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What is G2? G2 holonomy and Ricci-flat metrics

i. the automorphism group of the octonions O
ii. the stabilizer of a generic 3-form in R7

Define a vector cross-product on R7 = Im(O)

u × v = Im(uv)

where uv denotes octonionic multiplication. Cross-product has an associated
3-form

ϕ0(u, v ,w) := 〈u × v ,w〉 = 〈uv ,w〉

ϕ0 is a generic 3-form so in fact

G2 = {A ∈ GL(7,R)| A∗ϕ0 = ϕ ⊂ SO(7).

G2 can arise as the holonomy group of an irreducible non-locally-symmetric
Riemannian 7-manifold (Berger 1955, Bryant 1987, Bryant-Salamon
1989, Joyce 1995). Any such manifold is automatically Ricci-flat.



6 + 1 = 2× 3 + 1 = 7 & SU(2) ⊂ SU(3) ⊂ G2

∃ close relations between G2 holonomy and Calabi-Yau geometries in 2 and
3 dimensions.

� Write R7 = R× C3 with (C3, ω,Ω) the standard SU(3) structure then

ϕ0 = dt ∧ ω + ReΩ

Hence stabilizer of R factor in G2 is SU(3) ⊂ G2. More generally if (X , g)
is a Calabi-Yau 3-fold then product metric on S1 × X has holonomy
SU(3) ⊂ G2.

� Write R7 = R3 × C2 with coords (x1, x2, x3) on R3, with standard SU(2)
structure (C2, ωI ,Ω = ωJ + iωK ) then

ϕ0 = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ ωI + dx2 ∧ ωJ + dx3 ∧ ωK ,

where ωI and Ω = ωJ + iωK are the standard Kahler and holmorphic
(2, 0) forms on C2. Hence subgroup of G2 fixing R3 ⊂ R3 × C2 is
SU(2) ⊂ G2.



G2 structures and G2 holonomy metrics

� A G2 structure is a 3-form φ on an oriented 7-manifold M such that at
every point p ∈ M, ∃ an oriented isomorphism

i : TpM → R7, such that i∗ϕ0 = φ.

� G2-structures on R7 ! GL+(7,R)/G2.
� dim(GL+(7,R)/G2) = 35 = dim Λ3R7.
⇒ implies small perturbations of a G2-structure are still G2-structures.

How to get a G2-holonomy metric from a G2 structure?

Theorem
Let (M, φ, g) be a G2 structure on a compact 7-manifold; the following are
equivalent

1. Hol(g) ⊂ G2 and φ is the induced 3-form
2. ∇φ = 0 where ∇ is Levi-Civita w.r.t g
3. dφ = d∗φ = 0.

Call such a G2 structure a torsion-free G2 structure.
NB (3) is nonlinear in φ because metric g depends nonlinearly on φ.



G2 structures and G2 holonomy metrics II

Lemma
Let M be a compact 7-manifold.

1. M admits a G2 structure iff it is orientable and spinnable.

2. A torsion-free G2 structure (φ, g) on M has Hol(g) = G2 iff π1M is finite.

3. If Hol(g) = G2 then M has nonzero first Pontrjagin class p1(M).

Ingredients of proof for 2 and 3.

2. M has holonomy contained in G2, implies g is Ricci-flat. Now combine
structure results for non-simply connected compact Ricci-flat manifolds
(application of Cheeger-Gromoll splitting theorem) with the classification of
connected subgroups of G2 that could appear as (restricted) holonomy
groups of g .
3. Apply Chern-Weil theory for p1(M) and use G2 representation theory to
analyse refinement of de Rham cohomology on a G2 manifold; full holonomy
G2 forces vanishing of certain refined Betti numbers and this leads to a sign
for 〈p1(M) ∪ [φ], [M]〉.



Exceptional holonomy milestones

1984: (Bryant) locally ∃ many metrics with holonomy G2 and Spin(7).
Proof uses Exterior Differential Systems.

1989: (Bryant-Salamon) explicit complete metrics with holonomy G2 and
Spin(7) on noncompact manifolds.
� total space of bundles over 3 & 4 mfds
� metrics admit large symmetry groups and are asymptotically conical

1994: (Joyce) Gluing methods used to construct compact 7-manifolds with
holonomy G2 and 8-manifolds with holonomy Spin7. Uses a modified
Kummer-type construction.

String/M-theorists become interested in using compact manifolds with
exceptional holonomy for supersymmetric compactifications.

2000: Joyce’s book Compact Manifolds with Special Holonomy.

2003: Kovalev uses Donaldson’s idea of a twisted connect sum construction
to find alternative constructions of compact G2 manifolds.



The moduli space of holonomy G2 metrics

Let M be a compact oriented 7-manifold and let X be the set of torsion-free
G2 structures on M. Let D be the group of all diffeomorphisms of M
isotopic to the identity. Then D acts naturally on the set of G2 structures on
M and on X by φ 7→ Ψ∗(φ).

Define the moduli space of torsion-free G2 structures on M to be
M = X/D.

Theorem (Joyce)

M the moduli space of torsion-free G2 structures on M is a smooth
manifold of dimension b3(M), and the natural projection
π : M→ H3(M,R) given by π(φD) = [φ] is a local diffeomorphism.

Main ingredients of the proof: (a) a good choice of ‘slice’ for the action of
D on X , i.e. a submanifold S of X which is (locally) transverse to the orbits
of D, so that each nearby orbit of D meets S in a single point. (b) Some
fundamental technical results about (small) perturbations of G2 structures
to yield appropriate nonlinear elliptic PDE. (c) Linearise the PDE and apply
standard Hodge theory and Implicit Function Theory.



Two fundamental technical results:

Denote by Θ the (nonlinear) map sending φ 7→ ∗φ.

Lemma (A)

If φ is a closed G2-structure on M and χ a sufficiently small 3-form then
φ+ χ is also a G2-structure with Θ given by

Θ(φ+ χ) = ∗φ+ ∗(explicit terms linear in χ)− F (χ)

where F is a smooth function from a closed ball of small radius in Λ3T ∗M
to Λ4T ∗M with F (0) = 0 satisfying some additional controlled growth
properties.

Lemma (B)

If (M, φ, g) is a compact G2 manifold and φ̃ is a closed 3-form C 0-close to
φ, then φ̃ can be written uniquely as φ̃ = φ+ ξ + dη where ξ is a harmonic
3-form and η is a d∗-exact 2-form. Moreover, φ̃ is a torsion-free G2

structure also satisfying the “gauge fixing”/slice condition if and only if

(∗) ∆η = ∗dF (ξ + dη).

The latter gives us the nonlinear elliptic PDE (for the coexact 2-form η) we
seek.



How to construct compact G2 manifolds

Meta-strategy to construct compact G2 manifolds

I. Find a closed G2 structure φ with sufficiently small torsion on a
7-manifold with |π1| <∞

II. Perturb to a torsion-free G2 structure φ′ close to φ.

� II was understood in great generality by Dominic Joyce using an
extension of Lemma (B) to G2 structures φ that are closed and
sufficiently close to being torsion-free.

� Condition that the perturbed G2 structure φ+ dη be torsion-free still
becomes a nonlinear elliptic PDE (*)’ for the 2-form η; get extra terms
on RHS of (*) coming from failure of background G2-structure φ to be
torsion-free.

� Joyce solves (*)’ by iteratively solving a sequence of linear elliptic PDEs
together with a priori estimates (of appropriate norms) on the iterates to
establish their convergence to a limit satisfying (*)’.

Q: How to construct closed almost torsion-free G2 structures?!



Degenerations of compact G2-manifolds I

Q: How to construct closed almost torsion-free G2 structures?!

� Key idea: Think about possible ways a family of G2 holonomy metrics on
a given compact 7-manifold might degenerate.

� Find instances in which the singular “limit” G2 holonomy space X is
simple to understand.

� Try to construct a smooth compact 7-manifold M which resolves the
singularities of X ; use the geometry of the resolution to build by hand a
closed G2-structure on M that is close enough to torsion-free.

M has holonomy G2 ⇒ M is Ricci-flat; so think about how families of
compact Ricci-flat manifolds (more generally Einstein manifolds or just
spaces with lower Ricci curvature bounds) can degenerate.



Degenerations of compact G2-manifolds II

Case 1. Neck stretching degeneration.

� A degeneration in which (M, gi ) develops a long “almost cylindrical
neck” that gets stretched longer and longer.

� In the limit we decompose M into a pair of noncompact 7-manifolds M+

and M−; M± should each be asymptotically cylindrical G2 manifolds.

Given such a pair M± with appropriately compatible cylindrical ends we
could try to reverse this construction, i.e. to build a compact G2 manifold M
by truncating the infinite cylindrical end sufficiently far down to get a
G2-structure with small torsion and a long “almost cylindrical” neck region.

Big disadvantage: doesn’t seem any easier to construct asymptotically
cylindrical G2 manifolds than to construct compact G2 manifolds.

Advantage: maintain good geometric control throughout, e.g. lower
bounds on injectivity radius, upper bounds on curvature etc.
⇒ perturbation analysis remains relatively simple technically.

Donaldson suggested a way to circumvent the problem above.



Degenerations of compact G2-manifolds III

Case 2. Diameter bounded with lower volume control

How can sequences of compact Ricci-flat spaces degenerate with
bounded diameter and lower volume bounds?

Simplest answer: they could develop orbifold singularities in codimension 4.

Simplest model is a metric version of the Kummer construction for K3
surfaces.

Choose a lattice Λ ' Z4 in C2 and form 4-torus T 4 = C2/Λ. Look at
involution σ : T 4 → T 4 induced by (z1, z2) 7→ (−z1,−z2).

� σ fixes 24 = 16 points {[z1, z2] : (z1, z2) ∈ 1
2Λ}.

� T 4/〈σ〉 is a flat hyperkähler orbifold with 16 singular points modelled on
C2/{±1}.

� S the blow-up of T 4/〈σ〉 is a smooth K3 surface: a Kummer surface.

� Pulling back flat orbifold metric g0 from T 4 to S gives a singular Kähler
metric on S , degenerate at the 16 P1 introduced by blowing-up.



The metric Kummer construction

Want to build a family of smooth metrics gt on S which converges as t → 0
to this singular flat orbifold metric.

Key is the Eguchi-Hanson metric, which gives a hyperkähler metric on the
blowup of C2/〈±1〉 (which is biholomorphic to T ∗P1).

To get a nonsingular Kahler metric on S near each P1 we replace the
degenerate metric with a suitably scaled copy of Eguchi-Hanson metric and
interpolate to get ω′t on S , where parameter t controls the diameter of the
16 P1.

� Page observed that ω′t is close to Ricci-flat.
� Topiwala, LeBrun-Singer then proved that it can be perturbed to a

Ricci-flat Kahler metric ωt .
� ωt converges to the flat orbifold metric as t → 0 and the size of each P1

goes to 0.

Could try similar thing using other ALE hyperkähler 4-manifolds constructed
by Gibbons-Hawking, Hitchin, Kronheimer for all the ADE singularities
C2/Γ, i.e. where Γ is a finite subgroup of SU(2).



Joyce’s orbifold resolution construction of
compact G2 manifolds

Basic idea: seek a G2 analogue of the metric Kummer construction above.

� look at finite subgroups Γ ⊂ G2 and consider singular flat orbifold metrics
X = T 7/Γ.

� analyse the singular set of T 7/Γ; this is never an isolated set of points
and often can be very complicated with various strata.

� look for Γ for which the singular set is particularly simple, e.g. a disjoint
union of smooth manifolds.

� find appropriate G2 analogues of Eguchi-Hanson spaces, i.e. understand
how to find resolutions of R7/G and put (Q)ALE G2 holonomy metrics
on them.

� Use these ingredients to find a smooth 7-manifold M resolving the
singularities of X , admitting a 1-parameter family of closed G2 structures
φt with torsion sufficiently small compared to lower bounds for injectivity
radius and upper bound for curvature; apply the general perturbation
theory for closed G2 structures with small torsion; analysis is delicate
because induced metric is nearly singular.



Simplest generalised Kummer construction

If G ⊂ SU(2) is a finite group and Y an ALE hyperkahler manifold then
R3 × Y is naturally a (Q)ALE G2-manifold, e.g. Y could be Eguchi-Hanson
space for G = Z2.

Simplest Kummer construction:

� find finite Γ ' Z3
2 ⊂ G2 so that singular set S of T 7/Γ is a disjoint union

of 3-tori for which some open neighbourhood of each torus is isometric to
T 3 × B4/〈±1〉.

� Replace B4/〈±1〉 by its blowup U and (using explicit form of Kähler
potential) put a 1-parameter family of triples of 2-forms ωi (t) on U that
interpolates between the hyperkähler structures of Eguchi-Hanson and of
C2/〈±I 〉

� Obtain a compact smooth 7-manifold M by replacing a neighbourhood of
each component of singular set S by T 3 × U

� The triple of 2-forms ωi (t) on U gives rise to a closed G2 structure on
T 3 × U for t sufficiently small and which is flat far enough away from
T 3; so M has a 1-parameter family of closed G2-structures φ′t with small
torsion supported in some “annulus” around the T 3.

Now apply the perturbation theory to get a 1-parameter family of
torsion-free G2 structures φt and verify that M has finite (actually trivial)
fundamental group so that gt all have full holonomy G2. Can also compute
Betti numbers of M: b2 = 12, b3 = 43.



SU(3) + SU(3) + ε = G2

Donaldson suggested constructing compact G2 manifolds from a pair of
asymptotically cylindrical Calabi-Yau 3-folds via a neck-stretching method.

i. Use noncompact version of Calabi conjecture to construct asymptotically
cylindrical Calabi-Yau 3-folds V with one end ∼ C∗ × D ∼ R+ × S1 × D,
with D a smooth K 3.

ii. M = S1 × V is a 7-manifold with Hol g = SU(3) ⊂ G2 with end
∼ R+ × T 2 × K 3.

iii. Take a twisted connected sum of a pair of M± = S1 × V±

iv. For T >> 1 construct a G2-structure w/ small torsion (exponentially
small in T ) and prove it can be corrected to torsion-free.

Kovalev (2003) carried out Donaldson’s proposal for AC CY 3-folds arising
from Fano 3-folds. However the paper contains two serious mistakes.



Twisted connected sums & hyperkähler rotation

Product G2 structure on M± = S1 × V± asymptotic to

dθ1 ∧ dθ2 ∧ dt + dθ1 ∧ ω±I + dθ2 ∧ ω±J + dt ∧ ω±K

ω±I , ω±J + i ω±K denote Ricci-flat Kähler metric & parallel (2, 0)-form on D±.

To get a well-defined G2 structure using

F : [T − 1,T ]× S1 × S1 × D− → [T − 1,T ]× S1 × S1 × D+

given by
(t, θ1, θ2, y) 7→ (2T − 1− t, θ2, θ1, f (y))

to identify end of M− with M+ we need f : D− → D+ to satisfy

f ∗ω+
I = ω−J , f ∗ω+

J = ω−I , f ∗ω+
K = −ω−K .

� Constructing such hyperkähler rotations is nontrivial and a major part of
the construction.

� Some problems in Kovalev’s original paper here.



Twisted connected sum G2-manifolds

1. Construct suitable ACyl Calabi-Yau 3-folds V ;

2. Find sufficient conditions for existence of a hyperkähler rotation between
D− and D+;
� Use global Torelli theorems and lattice embedding results (e.g. Nikulin) to

find hyperkähler rotations from suitable initial pairs of (deformation families
of) ACyl CY 3-folds.

3. Given a pair of ACyl CY 3-folds V± and a HK-rotation f : D− → D+ can
always glue M− and M+ to get a 1-parameter family of closed manifolds
MT with holonomy G2.
� in general for the same pair of ACyl CY 3-folds different HK rotations can

yield different 7-manifolds (e.g. different Betti numbers b2 and b3).

⇒ have reduced solving nonlinear PDEs for G2-metric to two problems
about complex projective 3-folds.



ACyl Calabi-Yau 3-folds

Theorem (H-Hein-Nordström JDG 2015)

Any simply connected ACyl Calabi-Yau 3-fold X with split end S1 × K 3 is
quasiprojective, i.e. X = X \ D for some smooth projective variety X and
smooth anticanonical divisor D. Moreover X fibres holomorphically over P1

with generic fibre a smooth anticanonical K3 surface. Conversely, the
complement of any smooth fibre in any such X admits (exponentially) ACyl
CY metrics with split end.

Builds on previous work of Tian-Yau and Kovalev; HHN proved more general
compactification for ACyl CY manifolds (ends need not split;
compactification can be singular).
3 main sources of examples of such K3 fibred 3-folds:

� Fano 3-folds, K3 surfaces with nonsymplectic involution (Kovalev); gives
several hundred examples.

� weak or semi-Fano 3-folds (Corti-H-Nordström-Pacini); gives at least
several hundred thousand examples!



Simple example of a semi-Fano 3-fold

Example 1: start with a (singular) quartic 3-fold Y ⊂ P4 containing a
projective plane Π and resolve. If Π = (x0 = x1 = 0) then eqn of Y is

Y = (x0a3 + x1b3 = 0) ⊂ P4

where a3 and b3 are homogeneous cubic forms in (x0, . . . , x4). Generically
the plane cubics

(a3(0, 0, x2, x3, x4) = 0) ⊂ Π,

(b3(0, 0, x2, x3, x4) = 0) ⊂ Π

intersect in 9 distinct points, where Y has 9 ordinary double points.
Blowing-up Π ⊂ Y gives a smooth 3-fold X such that f : X → Y is a
projective small resolution of all 9 nodes of Y .

X is a smooth (projective) semi-Fano 3-fold; it contains 9 smooth rigid
rational curves with normal bundle O(−1)⊕O(−1); X has genus 3 and
Picard rank 2.



G2-manifolds and toric semi-Fano 3-folds

Theorem (Corti-Haskins-Nordström-Pacini (Duke 2015)+CHK)

There exist over 900 million matching pairs of ACyl CY 3-folds of semi-Fano
type for which the resulting G2-manifold is 2-connected.

Main ingredients of proof.

� Use a pair of ACyl CY 3-folds with one of toric semi-Fano type and the
other a semi-Fano (or Fano) of rank at most 2.

� Use further arithmetic information about polarising lattices (discriminant
group information) to prove there are over 250,000 toric semi-Fanos that
can be matched to any ACyl CY 3-fold of Fano/semi-Fano type of rank
at most 2. Over 250,000 rigid toric semi-Fanos arise from only the 12
most “prolific” polytopes.

� There are over 200 deformation types of Fanos/semi-Fanos of rank at
most 2.
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