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Einstein vs. non-relativistic geometric flows

Treat geometric flows from unified viewpoint

Spot and reflect on their differences and similarities

Build bridges between the two disciplines

Develop methods, constructions and results in new context

Sometimes new concepts are needed

Spacetime viewpoint of geometric flows will prevail
throughout this talk
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Generic properties of time slices

• Spacetime (V, ḡ), time function t : V → R
• Level sets of t : (Σ t , gt), metric: ḡ = −N2dt2 + gt , where

N ≡ (−ḡµν ∂µt ∂νt)−1/2 measures normal separation of the Σ t ’s.

Main issue: For ’sequence’, or flow, of not just one time slice
(Σ, g) but of a 1-parameter family of Riem manifolds
parameterized by time (Σ t , gt),

Control during evolution

physics, given by fields ψ
geometry, given by gt , kt
topology of time 3-slice
dynamics, given by e.g.,
Ric− 1

2Rg = κT .

Determine

allowed initial state(s)
(Σ0, g0), ψ0

possible final state(s)
(Σ∞, g∞), ψ∞.
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Geometric flows

At least two ways to do this:
↪→Simplest: Consider (Σ, gt), Σ is a fixed background manifold.
↪→ More general: Arrange for genuine changes in topology,
(Σ t , gt).
Comments:
• First case is special case of second, by setting Σ t = Σ× {t}.
• Need to consider generalized flows, flows-with-surgery for
second case:
↪→ Unknown even basic causal structure results!
• In generalized case, ∂tg → L∂tg .
• For any smooth flow (Σ t , gt), by the chain rule, any other
expression that depends on this metric, e.g.,
Riem(t),Ric(t),R(t), l(t), volΣt (t), should have rates of change
that depend linearly on ġt . Computations straightforward.
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Examples of geometric flows

1. Trivial flow and rescalings
Except the trivial flow: g(t) = g(0), the simplest flow is the
rescaling

g(t) = F (t)g(0),

with F (t) > 0,F (0) = 1, so that the flow-law is given by,

ġ(t) = f (t)g(t), f (t) = Ḟ/F

Easy to get expressions for the rates of change of the various
quantities (from the general variational formulae).
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Examples of geometric flows

2. Ricci flow
Suppose law for (Σ, gt) evolution is

ġ = −2Ric(t).

This is Hamilton’s Ricci flow. To get global evolution for g(t) like
before now becomes almost equivalent to the proof of the Poincaré
conjecture!
However, local existence for this parabolic eqn is not that difficult:
Theorem
Suppose: Σ compact and g0 a smooth metric on Σ. Then there is
a unique Ricci flow gt on the time interval [0,T ), for some T > 0.
(Hamilton using Nash-Moser iterations, de Turck.)
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3. The Einstein flow
Considerably more complicated (!) than the Ricci flow is the
Einstein flow for (Σt , gt).
• Standard choice Consider (Σ, gt). We have:
Evolution equations:

∂tgij = 2Nkij

∂tkij = ∇i∂jN − N
(
Rij + 3Hkij − 2kilk

l
j

)
.

Constraints:

R + (trk)2 − |k |2g = 0

∇ikij − 3∂jH = 0.

(The mean curvature is: H = 1
3trkij ≡

1
3 τ .)
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Metric forms for non-Einsteinian GFs I

On the 4-manifold V =Mt × [t0,∞], t0 ∈ R, we are given the
following data:

a smooth Riemannian metric gij on the 3-manifold
Mt =M×{t},
a smooth function N(t, x i ) defined on V, and

a vector field N i (t, x j) tangent to the 3-manifold M.
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Metric forms for non-Einsteinian GFs II

A basic geometric assumption of the geometric flow (eg.,
Hǒrava-Lifshitz) kinematics is the existence of a ‘book-keeping’
line element form

gHL := ds2
HL = −N2dt2 + gij(t)

(
dx i + N idt

) (
dx j + N jdt

)
. (1)

It is usually assumed that N is a function of t only. Here t is NOT
proper time, but absolute time.
The form (1) is invariant under the action of the restricted group
of foliation-preserving diffeomorphisms t → t̃(t), x → x̃(t, x), not
of the full group of spacetime transformations.
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Metric forms for Einstein flow I

On the relativistic spacetime (V, g4), where V =Mt × [t0,∞], we
may take the submanifolds Mt to be spacelike.
Then we can always construct a Cauchy-adapted frame (e0, ei )
with ei tangent to the space slice Mt and e0 orthogonal to it. The
dual coframe θα has θ0 = dt, θi = dx i + N idt, where the tangent
vector N i to the spacelike hypersurfaces.
This then leads to the standard general relativistic splitted
(3 + 1)-form for the spacetime metric g4 defining proper time (or
proper distance, in the case of spacelike separation) between any
two events on (V, g4),

g4 : ds2
GR = −N2dt2 + gij(t)

(
dx i + N idt

) (
dx j + N jdt

)
. (2)
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Metric forms for Einstein flow II

Here N is a positive function called the lapse, N i is the shift, and
we may use the same symbols for both the Hǒrava-Lifshitz data
(gij ,N,N

i ) defining the form ds2
HL in (1), and the spacetime metric

ds2
GR given by Eq. (2), although normally N is only a function of t

in (1).
We emphasize that the spacetime interval (2) is invariant under
the full group of spacetime diffeomorphisms, not only under the
subgroup of foliation-preserving ones as in Eq. (1).
Remark: It is believed that the correct geometric framework for
Hǒrava-Lifshitz (or other geometric flows where there is a preferred
time coordinate) is the so-called Newton-Cartan geometry. In this
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Metric forms for Einstein flow III

case, Eq. (1) is still a Lorentz metric, but because of the restricted
invariance of the associated action of the theory under only
foliation-preserving diffeomorphisms (not the full group of
spacetime transformation), we imagine that the metric given by Eq.
(1) may loose its nondegeneracy in some places on the manifold.
This implies a possible violation of the law of transformation of the
Detgij and its possible vanishing for non-foliation preserving chart
changes. These changes, however, are irrelevant for a theory
invariant only under the restricted group of transformations.
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Difficulties with non-Einsteinian flows

Uses of ‘ space-time’ vs. ‘ spacetime’ if need to distinguish!

no null structure on (V, gHL)

no standard notion of causality or chronology

no usual trichotomy of timelike, null, spacelike, for vectors at any
point p on V

no invariant definition of a notion of length for a given curve
C : I ⊂ R→ V on the manifold V

no notion of geodesic on (V, gHL)

hence no obvious way to talk about the usual route through geodesic
(in-)completeness to spacetime singularities, maximal curves, etc.
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Difficulties with non-Einsteinian flows

How to talk sensibly about dynamics and asymptotic properties of
spacetime fields near singularities in terms of standard space-time
notions?

How are we to somehow import a notion of geodesic
(in-)completeness into these frameworks?

How to compare such non-Einsteinian flows to the more usual ones
that allow a spacetime interpretation?

Basic point: Due to having less symmetry, we cannot simply import the
spacetime properties of (2) into (1) (this was a basic issue that initiated
the joint work with IB, cf., ‘Mixmaster in HL gravity’).
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Existence of Lorentzian metrics

Assume that V is a connected, C∞ and Hausdorff manifold.

given the Hǒrava-Lifshitz functions N,N i , we can form the following
nowhere vanishing vector field,

X = (N,N i ), (3)

defined on V.

Then the existence of X on V is equivalent to the condition that it
admits a time-orientable Lorentz metric

such a manifold is necessarily paracompact

Then using partitions of unity, it is not difficult to show that there
are an infinite number of such metrics defined on V

Hence, we may also assume that on V there is a time-oriented
Lorentz metric g4 such that (V, g4) is an Einstein spacetime.
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Time shifts of infinite length I

No process of obtaining geodesics of max length in non-Einsteinian flows.
However, we can show:

Theorem

If an inextendible geodesic has infinite lGR(C ) lengtha (that is has no
future endpoint), then as a curve it will also have infinite lHL(C ) length.

athere are conditions for this to happen - see below

Here,
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Time shifts of infinite length II

the spacetime length of any curve C connecting the points p, q ∈ N
(suitable global hyperbolic region with q in the future of p in the
spacetime metric (2)) is given by (a dot denotes differentiation with
respect to T ),

lGR(C ) =

∫ T1

T0

(
1− gij Ẋ

i Ẋ j
)1/2

dT . (4)

introduce Minkowski normal coordinates (t, x i ) in the region N
(that is ∂t is timelike and future-pointing and the null cone TpV is
the set t2 −

∑
(x i )2 = 0).
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Time shifts of infinite length III

introduce Gaussian normal coordinates T ,X ,Y ,Z on V, where
T = (t2 −

∑
(x i )2)1/2, X 1 = x1/t,X 2 = x2/t,X 3 = x3/t.

synchronous system: the surfaces T = const. are spacelike while
the curves X i = const. are timelike geodesics orthogonal to these.

The metric (2) then takes the standard form,

ds2
GR = dT 2 − gijdX

idX j . (5)

The length functional attains its max for the curves X i = const.
(the 3-metric gij is positive-definite). That is, the geodesic
connecting the two points p, q has maximum length.
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Time shifts of infinite length IV

Then consider an inextendible geodesic, that is a curve
C : (T0,∞)→ V with no future endpoint, of infinite length lGR(C )
as given in (4) (there are conditions for this to happen, cf. below).

Then for this curve, we may form the functional lHL(C ) given
precisely by the same form as in (4). In these coordinates (T ,X i )
(no matter how they are constructed!) the ‘length’ lHL(C ) is again
infinite, but of course this value has no invariant 4-meaning (as in
Eq. (4) where T measures proper time).
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Time shifts of infinite length V

We then have the freedom (in the projectable Hǒrava-Lifshitz
framework) to multiply this infinite value of the length lHL(C ) by a
smooth function N(T ), that is to perform arbitrary time shifts.
Therefore the particular value ∞ for the length lHL(C ) is an
invariant for the restricted (projectable) version of the symmetry
group. Hence, we conclude that if a geodesic has infinite lGR(C )
length, it will also have its lHL(C ) length infinite (as a curve).

Therefore: We can now import techniques from GR about completeness

to decide on corresponding criteria in non-Einsteinian frameworks.
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Sufficient conditions for global
hyperbolicity

Y. Choquet-Bruhat & S.C. 2002, 2004:

Theorem

If (V, g) is regularly sliced (i.e., (N,N i , gt) uniformly bounded,
such that (Σ0, g0) is a complete Riemannian manifold), then
(V, g) is globally hyperbolic.

In other words,
• Regular slicing implies global hyperbolicity.



Motivation and overview
Einsteinian vs. non-Einsteinian flows

Spacetime structure
Causality

Completeness
Singularities

Global hyperbolicity

Global hyperbolicity for geometric flows

• For non-Einsteinian geometric flows, we give the following

Definition

A spacetime is called globally hyperbolic if it is regularly sliced.
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Sufficient conditions for completeness I

Choquet-Bruhat and S.C. (2002): Use spatial norm of shape tensor
|K |gt :

Theorem

If:

(V, g) is regularly sliced

for each finite t1, |∇N|gt and |K |gt integrable on [t1,+∞),

then (V, g) is future causally g-complete.
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Sufficient conditions for completeness II

 Under same conditions, we obtain completeness criteria for any
geometric flow. Namely, provided that

Space-time is globally hyperbolic (the Hǒrava-Lifshitz data
N,N i , gij are all uniformly bounded), and

the norms (∇iN)2 (this is trivially zero in the projectable
case) and KijK

ij (or equivalently, KijK
ij − (1/3)K 2) are also

bounded,

then (1) will be complete.
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Sufficient conditions for singularity

Hawking-Penrose (1970): Use mean curvature vector field H of
spacelike hypersurface Σ of (V, g). It has shape tensor K = nor ∇̄.
For unit future pointing U ⊥ Σ, consider convergence
θ = 〈U,H〉 = 1

n−1 traceK . Then
Theorem If:
• Ric(X ,X ) ≥ 0 for all causal vector fields X of of (V, g)
• θ ≥ C > 0, everywhere on Cauchy surface Σ,
then no future-directed causal curve from Σ can have length
greater than 1/C .
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Necessary conditions for singularity
formation I

From the completeness theorem, it then follows that:

Theorem

Any singularities in Hǒrava-Lifshitz gravity will be accompanied
either by a loss of global hyperbolicity and/or by a necessary blow
up in KijK

ij (or equivalently, KijK
ij − (1/3)K 2) (assuming

boundedness of all other data on V).



Motivation and overview
Einsteinian vs. non-Einsteinian flows

Spacetime structure
Causality

Completeness
Singularities

Singularity theorem
Necessary conditions
More general singularities
Bel-Robinson energy

Necessary conditions for singularity
formation II

For potentially infinite metrics, we choose the lapse and shift as,

−N2(t, x i ) = R(gij)(t, x i ) +
ξ

2t
< 0, N i = 0, (6)

with R being the scalar curvature of the 3-metric gij(t, x
i ), and ξ a

suitable real constant.
This is apparently a restriction of the scalar curvature of M in the
sense that R < −ξ/2t, the existence of a uniform bound for the
scalar curvature of M.



Motivation and overview
Einsteinian vs. non-Einsteinian flows

Spacetime structure
Causality

Completeness
Singularities

Singularity theorem
Necessary conditions
More general singularities
Bel-Robinson energy

Necessary conditions for singularity
formation III

Then, the length of any curve C : (t0, t1)→ V is given by (we now
reinsert the lapse and shift),

lGR(C ) =

∫ t1

t0

(
−N2 + gij Ċ

i Ċ j
)1/2

dt, (7)

and takes a particularly interesting form:

lGR(C ) =

∫ t1

t0

(
R +

ξ

2t
+

∣∣∣∣dCdt
∣∣∣∣
g(t)

)1/2

dt, (8)
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Necessary conditions for singularity
formation IV

and this is well-defined provided the gij -length of C is bounded
from below. Then we write the integrand as(

ξ

2t

)1/2

(1 + x)1/2 , x =
2t

ξ

(
R +

∣∣∣∣dCdt
∣∣∣∣
g(t)

)
, (9)
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Necessary conditions for singularity
formation V

and expand (1 + x)1/2 keeping only the highest non-trivial term.
We find,

lGR(C ) =
ξ−1/2

√
2

∫ t1

t0

√
t

(
R +

∣∣∣∣dCdt
∣∣∣∣
g(t)

)
dt + O(ξ−3/2), (10)
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Necessary conditions for singularity
formation VI

so that the spacetime length is nothing but the Perelman length
function for the spacetime curve C ,

lGR(C ) =
ξ−1/2

√
2

lper (C ) (11)

with

lper (C ) =

∫ t1

t0

√
t

(
R +

∣∣∣∣dCdt
∣∣∣∣
g(t)

)
dt, (12)
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Necessary conditions for singularity
formation VII

(the so called reduced length is lper (C )/2(
√
t2 −

√
t1)).

This shows that there may be a connection between the
singularities met in various geometric flows such as the Ricci flow
and the ‘physical’ spacetime singularities of gravitational theories
defined as geodesic incompleteness.
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Necessary conditions for singularity
formation VIII

In the simplest case of uniformly timelike curves, that is when the
integrand in (8) is bounded away from zero by a positive constant,

−N2 + gij Ċ
i Ċ j ≥ M2, M constant, (13)

the length of such a curve on the interval (t0,∞) is infinite.
Using (11), we see that complete solutions in Hǒrava-Lifshitz
gravity defined here, correspond exactly to the various ‘singularity
models’ if we regard it as the geometric flow.
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Necessary conditions for existence of more
elaborate singularities I

Above we have also given criteria where the curves are not
uniformly timelike, and so to prove completeness becomes
more delicate.

If the length is finite (so that (1) is not complete), then the
integral in (11) is finite, and so condition (13) must be
violated.



Motivation and overview
Einsteinian vs. non-Einsteinian flows

Spacetime structure
Causality

Completeness
Singularities

Singularity theorem
Necessary conditions
More general singularities
Bel-Robinson energy

Necessary conditions for existence of more
elaborate singularities II

This then leads to the integrand in the Perelman integral
satisfying certain conditions leading to other singularities of
the geometric flow.

One way to proceed is through the use the the Bel-Robinson
energies
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Completeness and (bounds of) the Bel-Robinson energy
Let ηijk volume element of space metric gt . Define the electric and
magnetic tensors

Eij = R0
i0j , Dij =

1

4
ηihkηjlmR

hklm, Hij =
1

2
N−1ηihkR

hk
0j , Bji =

1

2
N−1ηihkR

hk
0j ,

The Bel-Robinson energy of the Bianchi field (E,D,H,B) at time t is

B(t) =
1

2

∫
Σt

(
|E|2gt

+ |D|2gt
+ |B|2gt

+ |H|2gt

)
dµgt .
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Necessary conditions for existence of more
elaborate singularities II

For a RW universe: B = H = 0,
|E |2gt

= 3(ä/a)2, |D|2gt
= 3

(
(ȧ/a)2 + k/a2

)2
.

B(t) ∼ k2
u (t) + k2

σ(t), ku, kσ, the principal sectional curvatures.

Theorem A spatially closed, expanding at time t∗, FRW universe that
satisfies γ < B(t) < Γ is causally g-complete.
Further, there is a minimum radius, amin > ∆−1/2, and these universes
are eternally accelerating (ä > 0).

Open problem: Role of surgery in these new types of singularities?
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