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G2 cones and nearly Kähler 6–manifolds

Riemannian cone over smooth compact Riemannian manifold M:

C (M) = R+ ×M endowed with the Riemannian metric gc = dr2 + r2g

Hol(C ) ⊂ G2 ⇐⇒ parallel (and hence closed) 3-form ϕ and 4-form ∗ϕ
ϕ = r2dr ∧ ω + r3ReΩ, ∗ϕ = −r3dr ∧ ImΩ + 1

2 r4ω2

dϕ = 0 = d ∗ ϕ⇐⇒ the SU(3)–structure (ω,Ω) on M satisfies{
dω = 3ReΩ

dImΩ = −2ω2
(NK)

A 6–manifold M endowed with an SU(3)–structure satisfying (NK) is called
a (strict) nearly Kähler (nK) 6–manifold.
� every nK 6–manifold M is Einstein with Scal = 30 =⇒ if M is complete,

then it is compact with |π1(M)| <∞ =⇒ wlog can assume π1(M) = 0.
� nK 6-manifolds and real Killing spinors
� nK 2n-manifolds and Gray–Hervella classes of almost Hermitian manifolds



The 4 examples known!

� S6 ⊂ ImO: dates back to at least 1947 (e.g. C. Ehresmann, A. Kirchoff)
� 1968, in Gray–Wolf’s classification of 3–symmetric spaces in 6d have

S3×S3 = SU(2)3/4SU(2) CP3 = Sp(2)/U(1)×Sp(1) F3 = SU(3)/T 2

A 3-symmetric space has an automorphism σ with σ3 = 1: define a
homogeneous almost complex structure on ker (σ2 + σ + Id) by

J =
1√
3

(2σ + Id)

� Connection with G2–holonomy noted only in the 1980’s, e.g. Bryant’s
1987 first explicit example of a full G2–holonomy metric is C (F3)

� G2–cones give local models for isolated singularities of G2–spaces
� Infinitely many Calabi–Yau, hyperkähler and Spin(7)–cones. Why not G2?
� 2005, Butruille: the four known examples are the only homogeneous nK

6–manifolds
� 2006, Bryant: local generality (via Cartan-Kähler theory) of 6d nK

structures same as for 6d Calabi–Yaus (also Reyes Carrion thesis 1993)



Main Theorem and possible proof strategies

Main Theorem (Foscolo–Haskins, to appear Annals of Mathematics)
There exists a complete inhomogeneous nearly Kähler structure on S6 and
on S3 × S3.

Two natural strategies to find nK 6–manifolds:
� Symmetries: cohomogeneity one nK 6–manifolds.
� Desingularisation of singular nK spaces.

Our proof uses elements from both viewpoints.

Simplest singular nK spaces: sine-cones (reduced holonomy SU(3) ⊂ G2)
cross-section of a “split” G2 cone, i.e. R× C for C a Calabi–Yau cone

(N5, gN) smooth Sasaki–Einstein ⇔ C (N) is a Calabi–Yau (CY) cone

The sine-cone over N: SC (N) = [0, π]× N endowed with the Riemannian
metric dr2 + sin2 r gN (aka metric suspension of N)

SC (N) is nK but has 2 isolated singularities each modelled on CY cone C (N)

Idea: Try to desingularise SC (N) by replacing conical singularities with
smooth asymptotically conical CY 3–folds.



A simple nK sine-cone and desingularisations

A simple example comes from the so-called conifold:

� C (N) is the conifold {z2
1 + z2

2 + z2
3 + z2

4 = 0} ⊂ C4

� N = SU(2)× SU(2)/4U(1) which is diffeomorphic to S2 × S3

C (N) has 2 Calabi–Yau desingularisations (Candelas–de la Ossa, Stenzel)

� Y = the small resolution ' total space of O(−1)⊕O(−1)→ P1

vertex of cone replaced with a totally geodesic holomorphic P1

� Y ′ = the smoothing ' T ∗S3

vertex of cone replaced with a totally geodesic special Lagrangian S3

The conifold itself and its asymptotically conical CY desingularisations are
cohomogeneity one, i.e. ∃ some Lie group G acting isometrically with
generic orbit of codimension one

Two examples above have only 1 singular orbit: P1 or S3

Sine-cone C (N), conifold and its desingularisations are cohomogeneity one.

So obvious question is: Can we desingularise this sine-cone as a
cohomogeneity one space?



Cohomogeneity one nK 6-manifolds

2010, Podestà–Spiro: potential complete cohomogeneity one nK 6–mfds
M. Compact Lie group G acts with K , K1, K2 as its principal and singular
isotropy groups. Principal orbit is G/K ; 2 singular orbits G/Ki .

G K K1 K2 M

SU(2)× SU(2) 4U(1) 4SU(2) 4SU(2) S3 × S3

SU(2)× SU(2) 4U(1) 4SU(2) U(1)× SU(2) S6

SU(2)× SU(2) 4U(1) U(1)× SU(2) SU(2)× U(1) CP3

SU(2)× SU(2) 4U(1) U(1)× SU(2) U(1)× SU(2) S2 × S4

SU(3) SU(2) SU(3) SU(3) S6

⇒ N1,1 = SU(2)× SU(2)/∆U(1) is only possible interesting principal orbit!



Rough outline of proof

1. Understand the local theory for cohomogeneity one nK 6–mfds in
neighbourhood of principal orbit N1,1 = SU(2)× SU(2)/∆U(1).
� Our approach: study the geometry induced on (invariant) hypersurfaces and

how it varies. Decomposes into a “static” and “dynamic” part.
� Static = understand exactly what geometric structures can appear on an

(invariant) hypersurface.

Answer = (invariant) nearly hypo SU(2) structures (Fernandez et al);

Space of invariant nearly hypo structures can be identified with a connected
open subset of SO0(1, 2)× S1. S1 factor corresponds to obvious continuous
symmetries of the equations.

So up to symmetry there exists a 3-dimensional family of invariant nearly
hypo structures.

� Dynamic = (cohom 1) nK metrics correspond to differential equations for
evolving a 1–parameter family of (invariant) nearly hypo structures.

Answer in cohom 1 case = explicit 1st order ODEs for a curve in the space
of invariant nearly hypo structures.

� Upshot: ∃ 2–parameter family of cohomogeneity 1 local nK metrics.



Rough outline of proof II

• Don’t know how to find explicit form for general solution to the ODEs.
Special explicit solutions do exist, have geometric significance and play
important role in our proof.
• Generic solution in 2–parameter family does NOT extend to a complete
metric.

Fundamental difficulty: recognise which local solutions extend to complete
metrics.

Proceed in two steps; separate the two singular orbits that appear and study
separately.
1. Understand the possible singular orbits (uses Lie group theory) and which

solutions extend over a given singular orbit (need to solve singular IVP).
2. Understand how to “match” a pair of solutions from the previous step.
Step 1 fits into a general framework for cohomogeneity 1 Einstein metrics
(Eschenburg–Wang 2000); extra care needed because of isotropy repn.
Step 2 is the most subtle part of argument. Closest to previous work of
Böhm on Einstein metrics on spheres (Inventiones 1998).



Local solutions extending over a singular orbit

Neighbourhood of singular orbit is a G -equivariant disc bundle over singular
orbit. Use representation theory to express conditions that a G -invariant
section extend smoothly over the zero section. Get a singular initial value
problem for 1st order nonlinear ODE system. Smoothness gives constraints
on the initial values permitted.
Podestà–Spiro: up to symmetries possible singular orbits are

SU(2)× SU(2)/U(1)× SU(2) ' S2 SU(2)× SU(2)/4SU(2) ' S3

Proposition (Nearly Kähler deformations of small resolution & smoothing)
� There exist two 1–parameter families {Ψa}a>0 and {Ψb}b>0 of solutions

to the fundamental ODE system which extend smoothly over a singular
orbit S2 and S3, respectively. a and b measure size of singular orbits.

� As a, b → 0, appropriately rescaled, the local nK structures Ψa and Ψb

converge to the CY structures on the small resolution and the smoothing.
Think of the two 1–parameter families as local nearly Kähler deformations
of CY metrics on small resolution and smoothing.
Now the parameter a or b is NOT just a global rescaling (as in CY case).



Matching pairs of solns: maximal volume orbits

M complete cohom 1 nK =⇒ orbital volume V (t) has a unique maximum.
But generic member of our 1-parameter families of solutions is not complete.

Key properties of space of invariant maximal volume orbits V:
� V ' R2 × S1 ⊂ R3 × S1

� V ≥ 1 on V and V = 1 precisely for the Sasaki–Einstein structure on N1,1

� V ∩ {V ≤ C} is compact

Key Proposition Every member of the families {Ψa}a>0 and {Ψb}b>0 has
a unique maximal volume orbit.

Idea of proof: a continuity argument in the parameter a or b.

Nonempty; open; closed.

Nonempty: 3 of 4 known homogeneous examples appear in these families;
these clearly have max vol orbits.
Openness: easy using nondegeneracy conditions that are satisfied.
Closedness is main point: uses compactness of V ∩ {V ≤ C} plus standard
ODE theory and basic comparison theory.



Strategy for finding complete nK metrics: Match pairs of solutions in the
two families across their maximal volume orbits using discrete symmetries.

� α, β continuous curves in R2 ' V/S1 parametrising the maximal volume
orbits of {Ψa}a>0 and {Ψb}b>0

� Discrete symmetries = reflections along the axes
� Matching means:

(i) curves α, β must intersect (up to a discrete symmetry), or
(ii) self-intersect, or
(iii) intersect either axis.

� Intersection points with axes correspond to solutions with a special
“doubling symmetry”, i.e. ∃ a reflection that exchanges the two singular
orbits (therefore are of same type and size).

� Intersection points of α curve with axes give S2 × S4 or CP3.
� Intersection points of β curve with either axis gives S3 × S3.
� Intersection points of α and β curves (up to action of reflection) gives S6.

To understand if there exist new complete cohomogeneity 1 nK metrics is
equivalent to:

How many axis crossings/intersection/self-intersection points do
the curves α and β (and their images under the reflections) have?



Geometry of the α and β curves

Two obvious ways to get some information about the α and β curves.
1. Standard nK metrics on CP3, S6 and S3×S3 give points on these curves.

CP3 and S3×S3 give intersection points of α and β curves with the axes;
S6 gives an intersection point between α and (reflection of) β curves.

What about the sine-cone?
2. Study limits of α and β curves as the parameters a and b → 0.

Desingularisation philosophy suggests: Ψa and Ψb should both converge
to the sine-cone away from the two singular orbits. Max vol orbit in
sine-cone is the origin in the plane (“rotated” SE structure). So expect
that the α and β curves both limit to the origin. Need to prove:

Proposition. As a, b → 0 Ψa and Ψb converge to the sine-cone over the
standard Sasaki–Einstein structure on N1,1.

Proof ingredients: use convergence of “bubbles” to asymptotically conical
CY structures; the Böhm functional B for cohom 1 Einstein metrics;
invariance of B under rescaling and fact that it gives a power of Vol on a
max vol orbit; rotated SE metric is the absolute min of Vol on all max vol
orbits.



Existence of the new metric on S3 × S3

First look only for solutions obtained by “doubling” some Ψb.

Idea: exploit the convergence of Ψb as b → 0 to the sine-cone and the
existence of the homogeneous nK metric on S3 × S3 (this has b = 1).
Find a new nK metric “between” these two metrics, i.e. with 0 < b < 1.

Observation: Can detect a doubled metric on S3 × S3 via condition that

v0 = 0

on a max volume orbit where v0 is one component of nearly hypo structure.
ODE system ⇒ Zeros of v0 are nondegenerate; count the number of them
that occur before a max vol orbit: we call this C(b).

Key fact: C(b) is locally constant in b unless we hit a doubled metric.

Idea of proof: b = 1 is standard S3 × S3 and we check C (b) = 1. To get a
new cohomogeneity 1 metric on S3 × S3 it’s enough to show C (b) ≥ 2 for
b > 0 sufficiently small. This implies there is another doubled metric for
some b ∈ (0, 1).

Need to prove: C (b) ≥ 2 for b > 0 sufficiently small.



C (b) ≥ 2 for b > 0 sufficiently small.

Want to count zeroes of v0 before max vol orbit; by ODE system this is
equivalent to counting critical points of u0 (another component of the nearly
hypo structure)
u0 is a solution of the second order IVP

(∗) (λu′0)′ + 12λu0 = 0, u0(0) = 0, u′0(0) = 2b2 > 0.

Convergence of Ψb to sine-cone implies λ(t)→ sin t as b → 0.
Idea: Compare u0 to a solution of the limiting equation

(sin t ξ′)′ + 12 sin t ξ = 0.

This is Legendre’s equation with k = 3. There are explicit solutions:

ξ0(t) = C1(5 cos3 t − 3 cos t)+

C2

(
5

2
cos2 t +

1

8
cos t(4 cos2 t − 6 sin2 t) log

1− cos t

1 + cos t
− 2

3

)
1st solution is regular at endpoints 0 and π while 2nd is singular.



Existence of the new metric on S3 × S3

Lemma: There exists a solution ξ0 of this Legendre eqn with the following
properties: there exists 0 < t1 < t2 < t3 <

π
2 such that ξ0(t1) = ξ0(t2) = 0,

ξ0 ≥ 0 on [t1, t2] and ξ0 has a negative minimum at t3.

Proof:

t
π
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-2

-1
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t3

ξreg

ξsing

ξ0



Existence of the new metric on S3 × S3

Recall that u0 solves

(∗) (λu′0)′ + 12λu0 = 0, u0(0) = 0, u′0(0) = 2b2 > 0.

and λ→ sin t on (0, π) as b → 0.

Theorem: There exists ε > 0 such that for all b < ε, u0 the solution of (*)
has a strict negative minimum before the maximal volume orbit.

Proof sketch: Apply a (generalised) Sturm-Picone comparison argument to
prove the same conclusion about the minimum holds for solution of (∗),
using uniform convergence of λ(t) to sin t on compact subsets of (0, π).

Finally: initial conditions for u0 also force a maximum before the minimum.



Existence of the new metric on S6

Need to force planar curves α and β to intersect in another point
(2 intersection points already exist: standard nK S6 and sine-cone).

Idea: use the new and old solutions on S3 × S3 to find a closed bounded
region D in the plane encircling the origin. The α curve starts at the origin
(as a→ 0); we want to show that eventually the α curve leaves D passing
through its boundary; this point gives the new intersection point of the α
and β curves.

Proposition. The curve α exits any compact subset of R2 as a→∞.

Idea of proof: based on explicit Taylor series for solutions Ψa and their
dependence on the parameter a we consider a very particular (but non
geometric) rescaling of the solution to the ODE system. Show that the
rescaled solutions are well behaved as a→∞ and converge smoothly to
some limiting object. Scaling used shows Vmax ∼ ca4.

Heuristically: making the size of the singular orbit 2-sphere large (a→∞)
forces the size of the maximal volume orbit to be large.



The intersection points of α and β
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Figure: α and β curves and the locations of the 5 complete cohomogeneity one
nK structures computed numerically



Nearly hypo structures

N1,1 = SU(2)× SU(2)/4U(1)
On M∗ = (a, b)× N1,1 we write

ω = η ∧ dt + ω1 Ω = (ω2 + iω3) ∧ (η + idt),

where (η, ω1, ω2, ω3) defines an invariant SU(2)–structure on N1,1.

The SU(2)–structure induced on a hypersurface in a nK 6–manifold is called
a nearly hypo structure. It is defined by the following equations:

dω1 = 3η ∧ ω2 d(η ∧ ω3) = −2ω1 ∧ ω1

The evolution equations to obtain a nK manifold by flowing a nearly hypo
structure are:

∂tω1 = −dη − 3ω3 ∂t(η ∧ ω2) = −dω3 ∂t(η ∧ ω3) = dω2 + 4η ∧ ω1

Lemma. The space of invariant nearly hypo structures on N1,1 is a smooth
manifold diffeomorphic to R3 × S1. (The S1–factor is generated by the action

of the Reeb vector field.)



The fundamental ODE system

We parametrise invariant nearly hypo structures modulo the Reeb action by
tuples (λ, u, v) ∈ R+ × R1,2 × R1,2 subject to the constraints

λ2|u|2 = |v |2 > 0 〈u, v〉 = 0 v1 = |u|2 u2 = −λ|u|

The basic equations then are:

λu̇0 + 3v0 = 0, v̇0 − 4λu0 = 0,

λu̇1 + 3v1 − 2λ2 = 0, v̇1 − 4λu1 = 0,

λu̇2 + 3v2 = 0, λv̇2 − 4λ2u2 + 3u2 = 0,

λ2|u|2λ̇+ 2λ4u1 + 3u2v2 = 0.

Proposition. Up to symmetries, there exists a 2–parameter family of local
cohomogeneity one nK stuctures on (a, b)× N1,1.



The homogeneous nK structure on S3 × S3 is

λ = 1, u0 = u1 =
1√
3

sin (2
√

3t), u2 = − 2√
3

sin (
√

3t),

v0 = −2

3
cos (2

√
3t), v1 =

2

3

(
1− cos (2

√
3t)
)
, v2 =

2

3
cos (
√

3t),

for t ∈ [0, π√
3

].

The sine-cone is:

λ = sin t, u0 = 0, u1 = sin2 t cos t, u2 = − sin3 t,

v0 = 0, v1 = µ2 = sin4 t, v2 = sin3 t cos t,

for t ∈ [0, π].



The first few terms of the Taylor series of Ψa at t = 0 are:

λ(t) = 3
2 t − 2a2 + 3

12a2
t3 +

116a4 − 381a2 + 261

1440a4
t5 + · · ·

u0(t) = a2 − 3a2t2 +
52a2 − 3

24
t4 + · · ·

u1(t) = a2 − 3
2 (2a2 − 1)t2 +

52a4 − 32a2 − 3

24a2
t4 + · · ·

u2(t) = −3
√
3

2 at2 +

√
3(16a2 − 3)

12a
t4 + · · ·



Conclusion

Conjecture The Main Theorem yields all (inhomogeneous) cohomogeneity
one nK structures on simply connected 6–manifolds.


