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Abstracts 

Lars Andersson: 

Spin geometry of the Kerr spacetime  

I will introduce the 2-spinor calculus and show how the geometry of the Kerr spacetime is encoded in 
terms of the Killing spinor and its derivatives. I will explain how these facts enable one to carry out 
efficient symbolic calculations for fields on the Kerr spacetime and indicate some applications. 

Potentials, symmetries and conservation laws 
 
Massless fields on the Kerr spacetime are governed by the Teukolsky Master Equation, and the 
Teukolsky-Starobinsky Identities. Solutions can be represented in terms of Deby potentials. In this 
talk I will show how these facts lead to insights on symmetry operators and conservation laws for 
fields on the Kerr spacetime, including linearized gravity. 
 
 

Helga Baum: 

Lorentzian manifolds - holonomy and spinors  
 
- Basic notions (metric, type of vectors and curves, curvature)  
- Holonomy groups (short explantion of the classification result)  
- Lorentzian spin geometry (spin structures, parallel spinors and consequences for curvature and 
   holonomy)  
- Space-like submanifolds (induced curvature and induced spinor field equations)  
- Globally hyperbolic manifolds (notion, smooth splitting result, well-poseness of the Cauchy problem 
   for normally hyperbolic operators) 
 

Spiros Cotsakis: 

Global hyperbolicity and the completeness of geometric flows  

We discuss consequences for Lorentzian geometry of the fact that the generic form of the metric in 
various geometric flows, such as the Ricci flow and the Horava-Lifshitz flow, is only invariant under 
the foliation-preserving diffeomorphisms, not the full group of space-time transformations. These 
are related to obvious difficulties with the formulation of standard causality theory, space-time 
geodesic completeness, and therefore obstructions to connecting the singularity models of 
geometric flows to the usual singularity theorems of general relativity. We review results on  
sufficient conditions of geodesic completeness (associated primarily with the work of Y. Choquet-
Bruhat), and indicate how one may talk intelligently about curves of infinite space-time length in the 
context of geometric flows. We also review recent joint work with Ioannis Bakas on the 
renormalization of the space-time length and its relation to the Perelman (reduced) length in the 
special case of curves which have the property of being uniformly timelike. We also briefly discuss 
the more involved issue of proving geodesic completeness in the general case. 

 

 



Pau Figueiras: 

Numerical Ricci flows and black holes 

In this talk I will describe a novel use of Ricci flows that has attracted a lot of interest in recent years 
in the theoretical physics community. Black hole spacetimes are (Lorentzian) Einstein manifolds that 
play a central role in our understanding of general relativity, Einstein’s theory of gravity. In this talk I 
will explain how one can use Ricci flows to find, numerically, equilibrium black hole spacetimes and I 
will provide some simple examples, emphasising their physical relevance. Note that the flows that 
often arise in black hole physics are Ricci flows on Lorentzian non-compact manifolds, with various 
asymptotic boundary conditions, including (but not restricted to) asymptotic flatness. 

 
Gary Gibbons: 
 
Black Holes  
 
This will be an introduction to the Theory of Black Holes which will cover 
1) The Oppenheimer Snyder Gravitational account of spherically Symmetric gravitational collapse and 
the Krusakl Manifold 
2) Rotating black holes:  Kerr solution 
3) Uniqueness Theorems for Stationary and Static Black holes 
4) Hawking Evaporation. 
I will assume a first course in General Relativity. 
 

Mark Haskins: 

Tba 

 

Jason Lotay: 

Laplacian flow in G2 geometry   

A key challenge in Riemannian geometry is to find Ricci-flat metrics on compact manifolds.  All non-
trivial examples of such metrics have special holonomy, and the only special holonomy metrics which 
can occur in odd dimensions must be in dimension 7 and have holonomy G_2.  I will describe a 
proposed geometric flow method for finding metrics with holonomy G_2, called the Laplacian flow, 
and recent progress on this flow.  This is joint work with Yong Wei (University College London). 

 

Jan Metzger 

Mass, area and volume  

In initial data sets of General Relativity the global physical quantities like mass and center of mass 
play an important role. In this course we consider the relation between the mass and the 
isoperimetric profile of an asymptotically flat manifold. 

 

 

 



 

Thomas Leistner: 

Cauchy problems for Lorentzian manifolds with special holonomy 

Lorentzian manifolds with parallel null spinor or, more generally, parallel null vector arise naturally in 
general relativity, as supersymmetric supergravity backgrounds, but also in the theory of Lorentzian 
manifolds with special holonomy. In analogy to the Cauchy problem in general relativity, we study 
the corresponding Cauchy problems for these manifolds: Can a given Riemannian manifold (M,g) be 
embedded (as a Cauchy hypersurface) in a Lorentzian manifold with parallel null vector/ spinor field? 
We derive the constraint and the evolution equations for this problem.  By reducing them to a 
system in Cauchy-Kowalevski form and moreover to a quasilinear symmetric hyperbolic system, we 
show that the evolution equations have a unique (analytic/smooth) solution provided the initial data 
are analytic/smooth and satisfy the constraints. Moreover, for  Riemannian manifolds obeying the 
constraint conditions,  we derive a local normal form and use the classification of Lorentzian 
holonomy groups to describe their special geometry. As an application of our results  to Riemannian 
geometry we obtain a classification of the local geometry of Riemannian manifolds with generalised 
imaginary Killing spinors. 

This is joint work with H. Baum and A. Lischewski (both Humboldt University Berlin). 

 

Oliver Schnürer: 

Geometric flow equations                                                         
                                                                                 
In this minicourse, we study hypersurfaces that solve geometric evolution equations. More precisely, 
we investigate hypersurfaces that evolve with a normal velocity depending on a curvature function 
like the mean curvature or Gauß curvature. In three lectures, we will address                                      
                                                             

• Hypersurfaces, principal curvatures and evolution equations for geometric quantities like the 
metric and second fundamental form.                         

• The convergence of convex hypersurfaces to round points. Here, we will also show   
               some computer algebra calculations.                                      

• The evolution of graphical hypersurfaces under mean curvature flow.        
                                                                  
 


