 1

2 ḣ]s · ϕs holds?

Sym2(R7) ⊕ R7 3 (S,X) 7−→ S · ϕ + X (∗ϕ) ∈ Λ3R7

If ϕ̇ = S · ϕ + X (∗ϕ), then the associated metric satisfies ḣ = 2S ...



Consequence of Theorem 4

If (M, g) is a Lorentzian manifold obtained from the Cauchy problem. Then
hol(∇S) ⊂ g if and only if the associated family of Riemannian metrics hs on F is
given as follows:

g hs is family of

so(p) ⊕ so(q) ⇐⇒ product metrics

u(n/2) ⇐⇒ Kähler metrics

su(n/2) ⇐⇒ Ricci-flat Kähler metrics with divhs (ḣs) = 0

sp(n/4) ⇐⇒ hyper-Kähler metrics

g2 / spin(7) ⇐⇒ of g2 / spin(7)-metrics (with (ii)?)



Classification of Riemannian manifolds with GIKSs

Theorem 5

Let (M, g) be a Riemannian spin manifold admitting an GIKS ϕ. Then

1. (M, g) is locally isometric to

(M, g) =
(
I × F1 × ... × Fk , g = 1

u2 ds2 + h1
s + ... + hk

s

)
(11)

for Riemannian manifolds (Fi , hi
s) of dimension ni , u = ||ϕ||2. Each h i

s is one
of the following families of special holonomy Riemannian metrics:

I hi
s is Ricci-flat Kähler and divhi

s (ḣi
s) = 0,

I hyper-Kähler, G2 (?), Spin(7) (?) or a flat metric.

2. If (M, g) is simply connected and the vector field 1
u2
ϕ
Uϕ is complete, the

isometry (11) is global with I = R.

3. Conversely, every Riemannian manifold (M, g) of the form (11) with
I ∈ {S1,R}, where u is any positive function and (Fi , hi

s) are families of
special holonomy metrics (subject to the above flow equations ...) is spin
and admits an GIKS.
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