7-manifolds with G_2 holonomy

Mark Haskins

Imperial College London

19 September 2016
Geometric Flows and the Geometry of Space-time
Hamburg
What is G_2? G_2 holonomy and Ricci-flat metrics

i. the automorphism group of the octonions \mathcal{O}

ii. the stabilizer of a generic 3-form in \mathbb{R}^7

Define a vector cross-product on $\mathbb{R}^7 = \text{Im}(\mathcal{O})$

$$ u \times v = \text{Im}(uv) $$

where uv denotes octonionic multiplication. Cross-product has an associated 3-form

$$ \varphi_0(u, v, w) := \langle u \times v, w \rangle = \langle uv, w \rangle $$

φ_0 is a generic 3-form so in fact

$$ G_2 = \{ A \in \text{GL}(7, \mathbb{R}) \mid A^* \varphi_0 = \varphi \subset \text{SO}(7) \}. $$

G_2 can arise as the holonomy group of an irreducible non-locally-symmetric Riemannian 7-manifold (Berger 1955, Bryant 1987, Bryant-Salamon 1989, Joyce 1995). Any such manifold is automatically *Ricci-flat*.
6 + 1 = 2 \times 3 + 1 = 7 \quad \& \quad \text{SU}(2) \subset \text{SU}(3) \subset G_2

∃ close relations between \(G_2\) holonomy and Calabi-Yau geometries in 2 and 3 dimensions.

- Write \(\mathbb{R}^7 = \mathbb{R} \times \mathbb{C}^3\) with \((\mathbb{C}^3, \omega, \Omega)\) the standard \(\text{SU}(3)\) structure then

\[
\varphi_0 = dt \wedge \omega + \text{Re} \Omega
\]

Hence stabilizer of \(\mathbb{R}\) factor in \(G_2\) is \(\text{SU}(3) \subset G_2\). More generally if \((X, g)\) is a Calabi-Yau 3-fold then product metric on \(S^1 \times X\) has holonomy \(\text{SU}(3) \subset G_2\).

- Write \(\mathbb{R}^7 = \mathbb{R}^3 \times \mathbb{C}^2\) with coords \((x_1, x_2, x_3)\) on \(\mathbb{R}^3\), with standard \(\text{SU}(2)\) structure \((\mathbb{C}^2, \omega_I, \Omega = \omega_J + i\omega_K)\) then

\[
\varphi_0 = dx_1 \wedge dx_2 \wedge dx_3 + dx_1 \wedge \omega_I + dx_2 \wedge \omega_J + dx_3 \wedge \omega_K,
\]

where \(\omega_I\) and \(\Omega = \omega_J + i\omega_K\) are the standard Kahler and holomorphic \((2, 0)\) forms on \(\mathbb{C}^2\). Hence subgroup of \(G_2\) fixing \(\mathbb{R}^3 \subset \mathbb{R}^3 \times \mathbb{C}^2\) is \(\text{SU}(2) \subset G_2\).
G₂ structures and G₂ holonomy metrics

- A **G₂ structure** is a 3-form \(\phi \) on an oriented 7-manifold \(M \) such that at every point \(p \in M \), \(\exists \) an oriented isomorphism

 \[
i : T_p M \rightarrow \mathbb{R}^7, \text{ such that } i^* \phi_0 = \phi.\]

- **G₂-structures on** \(\mathbb{R}^7 \leftrightarrow \text{GL}_+(7, \mathbb{R})/G_2 \).
- \(\text{dim}(\text{GL}_+(7, \mathbb{R})/G_2) = 35 = \text{dim} \Lambda^3 \mathbb{R}^7 \).
 \(\Rightarrow \text{ implies small perturbations of a } G_2\text{-structure are still } G_2\text{-structures.} \)

How to get a **G₂-holonomy metric from a G₂ structure?**

Theorem

Let \((M, \phi, g) \) be a **G₂ structure** on a compact 7-manifold; the following are equivalent

1. \(\text{Hol}(g) \subset G_2 \) and \(\phi \) is the induced 3-form
2. \(\nabla \phi = 0 \) where \(\nabla \) is Levi-Civita w.r.t \(g \)
3. \(d\phi = d^*\phi = 0. \)

Call such a **G₂ structure** a **torsion-free G₂ structure**.

NB (3) is nonlinear in \(\phi \) because metric \(g \) depends nonlinearly on \(\phi \).
Lemma

Let M be a compact 7-manifold.

1. M admits a G_2 structure iff it is orientable and spinnable.
2. A torsion-free G_2 structure (ϕ, g) on M has $\text{Hol}(g) = G_2$ iff $\pi_1 M$ is finite.
3. If $\text{Hol}(g) = G_2$ then M has nonzero first Pontrjagin class $p_1(M)$.

Ingredients of proof for 2 and 3.

2. M has holonomy contained in G_2, implies g is Ricci-flat. Now combine structure results for non-simply connected compact Ricci-flat manifolds (application of Cheeger-Gromoll splitting theorem) with the classification of connected subgroups of G_2 that could appear as (restricted) holonomy groups of g.

3. Apply Chern-Weil theory for $p_1(M)$ and use G_2 representation theory to analyse refinement of de Rham cohomology on a G_2 manifold; full holonomy G_2 forces vanishing of certain refined Betti numbers and this leads to a sign for $\langle p_1(M) \cup [\phi], [M] \rangle$.
Exceptional holonomy milestones

1984: (Bryant) locally \(\exists \) many metrics with holonomy \(G_2 \) and \(Spin(7) \). Proof uses Exterior Differential Systems.

1989: (Bryant-Salamon) explicit complete metrics with holonomy \(G_2 \) and \(Spin(7) \) on noncompact manifolds.
- total space of bundles over 3 & 4 mfds
- metrics admit large symmetry groups and are asymptotically conical

1994: (Joyce) Gluing methods used to construct compact 7-manifolds with holonomy \(G_2 \) and 8-manifolds with holonomy \(Spin_7 \). Uses a modified Kummer-type construction.

String/M-theorists become interested in using compact manifolds with exceptional holonomy for supersymmetric compactifications.

2000: Joyce’s book *Compact Manifolds with Special Holonomy*.

2003: Kovalev uses Donaldson’s idea of a *twisted connect sum* construction to find alternative constructions of compact \(G_2 \) manifolds.
The moduli space of holonomy G_2 metrics

Let M be a compact oriented 7-manifold and let \mathcal{X} be the set of torsion-free G_2 structures on M. Let \mathcal{D} be the group of all diffeomorphisms of M isotopic to the identity. Then \mathcal{D} acts naturally on the set of G_2 structures on M and on \mathcal{X} by $\phi \mapsto \Psi_*(\phi)$.

Define the moduli space of torsion-free G_2 structures on M to be $\mathcal{M} = \mathcal{X}/\mathcal{D}$.

Theorem (Joyce)

\mathcal{M} the moduli space of torsion-free G_2 structures on M is a smooth manifold of dimension $b^3(M)$, and the natural projection $\pi: \mathcal{M} \to H^3(M, \mathbb{R})$ given by $\pi(\phi \mathcal{D}) = [\phi]$ is a local diffeomorphism.

Main ingredients of the proof: (a) a good choice of ‘slice’ for the action of \mathcal{D} on \mathcal{X}, i.e. a submanifold S of \mathcal{X} which is (locally) transverse to the orbits of \mathcal{D}, so that each nearby orbit of \mathcal{D} meets S in a single point. (b) Some fundamental technical results about (small) perturbations of G_2 structures to yield appropriate nonlinear elliptic PDE. (c) Linearise the PDE and apply standard Hodge theory and Implicit Function Theory.
Two fundamental technical results:
Denote by Θ the (nonlinear) map sending $\phi \mapsto *\phi$.

Lemma (A)

If ϕ is a closed G_2-structure on M and χ a sufficiently small 3-form then $\phi + \chi$ is also a G_2-structure with Θ given by

$$\Theta(\phi + \chi) = *\phi + *(\text{explicit terms linear in } \chi) - F(\chi)$$

where F is a smooth function from a closed ball of small radius in $\Lambda^3 T^*M$ to $\Lambda^4 T^*M$ with $F(0) = 0$ satisfying some additional controlled growth properties.

Lemma (B)

If (M, ϕ, g) is a compact G_2 manifold and $\tilde{\phi}$ is a closed 3-form C^0-close to ϕ, then $\tilde{\phi}$ can be written uniquely as $\tilde{\phi} = \phi + \xi + d\eta$ where ξ is a harmonic 3-form and η is a d^*-exact 2-form. Moreover, $\tilde{\phi}$ is a torsion-free G_2 structure also satisfying the “gauge fixing”/slice condition if and only if

$$(*) \quad \Delta \eta = *dF(\xi + d\eta).$$

The latter gives us the nonlinear elliptic PDE (for the coexact 2-form η) we seek.
How to construct compact G_2 manifolds

Meta-strategy to construct compact G_2 manifolds

I. Find a closed G_2 structure ϕ with sufficiently small torsion on a 7-manifold with $|\pi_1| < \infty$

II. Perturb to a torsion-free G_2 structure ϕ' close to ϕ.

- II was understood in great generality by Dominic Joyce using an extension of Lemma (B) to G_2 structures ϕ that are closed and sufficiently close to being torsion-free.

- Condition that the perturbed G_2 structure $\phi + d\eta$ be torsion-free still becomes a nonlinear elliptic PDE (*)' for the 2-form η; get extra terms on RHS of (*) coming from failure of background G_2-structure ϕ to be torsion-free.

- Joyce solves (*)' by iteratively solving a sequence of linear elliptic PDEs together with a priori estimates (of appropriate norms) on the iterates to establish their convergence to a limit satisfying (*)'.

Q: How to construct closed almost torsion-free G_2 structures?!
Degenerations of compact G_2-manifolds I

Q: How to construct closed almost torsion-free G_2 structures?!

- Key idea: Think about possible ways a family of G_2 holonomy metrics on a given compact 7-manifold might degenerate.
- Find instances in which the singular “limit” G_2 holonomy space X is simple to understand.
- Try to construct a smooth compact 7-manifold M which resolves the singularities of X; use the geometry of the resolution to build by hand a closed G_2-structure on M that is close enough to torsion-free.

M has holonomy $G_2 \Rightarrow M$ is Ricci-flat; so think about how families of compact Ricci-flat manifolds (more generally Einstein manifolds or just spaces with lower Ricci curvature bounds) can degenerate.
Degenerations of compact G_2-manifolds II

Case 1. Neck stretching degeneration.

- A degeneration in which (M, g_i) develops a long “almost cylindrical neck” that gets stretched longer and longer.
- In the limit we decompose M into a pair of noncompact 7-manifolds M_+ and $M_-; M_\pm$ should each be asymptotically cylindrical G_2 manifolds.

Given such a pair M_\pm with appropriately compatible cylindrical ends we could try to reverse this construction, i.e. to build a compact G_2 manifold M by truncating the infinite cylindrical end sufficiently far down to get a G_2-structure with small torsion and a long “almost cylindrical” neck region.

Big disadvantage: doesn’t seem any easier to construct asymptotically cylindrical G_2 manifolds than to construct compact G_2 manifolds.

Advantage: maintain good geometric control throughout, e.g. lower bounds on injectivity radius, upper bounds on curvature etc.

\Rightarrow perturbation analysis remains relatively simple technically.

Donaldson suggested a way to circumvent the problem above.
Degenerations of compact G_2-manifolds III

Case 2. Diameter bounded with lower volume control

How can sequences of compact Ricci-flat spaces degenerate with bounded diameter and lower volume bounds?

Simplest answer: they could develop orbifold singularities in codimension 4. Simplest model is a metric version of the *Kummer construction* for K3 surfaces.

Choose a lattice $\Lambda \simeq \mathbb{Z}^4$ in \mathbb{C}^2 and form 4-torus $T^4 = \mathbb{C}^2/\Lambda$. Look at involution $\sigma : T^4 \to T^4$ induced by $(z_1, z_2) \mapsto (-z_1, -z_2)$.

- σ fixes $2^4 = 16$ points $\{[z_1, z_2] : (z_1, z_2) \in \frac{1}{2} \Lambda\}$.
- $T^4/\langle \sigma \rangle$ is a flat hyperkähler orbifold with 16 singular points modelled on $\mathbb{C}^2/\{\pm 1\}$.
- S the blow-up of $T^4/\langle \sigma \rangle$ is a smooth K3 surface: a *Kummer surface*.
- Pulling back flat orbifold metric g_0 from T^4 to S gives a singular Kähler metric on S, degenerate at the 16 \mathbb{P}^1 introduced by blowing-up.
The metric Kummer construction

Want to build a family of smooth metrics g_t on S which converges as $t \to 0$ to this singular flat orbifold metric.

Key is the *Eguchi-Hanson metric*, which gives a hyperkähler metric on the blowup of $\mathbb{C}^2/\langle \pm 1 \rangle$ (which is biholomorphic to $T^*\mathbb{P}^1$).

To get a nonsingular Kahler metric on S near each \mathbb{P}^1 we replace the degenerate metric with a suitably scaled copy of Eguchi-Hanson metric and interpolate to get ω'_t on S, where parameter t controls the diameter of the $16 \mathbb{P}^1$.

- Page observed that ω'_t is close to Ricci-flat.
- Topiwala, LeBrun-Singer then proved that it can be perturbed to a Ricci-flat Kahler metric ω_t.
- ω_t converges to the flat orbifold metric as $t \to 0$ and the size of each \mathbb{P}^1 goes to 0.

Could try similar thing using other ALE hyperkähler 4-manifolds constructed by Gibbons-Hawking, Hitchin, Kronheimer for all the ADE singularities \mathbb{C}^2/Γ, i.e. where Γ is a finite subgroup of $SU(2)$.
Joyce’s orbifold resolution construction of compact G_2 manifolds

Basic idea: seek a G_2 analogue of the metric Kummer construction above.

- look at finite subgroups $\Gamma \subset G_2$ and consider singular flat orbifold metrics $X = T^7/\Gamma$.
- analyse the singular set of T^7/Γ; this is never an isolated set of points and often can be very complicated with various strata.
- look for Γ for which the singular set is particularly simple, e.g. a disjoint union of smooth manifolds.
- find appropriate G_2 analogues of Eguchi-Hanson spaces, i.e. understand how to find resolutions of \mathbb{R}^7/G and put (Q)ALE G_2 holonomy metrics on them.
- Use these ingredients to find a smooth 7-manifold M resolving the singularities of X, admitting a 1-parameter family of closed G_2 structures ϕ_t with torsion sufficiently small compared to lower bounds for injectivity radius and upper bound for curvature; apply the general perturbation theory for closed G_2 structures with small torsion; analysis is delicate because induced metric is nearly singular.
Simplest generalised Kummer construction

If $G \subset SU(2)$ is a finite group and Y an ALE hyperkahler manifold then $\mathbb{R}^3 \times Y$ is naturally a (Q)ALE G_2-manifold, e.g. Y could be Eguchi-Hanson space for $G = \mathbb{Z}_2$.

Simplest Kummer construction:

- find finite $\Gamma \simeq \mathbb{Z}_2^3 \subset G_2$ so that singular set S of T^7/Γ is a disjoint union of 3-tori for which some open neighbourhood of each torus is isometric to $T^3 \times B^4/\langle \pm 1 \rangle$.
- Replace $B^4/\langle \pm 1 \rangle$ by its blowup U and (using explicit form of Kähler potential) put a 1-parameter family of triples of 2-forms $\omega_i(t)$ on U that interpolates between the hyperkähler structures of Eguchi-Hanson and of $\mathbb{C}^2/\langle \pm I \rangle$.
- Obtain a compact smooth 7-manifold M by replacing a neighbourhood of each component of singular set S by $T^3 \times U$.
- The triple of 2-forms $\omega_i(t)$ on U gives rise to a closed G_2 structure on $T^3 \times U$ for t sufficiently small and which is flat far enough away from T^3; so M has a 1-parameter family of closed G_2-structures ϕ'_t with small torsion supported in some “annulus” around the T^3.

Now apply the perturbation theory to get a 1-parameter family of torsion-free G_2 structures ϕ_t and verify that M has finite (actually trivial) fundamental group so that g_t all have full holonomy G_2. Can also compute Betti numbers of M: $b^2 = 12$, $b^3 = 43$.
Donaldson suggested constructing compact G_2 manifolds from a pair of asymptotically cylindrical Calabi-Yau 3-folds via a neck-stretching method.

i. Use noncompact version of Calabi conjecture to construct asymptotically cylindrical Calabi-Yau 3-folds V with one end $\sim \mathbb{C}^* \times D \sim \mathbb{R}^+ \times S^1 \times D$, with D a smooth $K3$.

ii. $M = S^1 \times V$ is a 7-manifold with $\text{Hol } g = SU(3) \subset G_2$ with end $\sim \mathbb{R}^+ \times T^2 \times K3$.

iii. Take a twisted connected sum of a pair of $M_\pm = S^1 \times V_\pm$

iv. For $T \gg 1$ construct a G_2-structure w/ small torsion (exponentially small in T) and prove it can be corrected to torsion-free.

Kovalev (2003) carried out Donaldson’s proposal for AC CY 3-folds arising from Fano 3-folds. However the paper contains two serious mistakes.
Twisted connected sums & hyperkähler rotation

Product G_2 structure on $M_{\pm} = S^1 \times V_{\pm}$ asymptotic to

$$d\theta_1 \wedge d\theta_2 \wedge dt + d\theta_1 \wedge \omega_i^{\pm} + d\theta_2 \wedge \omega_j^{\pm} + dt \wedge \omega_K^{\pm}$$

$\omega_i^{\pm}, \omega_j^{\pm} + i \omega_K^{\pm}$ denote Ricci-flat Kähler metric & parallel $(2, 0)$-form on D_{\pm}.

To get a well-defined G_2 structure using

$$F : [T - 1, T] \times S^1 \times S^1 \times D_- \to [T - 1, T] \times S^1 \times S^1 \times D_+$$

given by

$$(t, \theta_1, \theta_2, y) \mapsto (2T - 1 - t, \theta_2, \theta_1, f(y))$$

to identify end of M_- with M_+ we need $f : D_- \to D_+$ to satisfy

$$f^*\omega_i^{+} = \omega_j^{-}, \quad f^*\omega_j^{+} = \omega_i^{-}, \quad f^*\omega_K^{+} = -\omega_K^{-}.$$

- Constructing such hyperkähler rotations is nontrivial and a major part of the construction.
- Some problems in Kovalev’s original paper here.
Twisted connected sum G_2-manifolds

1. Construct suitable ACyl Calabi-Yau 3-folds V;
2. Find sufficient conditions for existence of a hyperkähler rotation between D_- and D_+;
 - Use global Torelli theorems and lattice embedding results (e.g. Nikulin) to find hyperkähler rotations from suitable initial pairs of (deformation families of) ACyl CY 3-folds.
3. Given a pair of ACyl CY 3-folds V_\pm and a HK-rotation $f : D_- \to D_+$ can always glue M_- and M_+ to get a 1-parameter family of closed manifolds M_T with holonomy G_2.
 - In general for the same pair of ACyl CY 3-folds different HK rotations can yield different 7-manifolds (e.g. different Betti numbers b^2 and b^3).

\Rightarrow have reduced solving nonlinear PDEs for G_2-metric to two problems about complex projective 3-folds.
ACyl Calabi-Yau 3-folds

Theorem (H-Hein-Nordström JDG 2015)

Any simply connected ACyl Calabi-Yau 3-fold X with split end $S^1 \times K3$ is quasiprojective, i.e. $X = \overline{X} \setminus \overline{D}$ for some smooth projective variety \overline{X} and smooth anticanonical divisor \overline{D}. Moreover \overline{X} fibres holomorphically over \mathbb{P}^1 with generic fibre a smooth anticanonical K3 surface. Conversely, the complement of any smooth fibre in any such \overline{X} admits (exponentially) ACyl CY metrics with split end.

Builds on previous work of Tian-Yau and Kovalev; HHN proved more general compactification for ACyl CY manifolds (ends need not split; compactification can be singular).

3 main sources of examples of such K3 fibred 3-folds:

- Fano 3-folds, K3 surfaces with nonsymplectic involution (Kovalev); gives several hundred examples.
- weak or semi-Fano 3-folds (Corti-H-Nordström-Pacini); gives at least several hundred thousand examples!
Simple example of a semi-Fano 3-fold

Example 1: start with a (singular) quartic 3-fold $Y \subset \mathbb{P}^4$ containing a projective plane Π and resolve. If $\Pi = (x_0 = x_1 = 0)$ then eqn of Y is

$$Y = (x_0 a_3 + x_1 b_3 = 0) \subset \mathbb{P}^4$$

where a_3 and b_3 are homogeneous cubic forms in (x_0, \ldots, x_4). Generically the plane cubics

$$(a_3(0, 0, x_2, x_3, x_4) = 0) \subset \Pi,$$

$$(b_3(0, 0, x_2, x_3, x_4) = 0) \subset \Pi$$

intersect in 9 distinct points, where Y has 9 ordinary double points. Blowing-up $\Pi \subset Y$ gives a smooth 3-fold X such that $f : X \to Y$ is a projective small resolution of all 9 nodes of Y.

X is a smooth (projective) semi-Fano 3-fold; it contains 9 smooth rigid rational curves with normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$; X has genus 3 and Picard rank 2.
G_2-manifolds and toric semi-Fano 3-folds

Theorem (Corti-Haskins-Nordström-Pacini (Duke 2015) + CHK)

There exist over 900 million matching pairs of ACyl CY 3-folds of semi-Fano type for which the resulting G_2-manifold is 2-connected.

Main ingredients of proof.

- Use a pair of ACyl CY 3-folds with one of toric semi-Fano type and the other a semi-Fano (or Fano) of rank at most 2.
- Use further arithmetic information about polarising lattices (discriminant group information) to prove there are over 250,000 toric semi-Fanos that can be matched to any ACyl CY 3-fold of Fano/semi-Fano type of rank at most 2. Over 250,000 rigid toric semi-Fanos arise from only the 12 most “prolific” polytopes.
- There are over 200 deformation types of Fanos/semi-Fanos of rank at most 2.