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General relativity
• Provides the “correct” classical description of the 

gravitational force at sufficiently large scales 

• Einstein equations determine the spacetime metric g: 

• Non-linear PDEs ⇒ difficult to solve in general 

• Black holes are amongst the most important 
solutions of Einstein’s equations
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4D asymptotically flat stationary vacuum black holes are well-
understood in classical general relativity: 

• Spherical topology [Hawking] 

• Rotate rigidly [Hawking] 

• Uniqueness [Carter; Robinson; Bunting; Mazur] 

• Methods to construct all 4D black holes explicitly are known 
[Kerr; Belinskii and Zakharov] 

• They exist in Nature: GW150914 [LIGO] 

• Stability?

4D black holes



Why general relativity 
beyond 4D?

• Address fundamental questions about the nature of 
gravity in different settings 

• Practical applications: general relativity with certain 
boundary conditions gives access to certain 
strongly interacting (non-gravitational) physics 

• Mathematical interest: solutions have new 
properties



Outline of the talk

1. General relativity and black holes beyond 4D 

2. Solving the Einstein equations 

3. Application: gravitational dual of a CFT in a black 
hole background 

4. Summary and conclusions



General relativity and 
black holes  beyond 4D



gauge/gravity 
correspondence

strongly interacting  
gauge theory

classical GR in  
anti-de Sitter space⟷

⟷

⇒ GR as a calculational tool

[Maldacena]



What’s new?
• New topologies: black rings [Emparan 

and Reall], black saturns [Elvang and PF],…

• Non-uniqueness 

• Symmetries 

• Rotation is different: 

- Can have multiple spins 

- The angular momentum can be arbitrarily large



What’s new?
• Phase transitions and generic instabilities

[PF et al;Emparan, Martínez, PF][Gregory and Laflamme; Wiseman]
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What’s new?
• Formation of singularities in finite time

[Lehner and Pretorius] [PF, Kunesch, Tunyasuvunakool, to appear]



black holes in AdS
Many of the classical results on black holes do not hold in AdS: 

• Non-spherical black holes are possible even in 4D 

• Uniqueness? Symmetries?

• Black holes can move in a 
non-rigid way

Heat flow

[PF and Wiseman; Fischetti et al.]



Summary
• Black holes in D > 4 and/or AdS are much richer

• It is unlikely that we can explicitly construct new 
kinds of black holes…



Solving the Einstein 
equations



Solving the Einstein 
equations

• The Einstein equations for  

• We want to solve them in two contexts: 

1. Find equilibrium configurations → elliptic 

2. Study time dependent processes → hyperbolic 

• Main difficulty: coordinate invariance
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Modern approach: covariant 
gauge fixing

• Solve the Einstein-DeTurck equations
[Choquet-Bruhat; DeTurck; Headrick et al.; Lucietti et al.; Adam et al.]
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Solving the Einstein 
equations: Ricci flow

• Simulate the Ricci-DeTurck flow:
@

@�
gab = �2RH

ab

➡ evolve the metric until reaches a fixed point

• Comments: 

- Very easy to implement 

- Diffeomorphic to Ricci flow ⇒ existence of fixed 
points

[Headrick and Wiseman; Holzegel et al.; Kitchen et al.; Lucietti et al.; Adam et al.]



• Given some generic initial data, how do we know if 
the flow will take us to the desired fixed point? 

Solving the Einstein 
equations: Ricci flow

• The stability of the fixed point is determined by the 
spectrum of the Lichnerowicz operator

@
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• For many black hole spacetimes,        is negative 

➡ thermodynamic instabilities

�L
[Gross, Perry and Yaffe]



• Main idea: solve the Einstein-DeTurck equation with 
boundary conditions compatible with 

Modern approach: covariant 
gauge fixing

⇠a
���
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= 0

• Boundary conditions: 

- Asymptotic end: flat, (A)dS, KK 

- Regularity 

- Modified Dirichlet: 

- Mixed Dirichlet-Neumann:

[hij ], trK, ⇠ = 0

Kij = �hij , ⇠n = 0

[Anderson]

[Lucietti, PF, Wiseman]



Modern approach: covariant 
gauge fixing

• Static case with AF, AdS or KK boundary conditions 

➡ no Ricci solitons

• Stationary case: Now also proven

r2�+ ⇠a@a� � 0 , � = ⇠a⇠a

[Lucietti, PF and Wiseman]
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[PF and Wiseman, to appear]



Modern approach: covariant 
gauge fixing

[PF and Wiseman, to appear]• Stationary case:

- Consider the scalar quantity:

- This satisfies: r2! + vµ@µ! = �2⇤! +
1

2
Fµ⌫F

µ⌫ � 0

! = �+rµvµ , � = vµvµ

Fµ⌫ = 2 @[µv⌫]

- Use maximum principle to show: !  0

- Restricted to spacetimes of the form:
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B + ĥij(x) dx
i
dx

j



Modern approach: covariant 
gauge fixing

[PF and Wiseman, to appear]• Stationary case:
- Integrate ω over the whole manifold:
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Application: 

[w/ Lucietti and Wiseman]

strongly coupled CFT  
in the Schwarzschild  

Unruh vacuum 

an interesting new class of ALH Einstein 
metrics with a good physical motivation 

=



CFT on a black hole 
background 

• QFT’s in black hole backgrounds exhibit interesting 
physical effects: Hawking radiation, vacuum 
polarisation… 

• Can we study this in AdS/CFT?

Hawking radiation:

• Free field theory intuition:

~O(N2)

⇒ black holes may not be static in classical GR! 
[Emparan et al.]



Spacetime

@AdS
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Spacetime: construction
• Choose the most general metric ansatz with the 

desired isometries: 

• Unknowns: T, S, A, B, F

• Reference metric: 

T = S = A = 0 , B = �18

5
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Spacetime: construction

r=1: 
AdS Poincaré 

horizon

x=1: 
conformal boundary

x=0: symmetry axis

r=0: 
horizon



• Remarks 

1. Smoothness with this choice of BCs and 
reference metric 

2. No Ricci solitons 

3. No free parameters

Spacetime: construction



• Numerical solution: 

1. Spatial discretisation: pseudospectral 

2. Simulate diffusion: forward Euler

Spacetime: construction



Numerical Ricci flow

@AdS
ds2H =
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z
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Embedding of the spatial metric on 
the horizon into 

y = y(z)



Numerical Ricci flow
• Convergence:

20⇥ 20

30⇥ 30

40⇥ 40



Dual stress tensor
• Fefferman-Graham expansion:
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Dual stress tensor
• Gravitational dual of the N=4 SYM on the 

background of Schwarzschild in the Unruh vacuum 

• The dual classical geometry captures the O(Nc2) fo 
the full quantum stres-energy tensor. It is static and 
regular

• Negative energy density everywhere →  vacuum 
polarisation



TO DO:
• Prove existence of a smooth solution to the Einstein 

equation with these boundary conditions



Summary  
and  

conclusions



• Ricci flows naturally arise in black hole physics 

• These a flows on stationary non-compact 
Lorentzian manifolds with a variety of boundary 
conditions: AF, dS, AdS, KK 

• Black holes spacetimes can be unstable fixed 
points of Ricci flow 

• Having an elliptic system of PDEs one can use 
other standard techniques (e.g., Newton’s method) 
to find solutions very efficiently 

• Prove existence of solutions rigorously



Thank you!!!


