Scattering theory for Dirac and Klein-Gordon fields on the (De Sitter) Kerr metric and the Hawking effect

Dietrich Häfner

Institut Fourier, Université Grenoble Alpes, France

Field equations on lorentzian space-times, Hamburg, March 20, 2018

Scattering theory on black hole type spacetimes and related subjects

- ▶ 1975 : Hawking effect. Contributions by many others including Gibbons, Unruh, Wald,...
- 1980's program by Dimock, Kay on scattering theory on the Schwarzschild metric. Related work by Fredenhagen, Haag. "Conformal scattering" by Friedlander.
- 1990's Further developed by Alain Bachelot giving a mathematically rigorous description of the Hawking effect in the spherically symmetric setting in 1999. Further contributions by Nicolas, Melnyk, Daudé....
- ▶ 2000's Kerr
 - Scattering theory on Kerr H, H-Nicolas, rigorous description of the Hawking effect for fermions (H '09).
 - Decay of the local energy for field equations. Andersson-Blue, Dafermos-Rodnianski, Shlapentokh-Rothman, Dyatlov, Finster-Kamran-Smoller-Yau, Tataru-Tohaneanu, Vasy,...
- ▶ 2010's Nonlinear stability of the De Sitter Kerr metric: Hintz, Vasy (2016). Nonlinear stability of Schwarzschild for axial symmetric polarized perturbations: Klainerman, Szeftel (2017). Scattering theory for Klein-Gordon equations without positive conserved energy (Kako, Gérard, Bachelot, Georgescu-Gérard-H.), on (De Sitter) Kerr (Georgescu-Gérard-H., Dafermos-Rodnianski-Shlapentokh-Rothman), scattering theory via vector field methods (Mason, Nicolas, Joudioux, Dafermos-Rodnianski-Shlapentokh-Rothman).

The (De Sitter) Kerr metric

De Sitter Kerr metric in Boyer-Lindquist coordinates

 $\mathcal{M}_{BH} = \mathbb{R}_t \times \mathbb{R}_r \times S_{\omega}^2$, with spacetime metric

$$g = \frac{\Delta_{r} - \frac{a^{2} \sin^{2} \theta \Delta_{\theta}}{\lambda^{2} \rho^{2}} dt^{2} + \frac{2a \sin^{2} \theta ((r^{2} + a^{2})^{2} \Delta_{\theta} - a^{2} \sin^{2} \theta \Delta_{r})}{\lambda^{2} \rho^{2}} dt d\varphi$$

$$- \frac{\rho^{2}}{\Delta_{r}} dr^{2} - \frac{\rho^{2}}{\Delta_{\theta}} d\theta^{2} - \frac{\sin^{2} \theta \sigma^{2}}{\lambda^{2} \rho^{2}} d\varphi^{2},$$

$$\rho^{2} = r^{2} + a^{2} \cos^{2} \theta, \quad \Delta_{r} = \left(1 - \frac{\Lambda}{3} r^{2}\right) (r^{2} + a^{2}) - 2Mr,$$

$$\Delta_{\theta} = 1 + \frac{1}{2} \Lambda a^{2} \cos^{2} \theta, \quad \sigma^{2} = (r^{2} + a^{2})^{2} \Delta_{\theta} - a^{2} \Delta_{r} \sin^{2} \theta, \quad \lambda = 1 + \frac{1}{2} \Lambda a^{2}.$$

 $\Lambda \ge 0$: cosmological constant ($\Lambda = 0$: Kerr), M > 0: masse, a: angular momentum per unit masse (|a| < M).

- $\rho^2 = 0$ is a curvature singularity, $\Delta_r = 0$ are coordinate singularities. $\Delta_r > 0$ on some open interval $r_- < r < r_+$. $r = r_-$: black hole horizon, $r = r_+$ cosmological horizon.
- $ightharpoonup \partial_{\varphi}$ and ∂_{t} are Killing. There exist $r_{1}(\theta)$, $r_{2}(\theta)$ s. t. ∂_{t} is
 - timelike on $\{(t, r, \theta, \varphi) : r_1(\theta) < r < r_2(\theta)\}$,
 - spacelike on
 - $\{(t, r, \theta, \varphi) : r_{-} < r < r_{1}(\theta)\} \cup \{(t, r, \theta, \varphi : r_{2}(\theta) < r < r_{+}\} =: \mathcal{E}_{-} \cup \mathcal{E}_{+}.$

The regions $\mathcal{E}_-,\,\mathcal{E}_+$ are called ergospheres.

The Penrose diagram ($\Lambda = 0$)

Kerr-star coordinates :

$$t^* = t + r_*, r, \theta, \varphi^* = \varphi + \Lambda(r), \ \frac{dr_*}{dr} = \frac{r^2 + a^2}{\Delta}, \ \frac{d\Lambda(r)}{dr} = \frac{a}{\Delta}.$$

Along incoming principal null geodesics : $\dot{t}^* = \dot{\theta} = \dot{\varphi}^* = 0$, $\dot{r} = -1$.

- Form of the metric in Kerr-star coordinates : $g = g_{tt} dt^{*2} + 2g_{t\varphi} dt^* d\varphi^* + g_{\varphi\varphi} d\varphi^{*2} + g_{\theta\theta} d\theta^2 2dt^* dr + 2a\sin^2 d\varphi^* dr.$
- ▶ Future event horizon : $\mathfrak{H}^+ := \mathbb{R}_{t^*} \times \{r = r_-\} \times S^2_{\theta,\varphi^*}$.
- ► The construction of the past event horizon \mathfrak{H}^- is based on outgoing principal null geodesics (star-Kerr coordinates). Similar constructions for future and past null infinities \mathfrak{I}^+ and \mathfrak{I}^- using the conformally rescaled metric $\hat{g} = \frac{1}{2^2}g$.

Part 1 : Scattering theory for massless Dirac fields on the Kerr metric

D.H., J.-P. Nicolas, Rev. Math. Phys. 16(1): 29-123, 2004.

1.1 The Dirac equation and the Newman-Penrose formalism

Weyl equation:

$$\nabla_{A'}^A \phi_A = 0.$$

Conserved current:

$$V^a = \phi^{A}\overline{\phi}^{A'}, \; C(t) = rac{1}{\sqrt{2}}\int_{\Sigma_t}V_aT^ad\sigma_{\Sigma_t} = const.$$

 T^a : normal to Σ_t .

- Newman-Penrose tetrad I^a , m^a , m^a , \overline{m}^a : $I_aI^a = n_an^a = m_am^a = I_am^a = n_am^a = 0$.
 - Normalization $l_a n^a = 1$, $m_a \overline{m}^a = -1$
 - ► I^a, n^a : Scattering directions.
- Spin frame $o^A \overline{o}^{A'} = I^a$, $\iota^A \overline{\iota}^{A'} = n^a$, $o^A \overline{\iota}^{A'} = m^a$ $\iota^A \overline{o}^{A'} = \overline{m}^a$, $o_A \iota^A = 1$
- ▶ Components in the spin frame : $\phi_0 = \phi_A o^A$, $\phi_1 = \phi_A \iota^A$
- Weyl equation :

$$\begin{cases} n^{a}\partial_{a}\phi_{0} - m^{a}\partial_{a}\phi_{1} + (\mu - \gamma)\phi_{0} + (\tau - \beta)\phi_{1} = 0, \\ l^{a}\partial_{a}\phi_{1} - \overline{m}^{a}\partial_{a}\phi_{0} + (\alpha - \pi)\phi_{0} + (\epsilon - \tilde{\rho})\phi_{1} = 0. \end{cases}$$

A new Newman Penrose tetrad

Problem: The Kerr metric is at infinity a long range perturbation of the Minkowski metric. In the long range situation asymptotic completeness is generically false without modification of the wave operators.

Dirac equation on Schwarzschild:

$$i\partial_t \Psi = \not \!\! D_S \Psi, \not \!\! D_S = \Gamma^1 D_{r_*} + \frac{(1 - \frac{2M}{r})^{1/2}}{r} \not \!\! D_{S^2} + V.$$

ok because of spherical symmetry.

Tetrad adapted to the foliation: $I^a + n^a = T^a$. Conserved quantity:

$$\frac{1}{\sqrt{2}}\int_{\Sigma_t}(\left|\phi_0\right|^2+\left|\phi_1\right|^2)d\sigma_{\Sigma_t}.$$

 $I^a, n^a \in \text{span}\{T^a, \partial_r\}$. Ψ spinor multiplied by a certain weight:

$$i\partial_t \Psi = D_K \Psi, \quad D_K = hD_{sym} h + V_{\varphi} D_{\varphi} + V.$$

Well adapted to time dependent scattering : $h^2 - 1$, V_{φ} , V short range.

1.2 Principal results

Comparison dynamics

$$\begin{split} \mathcal{H} &= L^2((\mathbb{R} \times S^2); \textit{dr}_* \textit{d}\omega); \mathbb{C}^2), \ \mathbb{D}_{\textit{H}} = \gamma \textit{D}_{\textit{r}_*} - \frac{a}{r_+^2 + a^2} \textit{D}_{\varphi}, \mathbb{D}_{\infty} = \gamma \textit{D}_{\textit{r}_*}, \\ \gamma &= \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \ \mathcal{H}^- = \{(\psi_0, 0) \in \mathcal{H}\} \, (\text{resp.} \, \mathcal{H}^+ = \{(0, \psi_1) \in \mathcal{H}\}). \end{split}$$

Theorem (Asymptotic velocity)

There exist bounded selfadjoint operators s.t. for all $J \in \mathcal{C}_{\infty}(\mathbb{R})$:

$$egin{array}{lll} J(P^\pm) &=& s - \lim_{t o \pm \infty} e^{-it \mathbb{D}_{\mathcal{K}}} J\left(rac{r_*}{t}
ight) e^{it \mathbb{D}_{\mathcal{K}}} \,, \ J(\mp \gamma) &=& s - \lim_{t o \pm \infty} e^{-it \mathbb{D}_{H}} J\left(rac{r_*}{t}
ight) e^{it \mathbb{D}_{H}} \ &=& s - \lim_{t o \pm \infty} e^{-it \mathbb{D} \infty} J\left(rac{r_*}{t}
ight) e^{it \mathbb{D} \infty} \,. \end{array}$$

In addition we have :

$$\sigma(P^+) = \{-1, 1\}$$
.

Theorem (Asymptotic completeness)

The classical wave operators defined by the limits

$$\begin{array}{lcl} W_H^\pm & := & s - \lim_{t \to \pm \infty} e^{-it \mathcal{D}_K} e^{it \mathbb{D}_H} P_{\mathcal{H}^\mp} \,, \\ W_\infty^\pm & := & s - \lim_{t \to \pm \infty} e^{-it \mathcal{D}_K} e^{it \mathbb{D}_\infty} P_{\mathcal{H}^\pm} \,, \\ \Omega_H^\pm & := & s - \lim_{t \to \pm \infty} e^{-it \mathbb{D}_H} e^{it \mathcal{D}_K} \mathbf{1}_{\mathbb{R}^-}(P^\pm) \,, \\ \Omega_\infty^\pm & := & s - \lim_{t \to \pm \infty} e^{-it \mathbb{D}_\infty} e^{it \mathcal{D}_K} \mathbf{1}_{\mathbb{R}^+}(P^\pm) \end{array}$$

exist.

- 1. Proof based on Mourre theory.
- 2. The same theorem holds with more geometric comparison dynamics.
- 3. Generalized by Daudé to the massive charged case.
- 4. Results valid for quite general perturbations of Kerr.
- 5. Schwarzschild: Nicolas (95), Melnyk (02), Daudé (04).

1.3 Geometric interpretation

FIGURE - Penrose compactification of block /

- \mathfrak{I}^{\pm} are constructed using the conformally rescaled metric $\hat{g} = \frac{1}{r^2}g$.
- The Weyl equation is conformally invariant : $\hat{\nabla}^{AA'}\hat{\phi}_A = 0$, where $\hat{\phi}_A = r\phi_A$.

1.3 Geometric interpretation

FIGURE - Penrose compactification of block /

- \mathfrak{I}^{\pm} are constructed using the conformally rescaled metric $\hat{g} = \frac{1}{r^2}g$.
- The Weyl equation is conformally invariant : $\hat{\nabla}^{AA'}\hat{\phi}_A = 0$, where $\hat{\phi}_A = r\phi_A$.

- ▶ $\lim_{r \to r_+} \Psi_0(\gamma_{V,\theta,\varphi^{\sharp}}^-(r)) =: \Psi_0|_{\mathfrak{H}^+}(0,V,\theta,\varphi^{\sharp}),$ $\lim_{r \to r_+} \Psi_1(\gamma_{V,\theta,\varphi^{\sharp}}^-(r)) = 0.$ Ψ is solution of the Dirac equation. $\gamma_{V,\theta,\varphi^{\sharp}}^-$ is the principal incoming null geodesic meeting \mathfrak{H}^+ at $(0,V,\theta,\varphi^{\sharp}).$
- ► Trace operators :

$$\mathcal{T}^+_{\mathfrak{H}} : egin{array}{cccc} C_0^{\infty}(\Sigma_0,\mathbb{C}^2) &
ightarrow & C^{\infty}(\mathfrak{H}^+,\mathbb{C}) \ \psi_{\Sigma_0} &
ightarrow & \psi_0|_{\mathfrak{H}^+}. \end{array}$$

 $ightharpoonup \mathcal{H}$: Hilbert space associated to Σ_0 , $\mathcal{H}_{\mathfrak{H}^\pm}$ Hilbert spaces associated to \mathfrak{H}^\pm .

Theorem

The trace operators $\mathcal{T}_{\mathfrak{H}}^{\pm}$ extend in a unique manner to bounded operators from \mathcal{H} to $\mathcal{H}_{\mathfrak{H}^{\pm}}$.

Remark

Let $\mathfrak{F}^{\pm}_{\mathfrak{H}}$ be the \mathcal{C}^{∞} diffeomorphisms from \mathfrak{H}^{\pm} onto Σ_{0} defined by identifying points along incoming (resp. outgoing) principal null geodesics and $\Omega^{\pm}_{H,pn}$ inverse wave operators with comparison dynamics given by the principal null directions. Then $\mathcal{T}^{\pm}_{\mathfrak{H}} = (\mathfrak{F}^{\pm}_{\mathfrak{H}})^* \Omega^{\pm}_{H,pn}$. Comparison dynamics $P_N = \gamma D_{r_*} - \frac{a^2}{r^2 + 12} D_{\varphi}$.

- ▶ $\lim_{r \to r_+} \Psi_0(\gamma_{V,\theta,\varphi^{\sharp}}^-(r)) =: \Psi_0|_{\mathfrak{H}^+}(0,V,\theta,\varphi^{\sharp}),$ $\lim_{r \to r_+} \Psi_1(\gamma_{V,\theta,\varphi^{\sharp}}^-(r)) = 0.$ Ψ is solution of the Dirac equation. $\gamma_{V,\theta,\varphi^{\sharp}}^-$ is the principal incoming null geodesic meeting \mathfrak{H}^+ at $(0,V,\theta,\varphi^{\sharp}).$
- Trace operators :

$$\mathcal{T}^+_{\mathfrak{H}} : egin{array}{ccc} C_0^{\infty}(\Sigma_0,\mathbb{C}^2) &
ightarrow & C^{\infty}(\mathfrak{H}^+,\mathbb{C}) \ \Psi_{\Sigma_0} &
ightarrow & \Psi_0|_{\mathfrak{H}^+}. \end{array}$$

 $ightharpoonup \mathcal{H}$: Hilbert space associated to Σ_0 , $\mathcal{H}_{\mathfrak{H}^{\pm}}$ Hilbert spaces associated to \mathfrak{H}^{\pm} .

Theorem

The trace operators $\mathcal{T}_{\mathfrak{H}}^{\pm}$ extend in a unique manner to bounded operators from \mathcal{H} to $\mathcal{H}_{\mathfrak{H}^{\pm}}$.

Remark

Let $\mathfrak{F}^{\pm}_{\mathfrak{H}}$ be the \mathcal{C}^{∞} diffeomorphisms from \mathfrak{H}^{\pm} onto Σ_{0} defined by identifying points along incoming (resp. outgoing) principal null geodesics and $\Omega^{\pm}_{H,pn}$ inverse wave operators with comparison dynamics given by the principal null directions. Then $\mathcal{T}^{\pm}_{\mathfrak{H}} = (\mathfrak{F}^{\pm}_{\mathfrak{H}})^* \Omega^{\pm}_{H,pn}$. Comparison dynamics $P_N = \gamma D_{r_*} - \frac{a^2}{r^2 + 12} D_{\varphi}$.

▶ $\lim_{r \to r_+} \Psi_0(\gamma_{V,\theta,\varphi^{\sharp}}^-(r)) =: \Psi_0|_{\mathfrak{H}^+}(0,V,\theta,\varphi^{\sharp}),$ $\lim_{r \to r_+} \Psi_1(\gamma_{V,\theta,\varphi^{\sharp}}^-(r)) = 0.$ Ψ is solution of the Dirac equation. $\gamma_{V,\theta,\varphi^{\sharp}}^-$ is the principal incoming null geodesic meeting \mathfrak{H}^+ at $(0,V,\theta,\varphi^{\sharp}).$

► Trace operators :

$$\mathcal{T}^+_{\mathfrak{H}} : egin{array}{ccc} C_0^{\infty}(\Sigma_0,\mathbb{C}^2) &
ightarrow & C^{\infty}(\mathfrak{H}^+,\mathbb{C}) \ \Psi_{\Sigma_0} &
ightarrow & \Psi_0|_{\mathfrak{H}^+}. \end{array}$$

ightharpoonup : Hilbert space associated to ightharpoonup0, $\mathcal{H}_{\mathfrak{H}^{\pm}}$ Hilbert spaces associated to \mathfrak{H}^{\pm} .

Theorem

The trace operators $\mathcal{T}_{\mathfrak{H}}^{\pm}$ extend in a unique manner to bounded operators from \mathcal{H} to $\mathcal{H}_{\mathfrak{H}^{\pm}}$.

Remark

Let $\mathfrak{F}^{\pm}_{\mathfrak{H}}$ be the \mathcal{C}^{∞} diffeomorphisms from \mathfrak{H}^{\pm} onto Σ_{0} defined by identifying points along incoming (resp. outgoing) principal null geodesics and $\Omega^{\pm}_{H,pn}$ inverse wave operators with comparison dynamics given by the principal null directions. Then $\mathcal{T}^{\pm}_{\mathfrak{H}} = (\mathfrak{F}^{\pm}_{\mathfrak{H}})^* \Omega^{\pm}_{H,pn}$. Comparison dynamics $P_N = \gamma D_{r_*} - \frac{a^2}{r^2 + a^2} D_{\varphi}$.

▶ $\lim_{r \to r_+} \Psi_0(\gamma_{V,\theta,\varphi^{\sharp}}^-(r)) =: \Psi_0|_{\mathfrak{H}^+}(0,V,\theta,\varphi^{\sharp}),$ $\lim_{r \to r_+} \Psi_1(\gamma_{V,\theta,\varphi^{\sharp}}^-(r)) = 0.$ Ψ is solution of the Dirac equation. $\gamma_{V,\theta,\varphi^{\sharp}}^-$ is the principal incoming null geodesic meeting \mathfrak{H}^+ at $(0,V,\theta,\varphi^{\sharp}).$

Trace operators :

$$\mathcal{T}_{\mathfrak{H}}^{+} \quad : \quad \begin{array}{ccc} C_{0}^{\infty}(\Sigma_{0},\mathbb{C}^{2}) & \rightarrow & C^{\infty}(\mathfrak{H}^{+},\mathbb{C}) \\ \psi_{\Sigma_{0}} & \mapsto & \psi_{0}|_{\mathfrak{H}^{+}}. \end{array}$$

H: Hilbert space associated to Σ₀, H_{5j±} Hilbert spaces associated to 5j±.

Theorem

The trace operators $\mathcal{T}^{\pm}_{\mathfrak{H}}$ extend in a unique manner to bounded operators from \mathcal{H} to $\mathcal{H}_{\mathfrak{H}^{\pm}}$.

Remark

Let $\mathfrak{F}^{\pm}_{\mathfrak{H}}$ be the \mathcal{C}^{∞} diffeomorphisms from \mathfrak{H}^{\pm} onto Σ_{0} defined by identifying points along incoming (resp. outgoing) principal null geodesics and $\Omega^{\pm}_{H,pn}$ inverse wave operators with comparison dynamics given by the principal null directions. Then $\mathcal{T}^{\pm}_{\mathfrak{H}} = (\mathfrak{F}^{\pm}_{\mathfrak{H}})^* \Omega^{\pm}_{H,pn}$. Comparison dynamics $P_N = \gamma D_{r_*} - \frac{a^2}{r^2 + a^2} D_{\varphi}$.

▶ $\lim_{r \to r_+} \Psi_0(\gamma_{V,\theta,\varphi^{\sharp}}^-(r)) =: \Psi_0|_{\mathfrak{H}^+}(0,V,\theta,\varphi^{\sharp}),$ $\lim_{r \to r_+} \Psi_1(\gamma_{V,\theta,\varphi^{\sharp}}^-(r)) = 0.$ Ψ is solution of the Dirac equation. $\gamma_{V,\theta,\varphi^{\sharp}}^-$ is the principal incoming null geodesic meeting \mathfrak{H}^+ at $(0,V,\theta,\varphi^{\sharp}).$

Trace operators :

$$\mathcal{T}^+_{\mathfrak{H}} : egin{array}{cccc} C_0^{\infty}(\Sigma_0,\mathbb{C}^2) &
ightarrow & C^{\infty}(\mathfrak{H}^+,\mathbb{C}) \ \psi_{\Sigma_0} &
ightarrow & \psi_0|_{\mathfrak{H}^+}. \end{array}$$

ightharpoonup : Hilbert space associated to ightharpoonup0, $\mathcal{H}_{\mathfrak{H}^{\pm}}$ Hilbert spaces associated to \mathfrak{H}^{\pm} .

Theorem

The trace operators $\mathcal{T}_{\mathfrak{H}}^{\pm}$ extend in a unique manner to bounded operators from \mathcal{H} to $\mathcal{H}_{\mathfrak{H}^{\pm}}$.

Remark

Let $\mathfrak{F}^{\pm}_{\mathfrak{H}}$ be the \mathcal{C}^{∞} diffeomorphisms from \mathfrak{H}^{\pm} onto Σ_{0} defined by identifying points along incoming (resp. outgoing) principal null geodesics and $\Omega^{\pm}_{H,pn}$ inverse wave operators with comparison dynamics given by the principal null directions. Then $\mathcal{T}^{\pm}_{\mathfrak{H}} = (\mathfrak{F}^{\pm}_{\mathfrak{H}})^{*}\Omega^{\pm}_{H,pn}$. Comparison dynamics $P_{N} = \gamma D_{r_{*}} - \frac{a^{2}}{r^{2} + \lambda^{2}}D_{\varphi}$.

Same construction for $\mathcal{T}_{\jmath}^{\pm}$ and $\mathcal{H}_{\jmath\pm}$. $\mathcal{T}_{\jmath}^{\pm}$ can be extended to bounded operators from \mathcal{H} to $\mathcal{H}_{\jmath\pm}$.

$$\begin{array}{cccc} \Pi_F: & \mathcal{H} & \rightarrow & \mathcal{H}_{\mathfrak{H}^+} \oplus \mathcal{H}_{\mathfrak{I}^+} =: \mathcal{H}_F \\ \psi_{\Sigma_0} & \mapsto & (\mathcal{T}_{\mathfrak{H}}^+ \psi_{\Sigma_0}, \mathcal{T}_{\mathfrak{I}}^+ \psi_{\Sigma_0}). \end{array}$$

Theorem (Goursat problem)

 Π_F is an isometry. In particular for all $\Phi \in \mathcal{H}_F$, there exists a unique solution of the Dirac equation $\Psi \in C(\mathbb{R}_t, \mathcal{H})$ s.t. $\Phi = \Pi_F \Psi(0)$.

- 1) First constructions of this type: Friedlander (Minkowski, 80, 01), Bachelot (Schwarzschild, 91).
- 2) The inverse is possible: Mason, Nicolas (04), Joudioux (10) (asymptotically simple space-times), Dafermos-Rodnianski-Shlapentokh-Rothman (Kerr).

Part 2: The Hawking effect as a scattering problem

D. H., Creation of fermions by rotating charged black holes, Mémoires de la SMF 117 (2009), 158 pp.

2.1 The collapse of the star

$$\mathcal{M}_{\textit{col}} = \bigcup_t \Sigma^{\textit{col}}_t, \ \Sigma^{\textit{col}}_t = \{(t, \hat{r}, \omega) \in \mathbb{R}_t imes \mathbb{R}_{\hat{r}} imes \mathcal{S}^2_\omega; \ \hat{r} \geq \hat{z}(t, \theta)\}.$$

Assumptions:

- ▶ For $\hat{r} > \hat{z}(t, \theta)$, the metric is the Kerr Newman metric.
- $\hat{z}(t,\theta)$ behaves asymptotically like certain timelike geodesics in the Kerr-Newman metric. We suppose for the conserved quantities L (angular momentum), \mathcal{Q} (Carter constant) and \tilde{E} (rotational energy) : $L=\mathcal{Q}=\tilde{E}=0$. We also suppose an asymptotic condition on the surface of the star :

$$\hat{z}(t, heta) = -t - \hat{A}(heta)e^{-2\kappa_- t} + \mathcal{O}(e^{-4\kappa_- t}), \ t o \infty$$

 $\kappa_- > 0$ is the surface gravity of the outer horizon, $\hat{A}(\theta) > 0$.

- 1. r is a coordinate adapted to simple null geodesics.
- 2. Dirac in \mathcal{M}_{col} : we add a boundary condition (MIT)

$$\rightarrow \Psi(t) = U(t,0)\Psi_0$$

2.1 The collapse of the star

$$\mathcal{M}_{\textit{col}} = \bigcup_t \Sigma_t^{\textit{col}}, \ \Sigma_t^{\textit{col}} = \{(t, \hat{r}, \omega) \in \mathbb{R}_t imes \mathbb{R}_{\hat{r}} imes \mathcal{S}_{\omega}^2; \ \hat{r} \geq \hat{z}(t, \theta)\}.$$

Assumptions:

- ▶ For $\hat{r} > \hat{z}(t, \theta)$, the metric is the Kerr Newman metric.
- $\hat{z}(t,\theta)$ behaves asymptotically like certain timelike geodesics in the Kerr-Newman metric. We suppose for the conserved quantities L (angular momentum), \mathcal{Q} (Carter constant) and \tilde{E} (rotational energy) : $L = \mathcal{Q} = \tilde{E} = 0$. We also suppose an asymptotic condition on the surface of the star :

$$\hat{z}(t,\theta) = -t - \hat{A}(\theta)e^{-2\kappa_{-}t} + \mathcal{O}(e^{-4\kappa_{-}t}), t \to \infty.$$

 $\kappa_- > 0$ is the surface gravity of the outer horizon, $\hat{A}(\theta) > 0$.

- 1. r is a coordinate adapted to simple null geodesics.
- 2. Dirac in \mathcal{M}_{col} : we add a boundary condition (MIT)
- $\rightarrow \Psi(t) = U(t,0)\Psi_0$

2.1 The collapse of the star

$$\mathcal{M}_{col} = \bigcup_t \Sigma_t^{col}, \ \Sigma_t^{col} = \{(t, \hat{r}, \omega) \in \mathbb{R}_t \times \mathbb{R}_{\hat{r}} \times \mathcal{S}_{\omega}^2; \ \hat{r} \geq \hat{z}(t, \theta)\}.$$

Assumptions:

- ▶ For $\hat{r} > \hat{z}(t, \theta)$, the metric is the Kerr Newman metric.
- $\hat{z}(t,\theta)$ behaves asymptotically like certain timelike geodesics in the Kerr-Newman metric. We suppose for the conserved quantities L (angular momentum), \mathcal{Q} (Carter constant) and \tilde{E} (rotational energy) : $L=\mathcal{Q}=\tilde{E}=0$. We also suppose an asymptotic condition on the surface of the star :

$$\hat{z}(t,\theta) = -t - \hat{A}(\theta)e^{-2\kappa_{-}t} + \mathcal{O}(e^{-4\kappa_{-}t}), t \to \infty.$$

 $\kappa_- > 0$ is the surface gravity of the outer horizon, $\hat{A}(\theta) > 0$.

- 1. r is a coordinate adapted to simple null geodesics.
- 2. Dirac in \mathcal{M}_{col} : we add a boundary condition (MIT)
- $\rightarrow \Psi(t) = U(t,0)\Psi_0.$

2.2 Dirac quantum fields

Dimock '82.

$$\mathcal{M}_{col} = igcup_{t \in \mathbb{R}} \Sigma_t^{col}, \quad \Sigma_t^{col} = \{(t, \hat{r}, heta, arphi); \hat{r} \geq \hat{z}(t, heta)\}.$$

Dirac quantum field Ψ_0 and the CAR-algebra $\mathcal{U}(\mathcal{H}_0)$ constructed in the usual way. Fermi-Fock representation.

$$S_{col}: egin{array}{ccc} (C_0^\infty(\mathcal{M}_{col}))^4 &
ightarrow & \mathcal{H}_0 \ \Phi &
ightarrow & S_{col}\Phi := \int_{\mathbb{R}} U(0,t)\Phi(t)dt \end{array}$$

Quantum spin field:

$$egin{array}{cccc} \Psi_{\mathit{col}} : & egin{pmatrix} (C_0^\infty(\mathcal{M}_{\mathit{col}}))^4 &
ightarrow & \mathcal{L}(\mathcal{F}(\mathcal{H}_0)) \ \Phi &
ightarrow & \Psi_{\mathit{col}}(\Phi) := \Psi_0(\mathcal{S}_{\mathit{col}}\Phi) \end{array}$$

 $\mathcal{U}_{col}(\mathcal{O}) = \text{algebra generated by } \Psi^*_{col}(\Phi^1)\Psi_{col}(\Phi^2), \operatorname{supp} \Phi^j \subset \mathcal{O}.$

$$\mathcal{U}_{col}(\mathcal{M}_{col}) = \overline{\bigcup_{\mathcal{O} \subset \mathcal{M}_{col}} \mathcal{U}_{col}(\mathcal{O})}.$$

Same procedure on \mathcal{M}_{BH} :

$$S:\Phi\in (C_0^\infty(\mathcal{M}_\mathit{BH}))^4\mapsto S\Phi:=\int_\mathbb{R} e^{-itH}\Phi(t)dt.$$

States

► U_{col}(M_{col})
Vacuum state :

$$\begin{array}{lcl} \omega_{\textit{col}}(\Psi_{\textit{col}}^*(\Phi_1)\Psi_{\textit{col}}(\Phi_2)) & := & \omega_{\textit{vac}}(\Psi_0^*(S_{\textit{col}}\Phi_1)\Psi_0(S_{\textit{col}}\Phi_2)) \\ & = & \langle \mathbf{1}_{[0,\infty)}(H_0)S_{\textit{col}}\Phi_1, S_{\textit{col}}\Phi_2 \rangle. \end{array}$$

- ▶ *U*_{BH}(*M*_{BH})
 - Vacuum state

$$\omega_{\textit{Vac}}(\Psi_{\textit{BH}}^*(\Phi_1)\Psi_{\textit{BH}}(\phi_2)) \quad = \quad \langle \mathbf{1}_{[0,\infty)}(\textit{H})\textit{S}\phi_1, \textit{S}\phi_2 \rangle.$$

► Thermal Hawking state

$$\begin{array}{lcl} \omega_{\textit{Haw}}^{\eta,\sigma}(\Psi_{\textit{BH}}^*(\Phi_1)\Psi_{\textit{BH}}(\Phi_2)) & = & \langle \mu e^{\sigma H}(1+\mu e^{\sigma H})^{-1}S\Phi_1,S\Phi_2\rangle_{\mathcal{H}} \\ & =: & \omega_{\textit{KMS}}^{\eta,\sigma}(\Psi^*(S\Phi_1)\Psi(S\Phi_2)), \\ & T_{\textit{Haw}} & = & \sigma^{-1},\, \mu=e^{\sigma\eta},\, \sigma>0. \end{array}$$

 T_{Haw} Hawking temperature, μ chemical potential.

The Hawking effect

$$\Phi \in (C_0^\infty(\mathcal{M}_{\textit{col}}))^4, \ \Phi^T(t,\hat{r},\omega) = \Phi(t-T,\hat{r},\omega).$$

Theorem (Hawking effect)

$$\begin{split} \text{Let } \Phi_j \in (C_0^\infty(\mathcal{M}_{col}))^4, \ j = 1, 2. \ \textit{We have} \\ & \lim_{T \to \infty} \omega_{col} (\Psi_{col}^*(\Phi_1^T) \Psi_{col}(\Phi_2^T)) \\ & = \omega_{\textit{Haw}}^{\eta, \sigma} (\Psi_{\textit{BH}}^*(\mathbf{1}_{\mathbb{R}^+}(P^-)\Phi_1) \Psi_{\textit{BH}}(\mathbf{1}_{\mathbb{R}^+}(P^-)\Phi_2)) \\ & + \omega_{\textit{vac}} (\Psi_{\textit{BH}}^*(\mathbf{1}_{\mathbb{R}^-}(P^-)\Phi_1) \Psi_{\textit{BH}}(\mathbf{1}_{\mathbb{R}^-}(P^-)\Phi_2)), \end{split}$$

$$& T_{\textit{Haw}} = 1/\sigma = \kappa_-/2\pi, \quad \mu = e^{\sigma\eta}, \ \eta = \frac{qQr_-}{r^2 + a^2} + \frac{aD_\varphi}{r^2 + a^2}. \end{split}$$

2.3 Explanation

FIGURE - Collapse of the star

Change in frequencies: mixing of positive and negative frequencies.

2.4 The analytic problem

$$\begin{aligned} &\lim_{T \to \infty} ||\mathbf{1}_{[0,\infty)}(\not \!\! D_0)U(0,T)f||_0^2 \\ &= & \langle \mathbf{1}_{\mathbb{R}^+}(P^-)f, \mu e^{\sigma \not \!\! D}(1+\mu e^{\sigma \not \!\! D})^{-1}\mathbf{1}_{\mathbb{R}^+}(P^-)f\rangle \\ &+ & & ||\mathbf{1}_{[0,\infty)}(\not \!\! D)\mathbf{1}_{\mathbb{R}^-}(P^-)f||^2. \end{aligned}$$

- 1) Hawking 1975,
- 2) Bachelot (99), Melnyk (04).
- 3) Schwarzschild: Moving mirror, equation with potential.

2.5 Toy model: The moving mirror

$$\begin{split} z(t) &= -t - Ae^{-2\kappa t}; \ A > 0, \ \kappa > 0, \\ \begin{cases} \partial_t \psi &= i \not D \psi, \\ \psi_1(t, z(t)) &= \sqrt{\frac{1-\dot z}{1+\dot z}} \psi_2(t, z(t)) \ , \ \not D = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) D_x. \\ \psi(t=s, .) &= \psi_s(.) \end{split}$$

Solution given by a unitary propagator U(t, s). Conserved L^2 norm:

$$||\psi||_{\mathcal{H}_t}^2 = \int_{z(t)}^{\infty} |\psi|^2(t,x) dx.$$

Explicit calculation:

$$\lim_{T \to \infty} ||\mathbf{1}_{[0,\infty)}(\vec{p}_0)U(0,T)f||_0^2 = \langle e^{\frac{2\pi}{\kappa}p} \left(1 + e^{\frac{2\pi}{\kappa}p}\right)^{-1} P_2 f, P_2 f \rangle + ||\mathbf{1}_{[0,\infty)}(\vec{p})P_1 f||^2.$$

Scattering problem: show that the real system behaves the same way.

- We compare to a dynamics for which the radiation can be explicitly computed.
- Can't compare dynamics on Cauchy surfaces → characteristic Cauchy problem.
- Three time intervals :
 - T/2+c₀, T no boundary involved → use asymptotic completeness+propagation estimates
 - $[t_c, T/2 + c_0]$ use Duhamel formula + construction of tetrad and coordinates :
 - There exists a coordinate system (t, r, w) such that r = -t + v along incoming simple and geodesics (t = Q = 0).
 - $\emptyset = (D_1 + P_2 + W, 1) = Diag(1, -1, -1, 1), P_2$ by a differential operator
 - ▶ [0, 1/2]:
 - $\|\mathbf{1}_{[0,\infty]}(\mathbb{P}_0)U(0,t_e)U_H(t_e,T)\Omega_H^-f\|\sim \|\mathbf{1}_{[0,\infty)}(\mathbb{D}_{H,0})U_H(0,T)\Omega_H^-f\|$ if evolution is essentially given by the group (and not the evolution system). For this
 - U₁(ξ₁ · f₁)(f₁) = 0.
 The hamiltonian flow stays outside the surface of the stay for date in the given regime ((ξ₁ >>> (Θ))).
 - Propagation of singularities, compact Sobolev embeddings.

- We compare to a dynamics for which the radiation can be explicitly computed.
- ► Can't compare dynamics on Cauchy surfaces → characteristic Cauchy problem.
- Three time intervals :
 - $[T/2 + c_0, T]$ no boundary involved \rightarrow use asymptotic completeness+propagation estimates
 - [t, 7/2 + c₀] use Duhamel formula + construction of tetrad and coordinates:
 - There exists a N-series N-series (N-series N-series N-s
 - \triangleright $[0, t_{\epsilon}]$:
 - $\|\mathbf{1}_{[0,\infty]}(\mathbb{D}_0)U(0,t_e)U_H(t_e,T)\Omega_H^-f\|\sim \|\mathbf{1}_{[0,\infty)}(\mathbb{D}_{H,0})U_H(0,T)\Omega_H^-f\|$ if evolution is essentially given by the group (and not the evolution system). For this
 - The families of the stays outside the curlocs of the star for data in the given receiving (if any limites comment follower enderthings.)

- We compare to a dynamics for which the radiation can be explicitly computed.
- ► Can't compare dynamics on Cauchy surfaces → characteristic Cauchy problem.
- Three time intervals :
 - ▶ $[T/2 + c_0, T]$ no boundary involved \rightarrow use asymptotic completeness+propagation estimates.
 - [t_e, T/2 + c₀] use Duhamel formula + construction of tetrad and coordinates:
 - There exists a coordinate system (t, \hat{r}, ω) such that $\hat{r} = -t + c$ along incoming simple null geodesics (t Q = 0)
 - There exists a Newman Penrose tetrad such that
 - $\emptyset = \Gamma D_r + P_\omega + W, \Gamma = Diag(1, -1, -1, 1), P_\omega$ is a differential operator with derivatives only in the angular directions and W is a potential
 - ▶ [0, t_{ϵ}] : $\|\mathbf{1}_{[0,\infty]}(\not{\mathbb{D}}_{0})U(0,t_{\epsilon})U_{H}(t_{\epsilon},T)\Omega_{H}^{-}f\|\sim \|\mathbf{1}_{[0,\infty)}(\mathbb{D}_{H,0})U_{H}(0,T)\Omega_{H}^{-}f\|$ if evolution is essentially given by the group (and not the evolution system). For this
 - \triangleright $II_{ii}(t, T)O^{-}f \rightarrow 0$
 - The hamiltonian flow stays outside the surface of the star for data in the given regime ($|\xi| >> |\Theta|$).
 - Propagation of singularities, compact Sobolev embeddings

- We compare to a dynamics for which the radiation can be explicitly computed.
- ► Can't compare dynamics on Cauchy surfaces → characteristic Cauchy problem.
- Three time intervals :
 - [T/2 + c₀, T] no boundary involved → use asymptotic completeness+propagation estimates.
 - $[t_{\epsilon}, T/2 + c_0]$ use Duhamel formula + construction of tetrad and coordinates :
 - There exists a coordinate system (t, \tilde{r}, ω) such that $\tilde{r} = -t + c$ along incoming simple null geodesics $(t \Omega 0)$
 - ► There exists a Newman Penrose tetrad such that
 - $\Psi = \Gamma D_r + P_\omega + W$, $\Gamma = Diag(1, -1, -1, 1)$. P_ω is a differential operator
 - ▶ [0, t_{ϵ}]: $\|\mathbf{1}_{[0,\infty]}(\not{\mathbb{D}}_{0})U(0,t_{\epsilon})U_{H}(t_{\epsilon},T)\Omega_{H}^{-}f\| \sim \|\mathbf{1}_{[0,\infty)}(\mathbb{D}_{H,0})U_{H}(0,T)\Omega_{H}^{-}f\| \text{ i}$ evolution is essentially given by the group (and not the evolution
 - $V_H(t_{\epsilon},T)\Omega_{ii}^{-}f \rightarrow 0$
 - ► The hamiltonian flow stays outside the surface of the star for data in the given regime ($|\xi| >> |\Theta|$).
 - Propagation of singularities, compact Sobolev embeddings.

- We compare to a dynamics for which the radiation can be explicitly computed.
- ► Can't compare dynamics on Cauchy surfaces → characteristic Cauchy problem.
- Three time intervals :
 - [T/2 + c₀, T] no boundary involved → use asymptotic completeness+propagation estimates.
 - $[t_{\epsilon}, \tau/2 + c_0]$ use Duhamel formula + construction of tetrad and coordinates :
 - There exists a coordinate system (t, \hat{r}, ω) such that $\hat{r} = -t + c$ along incoming simple null geodesics (L = Q = 0).
 - There exists a Newman Penrose tetrad such that :

 Ψ = ΓD_{r̄} + P_ω + W, Γ = Diag(1, -1, -1, 1). P_ω is a differential operator with derivatives only in the angular directions and W is a potential.
 - $\|\mathbf{1}_{[0,\infty]}(\mathcal{D}_0)U(0,t_{\epsilon})U_H(t_{\epsilon},T)\Omega_H^-f\|\sim \|\mathbf{1}_{[0,\infty)}(\mathbb{D}_{H,0})U_H(0,T)\Omega_H^-f\|$ if evolution is essentially given by the group (and not the evolution system). For this
 - $V_H(t_{\epsilon},T)\Omega_{\mu}^-f \rightarrow 0$
 - The hamiltonian flow stays outside the surface of the star for data in the given regime (|ξ| >> |Θ|).
 - Propagation of singularities, compact Sobolev embeddings.

- We compare to a dynamics for which the radiation can be explicitly computed.
- ► Can't compare dynamics on Cauchy surfaces → characteristic Cauchy problem.
- Three time intervals :
 - [T/2 + c₀, T] no boundary involved → use asymptotic completeness+propagation estimates.
 - $[t_{\epsilon}, \tau/2 + c_0]$ use Duhamel formula + construction of tetrad and coordinates :
 - There exists a coordinate system (t, \hat{r}, ω) such that $\hat{r} = -t + c$ along incoming simple null geodesics (L = Q = 0).
 - There exists a Newman Penrose tetrad such that :

 Ψ = ΓD_{r̄} + P_ω + W, Γ = Diag(1, -1, -1, 1). P_ω is a differential operator with derivatives only in the angular directions and W is a potential.
 - $\|\mathbf{1}_{[0,\infty]}(\not D_0)U(0,t_\epsilon)U_H(t_\epsilon,T)\Omega_H^-f\|\sim \|\mathbf{1}_{[0,\infty)}(\mathbb{D}_{H,0})U_H(0,T)\Omega_H^-f\|$ if evolution is essentially given by the group (and not the evolution system). For this
 - $\triangleright U_H(t_e,T)\Omega_H^-f \rightharpoonup 0.$
 - The hamiltonian flow stays outside the surface of the star for data in the given regime (|ε| >> |Θ|).
 - Propagation of singularities, compact Sobolev embeddings.

- We compare to a dynamics for which the radiation can be explicitly computed.
- ► Can't compare dynamics on Cauchy surfaces → characteristic Cauchy problem.
- Three time intervals :
 - [T/2 + c₀, T] no boundary involved → use asymptotic completeness+propagation estimates.
 - $[t_{\epsilon}, T/2 + c_0]$ use Duhamel formula + construction of tetrad and coordinates :
 - There exists a coordinate system (t, r̂, ω) such that r̂ = -t + c along incoming simple null geodesics (L = Q = 0).
 - There exists a Newman Penrose tetrad such that : $partial = \Gamma D_r + P_\omega + W$, $\Gamma = Diag(1, -1, -1, 1)$. P_ω is a differential operator with derivatives only in the angular directions and W is a potential.
 - $\|\mathbf{1}_{[0,\infty]}(\not{\mathbb{D}}_0)U(0,t_{\epsilon})U_H(t_{\epsilon},T)\Omega_H^-f\|\sim \|\mathbf{1}_{[0,\infty)}(\mathbb{D}_{H,0})U_H(0,T)\Omega_H^-f\|$ if evolution is essentially given by the group (and not the evolution system). For this
 - The first interest in the surface of the star for data in the given regime (IFI >> IAI).
 - Propagation of singularities, compact Sobolev embeddings.

- We compare to a dynamics for which the radiation can be explicitly computed.
- ► Can't compare dynamics on Cauchy surfaces → characteristic Cauchy problem.
- Three time intervals :
 - [T/2 + c₀, T] no boundary involved → use asymptotic completeness+propagation estimates.
 - $[t_{\epsilon}, T/2 + c_0]$ use Duhamel formula + construction of tetrad and coordinates :
 - There exists a coordinate system (t, r̂, ω) such that r̂ = -t + c along incoming simple null geodesics (L = Q = 0).
 - There exists a Newman Penrose tetrad such that :

 Ψ = ΓD_{r̄} + P_ω + W, Γ = Diag(1, -1, -1, 1). P_ω is a differential operator with derivatives only in the angular directions and W is a potential.
 - ▶ $[0, t_{\epsilon}]$: $\|\mathbf{1}_{[0,\infty]}(\not{\mathbb{D}}_{h})U(0, t_{\epsilon})U_{H}(t_{\epsilon}, T)\Omega_{H}^{-}f\| \sim \|\mathbf{1}_{[0,\infty)}(\mathbb{D}_{H,0})U_{H}(0, T)\Omega_{H}^{-}f\|$ if evolution is essentially given by the group (and not the evolution system). For this
 - $\vdash U_H(t_{\epsilon},T)\Omega_H^- f \rightharpoonup 0$
 - ▶ The hamiltonian flow stays outside the surface of the star for data in the given regime ($|\xi| >> |\Theta|$).
 - Propagation of singularities, compact Sobolev embeddings.

- We compare to a dynamics for which the radiation can be explicitly computed.
- ► Can't compare dynamics on Cauchy surfaces → characteristic Cauchy problem.
- Three time intervals :
 - [T/2 + c₀, T] no boundary involved → use asymptotic completeness+propagation estimates.
 - $[t_{\epsilon}, T/2 + c_0]$ use Duhamel formula + construction of tetrad and coordinates :
 - There exists a coordinate system (t, r̂, ω) such that r̂ = -t + c along incoming simple null geodesics (L = Q = 0).
 - There exists a Newman Penrose tetrad such that :

 Ψ = ΓD_{r̄} + P_ω + W, Γ = Diag(1, -1, -1, 1). P_ω is a differential operator with derivatives only in the angular directions and W is a potential.
 - ▶ $[0, t_{\epsilon}]$: $\|\mathbf{1}_{[0,\infty]}(\not{\mathbb{D}}_{h})U(0, t_{\epsilon})U_{H}(t_{\epsilon}, T)\Omega_{H}^{-}f\| \sim \|\mathbf{1}_{[0,\infty)}(\mathbb{D}_{H,0})U_{H}(0, T)\Omega_{H}^{-}f\|$ if evolution is essentially given by the group (and not the evolution system). For this
 - $\vdash U_H(t_{\epsilon}, T)\Omega_H^- f \rightharpoonup 0.$
 - ► The hamiltonian flow stays outside the surface of the star for data in the given regime ($|\xi| >> |\Theta|$).
 - Propagation of singularities, compact Sobolev embeddings.

2.6 Some remarks on the proof

- We compare to a dynamics for which the radiation can be explicitly computed.
- ► Can't compare dynamics on Cauchy surfaces → characteristic Cauchy problem.
- Three time intervals :
 - [T/2 + c₀, T] no boundary involved → use asymptotic completeness+propagation estimates.
 - $[t_{\epsilon}, T/2 + c_0]$ use Duhamel formula + construction of tetrad and coordinates :
 - There exists a coordinate system (t, r̂, ω) such that r̂ = -t + c along incoming simple null geodesics (L = Q = 0).
 - There exists a Newman Penrose tetrad such that :

 Ψ = ΓD_{r̄} + P_ω + W, Γ = Diag(1, -1, -1, 1). P_ω is a differential operator with derivatives only in the angular directions and W is a potential.
 - ▶ $[0, t_{\epsilon}]$: $\|\mathbf{1}_{[0,\infty]}(\not{\mathbb{D}}_{h})U(0, t_{\epsilon})U_{H}(t_{\epsilon}, T)\Omega_{H}^{-}f\| \sim \|\mathbf{1}_{[0,\infty)}(\mathbb{D}_{H,0})U_{H}(0, T)\Omega_{H}^{-}f\|$ if evolution is essentially given by the group (and not the evolution system). For this
 - $\vdash U_H(t_{\epsilon}, T)\Omega_{\mu}^- f \rightharpoonup 0.$
 - The hamiltonian flow stays outside the surface of the star for data in the given regime $(|\xi| >> |\Theta|)$.
 - Propagation of singularities, compact Sobolev embeddings.

2.6 Some remarks on the proof

- We compare to a dynamics for which the radiation can be explicitly computed.
- ► Can't compare dynamics on Cauchy surfaces → characteristic Cauchy problem.
- Three time intervals :
 - [T/2 + c₀, T] no boundary involved → use asymptotic completeness+propagation estimates.
 - $[t_{\epsilon}, T/2 + c_0]$ use Duhamel formula + construction of tetrad and coordinates :
 - There exists a coordinate system (t, r̂, ω) such that r̂ = -t + c along incoming simple null geodesics (L = Q = 0).
 - There exists a Newman Penrose tetrad such that :
 Ψ = ΓD_r + P_ω + W, Γ = Diag(1, -1, -1, 1). P_ω is a differential operator with derivatives only in the angular directions and W is a potential.
 - ▶ $[0, t_{\epsilon}]$: $\|\mathbf{1}_{[0,\infty]}(\not{\mathbb{D}}_{0})U(0, t_{\epsilon})U_{H}(t_{\epsilon}, T)\Omega_{H}^{-}f\| \sim \|\mathbf{1}_{[0,\infty)}(\mathbb{D}_{H,0})U_{H}(0, T)\Omega_{H}^{-}f\|$ if evolution is essentially given by the group (and not the evolution system). For this
 - $\vdash U_H(t_{\epsilon}, T)\Omega_{\mu}^- f \rightharpoonup 0.$
 - The hamiltonian flow stays outside the surface of the star for data in the given regime ($|\xi| >> |\Theta|$).
 - Propagation of singularities, compact Sobolev embeddings.

Part 3: Scattering theory for the Klein-Gordon equation on the De Sitter Kerr metric

V. Georgescu, C. Gérard, D. H., Asymptotic completeness for superradiant Klein-Gordon equations and applications to the De Sitter Kerr metric, J. Eur. Math. Soc. 19, 2171-2244.

3.1 The Klein-Gordon equation on the De Sitter Kerr metric De Sitter Kerr metric in Boyer-Lindquist coordinates

 $\mathcal{M}_{BH} = \mathbb{R}_t \times \mathbb{R}_r \times S_{\omega}^2$, with spacetime metric

$$g = \frac{\Delta_r - \frac{a^2 \sin^2 \theta \Delta_{\theta}}{\lambda^2 \rho^2} dt^2 + \frac{2a \sin^2 \theta ((r^2 + a^2)^2 \Delta_{\theta} - a^2 \sin^2 \theta \Delta_r)}{\lambda^2 \rho^2} dt d\varphi$$

$$- \frac{\rho^2}{\Delta_r} dr^2 - \frac{\rho^2}{\Delta_{\theta}} d\theta^2 - \frac{\sin^2 \theta \sigma^2}{\lambda^2 \rho^2} d\varphi^2,$$

$$\rho^2 = r^2 + a^2 \cos^2 \theta, \quad \Delta_r = \left(1 - \frac{\Lambda}{3} r^2\right) (r^2 + a^2) - 2Mr,$$

$$\Delta_{\theta} = 1 + \frac{1}{2} \Lambda a^2 \cos^2 \theta, \quad \sigma^2 = (r^2 + a^2)^2 \Delta_{\theta} - a^2 \Delta_r \sin^2 \theta, \quad \lambda = 1 + \frac{1}{2} \Lambda a^2.$$

 $\Lambda>0$: cosmological constant, M>0 : masse, a : angular momentum per unit masse.

- $\rho^2 = 0$ is a curvature singularity, $\Delta_r = 0$ are coordinate singularities. $\Delta_r > 0$ on some open interval $r_- < r < r_+$. $r = r_-$: black hole horizon, $r = r_+$ cosmological horizon.
- $ightharpoonup \partial_{\varphi}$ and ∂_{t} are Killing. There exist $r_{1}(\theta)$, $r_{2}(\theta)$ s. t. ∂_{t} is
 - timelike on $\{(t, r, \theta, \varphi) : r_1(\theta) < r < r_2(\theta)\}$,
 - ▶ spacelike on $\{(t, r, \theta, \varphi) : r_- < r < r_1(\theta)\} \cup \{(t, r, \theta, \varphi) : r_2(\theta) < r < r_+\} =: \mathcal{E}_- \cup \mathcal{E}_+.$

The regions \mathcal{E}_- , \mathcal{E}_+ are called ergospheres.

3.1 The Klein-Gordon equation on the De Sitter Kerr metric

We now consider the unitary transform

$$U: \begin{array}{ccc} L^2(\mathcal{M}; \frac{\sigma^2}{\Delta_r \Delta_\theta} \textit{drd}\omega) & \to & L^2(\mathcal{M}; \textit{drd}\omega) \\ \psi & \mapsto & \frac{\sigma}{\sqrt{\Delta_r \Delta_\theta}} \psi \end{array}$$

If ψ fulfills $(\Box_q + m^2)\psi = 0$, then $u = U\psi$ fulfills

$$(2) \qquad (\partial_t^2 - 2i\mathbf{k}\partial_t + h)u = 0.$$

with

$$k = \frac{a(\Delta_r - (r^2 + a^2)\Delta_\theta)}{\sigma^2} D_{\varphi},$$

$$h = -\frac{(\Delta_r - a^2 \sin^2 \theta \Delta_\theta)}{\sin^2 \theta \sigma^2} \partial_{\varphi}^2 - \frac{\sqrt{\Delta_r \Delta_\theta}}{\lambda \sigma} \partial_r \Delta_r \partial_r \frac{\sqrt{\Delta_r \Delta_\theta}}{\lambda \sigma}$$

$$- \frac{\sqrt{\Delta_r \Delta_\theta}}{\lambda \sin \theta \sigma} \partial_{\theta} \sin \theta \Delta_\theta \partial_{\theta} \frac{\sqrt{\Delta_r \Delta_\theta}}{\lambda \sigma} + \frac{\rho^2 \Delta_r \Delta_\theta}{\lambda^2 \sigma^2} m^2.$$

h is not positive inside the ergospheres. This entails that the natural conserved quantity

$$\tilde{\mathcal{E}}(u) = \|\partial_t u\|^2 + (hu|u)$$

is not positive.

3+1 decomposition, energies, Killing fields

Let $v = e^{-ikt}u$. Then u is solution of (2) if and only if v is solution of

$$(\partial_t^2 + h(t))v = 0$$
, $h(t) = e^{-ikt}h_0e^{ikt}$, $h_0 = h + k^2 \ge 0$.

Natural energy:

$$\|\partial_t v\|^2 + (h(t)v|v).$$

Rewriting for u:

$$\dot{\mathcal{E}}(u) = \left\| (\partial_t - ik)u \right\|^2 + (h_0 u | u).$$

This energy is positive, but may grow in time \rightarrow superradiance.

Remark

- ▶ $k = \Omega D_{\varphi}$ and Ω has finite limits $\Omega_{-/+}$ when $r \to r_{\mp}$. These limits are called angular velocities of the horizons. The Killing fields $\partial_t \Omega_{-/+} \partial_{\varphi}$ on the De Sitter Kerr metric are timelike close to the black hole (-) resp. cosmological (+) horizon.

3.2 The abstract equation

 \mathcal{H} Hilbert space. h, k selfadjoint, $k \in \mathcal{B}(\mathcal{H})$.

(3)
$$\begin{cases} (\partial_t^2 - 2ik\partial_t + h)u &= 0, \\ u|_{t=0} &= u_0, \\ \partial_t u|_{t=0} &= u_1. \end{cases}$$

Hyperbolic equation

(A1)
$$h_0 := h + k^2 \ge 0.$$

Formally $u = e^{izt}v$ solution if and only if

$$p(z)v=0$$

with $p(z) = h_0 - (k - z)^2 = h + z(2k - z)$, $z \in \mathbb{C}$. p(z) is called the quadratic pencil.

Conserved quantities

$$\langle u|u\rangle_{\ell} := ||u_1 - \ell u_0||^2 + (p(\ell)u_0|u_0),$$

where $p(\ell) = h_0 - (k - \ell)^2$. Conserved by the evolution, but in general not positive definite, because none of the operators $p(\ell)$ is in general positive.

Spaces and operators

 \mathcal{H}^{i} : scale of Sobolev spaces associated to h_{0} .

(A2)
$$0 \notin \sigma_{\rho\rho}(h_0); h_0^{1/2}kh_0^{-1/2} \in \mathcal{B}(\mathcal{H}).$$

Homogeneous energy spaces

$$\dot{\mathcal{E}} = \Phi(k)h_0^{-1/2}\mathcal{H} \oplus \mathcal{H}, \quad \Phi(k) = \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}.$$

where $\dot{\mathcal{E}}$ is equipped with the norm $\|(u_0, u_1)\|_{\dot{\mathcal{E}}}^2 = \|u_1 - ku_0\|^2 + (h_0 u_0 | u_0)$.

Klein Gordon operator

$$\psi = (u, \frac{1}{i}\partial_t u), \quad (\partial_t - iH)\psi = 0, \quad H = \begin{pmatrix} 0 & 1 \\ h & 2k \end{pmatrix},$$
$$(H - z)^{-1} = \rho^{-1}(z)\begin{pmatrix} z - 2k & 1 \\ h & z \end{pmatrix}.$$

We note \dot{H} the Klein-Gordon operator on the homogeneous energy space.

3.3 Results in the De Sitter Kerr case

Uniform boundedness of the evolution

(4)
$$\mathcal{H}^n = \{ u \in L^2(\mathbb{R} \times S^2) : (D_{\varphi} - n)u = 0 \}, \ n \in \mathbb{Z}.$$

We construct the homogeneous energy space $\dot{\mathcal{E}}^n$ as well as the Klein-Gordon operator \dot{H}^n as in Sect. 3.2.

Theorem

There exists $a_0 > 0$ such that for $|a| < a_0$ the following holds : for all $n \in \mathbb{Z}$, there exists $C_n > 0$ such that

$$\|e^{-it\dot{H}^n}u\|_{\dot{\mathcal{E}}^n}\leq C_n\|u\|_{\dot{\mathcal{E}}^n},\ u\in\dot{\mathcal{E}}^n,\ t\in\mathbb{R}.$$

Remark

- 1. Note that for n=0 the Hamiltonian $\dot{H}^n=\dot{H}^0$ is selfadjoint, therefore the only issue is $n\neq 0$.
- 2. Different from uniform boundedness on Cauchy surfaces crossing the horizon.

Asymptotic dynamics

Regge-Wheeler type coordinate $\frac{dx}{dr} = \frac{r^2 + a^2}{\Delta_r}$.

 $x \pm t = const.$ along principal null geodesics.

Unitary transform:

$$\mathcal{V}: \begin{array}{ccc} L^2(\mathbb{R}_{(r_-,r_+)}\times S^2) & \to & L^2(\mathbb{R}\times S^2, dxd\omega), \\ v(r,\omega) & \mapsto & \sqrt{\frac{\Delta_r}{r^2+a^2}}v(r(x),\omega). \end{array}$$

Asymptotic equations:

(6)
$$(\partial_t^2 - 2\Omega_{-/+}\partial_{\varphi}\partial_t + h_{-/+})u_{-/+} = 0,$$

$$h_{-/+} = \Omega_{-/+}^2 \partial_{\varphi}^2 - \partial_x^2.$$

The conserved quantities:

$$\begin{aligned} \|(\partial_t - i\Omega_{-/+}D_{\varphi})u_{-/+}\|^2 + ((h_{-/+} - \Omega_{-/+}^2 \partial_{\varphi}^2)u_{-/+}|u_{-/+}) \\ &= \|(\partial_t - i\Omega_{-/+}D_{\varphi})u_{-/+}\|^2 + (-\partial_x^2 u_{-/+}|u_{-/+}) \end{aligned}$$

are positive.

Asymptotic profiles

Let $\ell_{-/+}=\Omega_{-/+}n$. Also let $i_{-/+}\in C^\infty(\mathbb{R}),\ i_-=0$ in a neighborhood of $\infty,\ i_+=0$ in a neighborhood of $-\infty$ and $i_-^2+i_+^2=1$. Let

$$h_{-/+}^n = -\partial_x^2 - \ell_{-/+}^2, \ k_{-/+} = \ell_{-/+}, \quad H_{-/+}^n = \begin{pmatrix} 0 & 1 \\ h_{-/+} & 2k_{-/+} \end{pmatrix}$$

acting on \mathcal{H}^n defined in (4).

We associate to these operators the natural homogeneous energy spaces $\dot{\mathcal{E}}^n_{l/r}$. Let $\{q(q+1): q \in \mathbb{N}\} = \sigma(-\Delta_{S^2})$ and $\mathcal{Z}_q = \mathbb{1}_{\{g(q+1)\}}(-\Delta_{S^2})\mathcal{H}$. Let

$$\label{eq:wq} \begin{array}{lcl} \textit{W_q} &:= & (\textit{$Z_q \otimes L^2(\mathbb{R})$}) \oplus (\textit{$Z_q \otimes L^2(\mathbb{R})$}), \; \mathcal{E}^{q,n}_{-/+} := \mathcal{E}^n_{-/+} \cap \textit{W_q}, \\ \mathcal{E}^{\textit{fin},n}_{-/+} &:= & \left\{ \textit{$u \in \mathcal{E}^n_{-/+}: \exists Q > 0, \; \textit{$u \in \oplus_{q \leq Q} \mathcal{E}^{q,n}_{-/+}$} \right\}. \end{array}$$

Theorem

There exists $a_0>0$ such that for all $|a|< a_0$ and $n\in \mathbb{Z}\setminus\{0\}$ the following holds :

▶ i) For all $u \in \mathcal{E}_{-/+}^{fin,n}$ the limits

$$W_{-/+}u = \lim_{t \to \infty} e^{it\dot{H}^n} i_{-/+}^2 e^{-it\dot{H}^n_{-/+}} u$$

exist in $\dot{\mathcal{E}}^n$. The operators $W_{-/+}$ extend to bounded operators $W_{-/+} \in \mathcal{B}(\dot{\mathcal{E}}^n_{-/+};\dot{\mathcal{E}}^n)$.

▶ ii) The inverse wave operators

$$\Omega_{-/+} = \text{s-}\lim_{t \to \infty} e^{it\dot{H}_{-/+}^n} i_{-/+}^2 e^{-it\dot{H}^n}$$

exist in $\mathcal{B}(\dot{\mathcal{E}}^n;\dot{\mathcal{E}}^n_{-/+})$.

i), ii) also hold for n = 0 if m > 0.

Remark

- 1. We can also compare to comparison dynamics given by a product of transport equations along principal null geodesics. The appropriate energy space is the energy space of this comparison dynamics.
- 2. Results uniform in n recently obtained by Dafermos, Rodnianski, Shlapentokh-Rothman for the wave equation on Kerr.

3.4 Basic resolvent estimates and existence of the dynamics

Lemma (Basic resolvent estimates)

Let $\epsilon > 0$. We have

$$\|p^{-1}(z)u\| \lesssim |z|^{-1}|\mathrm{Im}z|^{-1}\|u\|,$$

 $\|h_0^{1/2}p^{-1}(z)u\| \lesssim |\mathrm{Im}z|^{-1}\|u\|.$

uniformly in $|z| \ge (1 + \epsilon) ||k||_{\mathcal{B}(\mathcal{H})}$, |Im z| > 0.

Remark

- i) Interpretation : superradiance does not occur for $|z| \ge (1 + \epsilon) ||k||$.
- ii) Explanation : $p(z) = h_0 (k z)^2$, $h_0 \ge 0$.

Lemma (Existence of the dynamics)

 $(\dot{H}, D(\dot{H}))$ is the generator of a C_0 – group $e^{-it\dot{H}}$ on $\dot{\mathcal{E}}$.

3.5 Klein-Gordon operators with "two ends"

 $\mathcal{M}=\mathbb{R}\times S^2_\omega,\,h$ second order differential operator, k bounded multiplication operator. We suppose

$$\begin{cases} w=w(x), & w\in C^{\infty}(\mathbb{R}),\\ wi_{+}ki_{+}w, & wi_{-}(k-\ell)i_{-}w\in\mathcal{B}(\mathcal{H}). \end{cases}$$

$$\begin{cases} k_{\pm} & = k\mp\ell j_{\mp}^{2},\\ h_{\pm} & = h_{0}-k_{\pm}^{2}\\ \tilde{h}_{-} & = h_{-}+2\ell k_{-}-\ell^{2}=h_{0}-(\ell-k_{-})^{2}. \end{cases}$$

$$(TE) \qquad \text{For } \epsilon>0 \quad (h_{+},k_{+}), (\tilde{h}_{-},k_{-}-\ell) \quad \text{satisfy}$$

$$h_{+}\geq 0, \quad \tilde{h}_{-}\geq 0, \quad w^{-\epsilon}(h_{+}-z^{2})^{-1}w^{-\epsilon}, \quad w^{-\epsilon}(\tilde{h}_{-}-z^{2})^{-1}w^{-\epsilon}$$

$$\text{extend meromorphically to Imz} > -\delta_{\epsilon}.$$

Remark

In the De Sitter Kerr case the meromorphic extension follows from a result of Mazzeo-Melrose.

Construction of the resolvent

$$\begin{split} \dot{\mathcal{E}}_+ &= h_+^{-1/2} \mathcal{H} \oplus \mathcal{H}, \ \dot{\mathcal{E}}_- &= \Phi(\ell) \tilde{h}_-^{-1/2} \mathcal{H} \oplus \mathcal{H}. \\ \dot{\mathcal{H}}_\pm &= \left(\begin{array}{cc} 0 & \mathbb{1} \\ h_\pm & 2k_\pm \end{array} \right). \end{split}$$

are selfadjoint. We note $\dot{R}_{\pm}(z) := (\dot{H}_{\pm} - z)^{-1}$.

Proposition

Let $\epsilon > 0$. Then $w^{-\epsilon}\dot{R}_{\pm}(z)w^{-\epsilon}$ extends finite meromorphically to ${\rm Im}z > -\delta_{\epsilon/2}$ as an operator valued function with values in $\mathcal{B}(\dot{\mathcal{E}}_{\pm})$.

Proposition

There exists a finite set $Z \subset \mathbb{C} \setminus \mathbb{R}$ with $\overline{Z} = Z$ such that the spectrum of \dot{H} is included in $\mathbb{R} \cup Z$ and such that the resolvent $\dot{R}(z)$ is a finite meromorphic function on $\mathbb{C} \setminus \mathbb{R}$. Moreover the set Z consists of eigenvalues of finite multiplicity of \dot{H} .

Idea of the proof.

$$Q(z) := i_{-}(\dot{H}_{-} - z)^{-1}i_{-} + i_{+}(\dot{H}_{+} - z)^{-1}i_{+}.$$

Then computation of (H-z)Q(z)+meromorphic Fredholm theory.

Smooth functional calculus

$$||f||_m := \sup_{\lambda \in \mathbb{R}, \ \alpha \leq m} |f^{(\alpha)}(\lambda)|.$$

Proposition

(i) Let $f \in C_0^{\infty}(\mathbb{R})$. Let \tilde{f} be an almost analytic extension of f such that $\operatorname{supp} \tilde{f} \cap \sigma_{pp}^{\mathbb{C}}(\dot{H}) = \emptyset$. Then the integral

$$f(\dot{H}) := \frac{1}{2\pi i} \int_{\mathbb{C}} \frac{\partial \tilde{f}}{\partial \overline{z}}(z) \dot{R}(z) dz \wedge d\overline{z}$$

is norm convergent in $\mathcal{B}(\dot{\mathcal{E}})$ and independent of the choice of the almost analytic extension of f.

(ii) The map $C_0^\infty(\mathbb{R}) \ni f \mapsto f(\dot{H}) \in \mathcal{B}(\dot{\mathcal{E}})$ is a homomorphism of algebras with

 $f(\dot{H})^* = \overline{f}(\dot{H}^*), \quad \|f(\dot{H})\|_{\mathcal{B}(\dot{\mathcal{E}})} \le \|f\|_m \quad \text{for some} \quad m \in \mathbb{N}.$

Proposition

Let $\chi \in C_0^{\infty}(\mathbb{R})$, $\chi \equiv 1$ in a neighborhood of zero. Then $s - \lim_{L \to \infty} \chi\left(\frac{\dot{H}}{L}\right) = 1 - 1_{pp}^{\mathbb{C}}(\dot{H})$.

3.6 Resonances and Propagation estimates

Lemma

 $w^{-\epsilon}\dot{R}(z)w^{-\epsilon}$ can be extended meromorphically from the upper half plane to $\mathrm{Im}z>-\delta_\epsilon,\,\delta_\epsilon>0$ with values in $\mathcal{B}_\infty(\dot{\mathcal{E}})$. poles : resonances.

Proposition

Let $\epsilon > 0$. There exists a discrete closed set $\dot{\mathcal{T}}_H \subset \mathbb{R}$, $\nu > 0$ such that for all $\chi \in C_0^\infty(\mathbb{R} \setminus \dot{\mathcal{T}}_H)$ we have (7)

$$\sup_{\|u\|_{\dot{\mathcal{E}}}=1,\ \nu\geq\delta>0}\int_{\mathbb{R}}(\|w^{-\epsilon}\dot{R}(\lambda+i\delta)\chi(\dot{H})u\|_{\dot{\mathcal{E}}}^2+\|w^{-\epsilon}\dot{R}(\lambda-i\delta)\chi(\dot{H})u\|_{\dot{\mathcal{E}}}^2)d\lambda<\infty.$$

Definition

We call $\lambda \in \mathbb{R}$ a regular point of \dot{H} if there exists $\chi \in C_0^{\infty}(\mathbb{R})$, $\chi(\lambda) = 1$ such that (7) holds. Otherwise we call it a singular point.

Remark

Note that in the selfadjoint case \dot{T}_H is the set of real resonances by Kato's theory of H-smoothness.

Propagation estimates

Proposition

Let $\epsilon > 0$. Then there exists a discrete closed set $\dot{\mathcal{T}} \subset \mathbb{R}$ such that for all $\chi \in C_0^\infty(\mathbb{R} \setminus \dot{\mathcal{T}})$ and all $k \in \mathbb{N}$ we have

$$\|\mathbf{w}^{-\epsilon}\mathbf{e}^{-it\dot{H}}\chi(\dot{H})\mathbf{w}^{-\epsilon}\|_{\mathcal{B}(\dot{\mathcal{E}})}\lesssim \langle t \rangle^{-k}.$$

Proposition

Let $\epsilon > 0$. Then we have for all $\chi \in C_0^{\infty}(\mathbb{R} \setminus \dot{\mathcal{T}}_H)$:

$$\int_{\mathbb{D}} \| \mathbf{w}^{-\epsilon} \mathbf{e}^{-it\dot{H}} \chi(\dot{H}) \varphi \|_{\dot{\mathcal{E}}}^2 dt \lesssim \| \varphi \|_{\dot{\mathcal{E}}}^2.$$

Theorem

Suppose that $\lambda_0 \in \mathbb{R}$ is neither a resonance of $w^{-\epsilon} \dot{R}(\lambda) w^{-\epsilon}$ nor of $w^{-\epsilon} Q(\lambda) w^{-\epsilon}$. Then λ_0 is a regular point of \dot{H} .

Proof.

$$w^{-\epsilon}\dot{R}(z) = w^{-\epsilon}Q(z) - w^{-\epsilon}\dot{R}(z)w^{-\epsilon}w^{\epsilon}\xi K(z).$$

 $Q(z),\,K(z)$ constructed using only resolvents of selfadjoint operators, $\xi\in C_0^\infty.$

3.7 Uniform boundedness of the evolution

For
$$\chi \in C^{\infty}(\mathbb{R})$$
 and $\mu > 0$ we put $\chi_{\mu}(.) = \chi\left(\frac{\cdot}{\mu}\right)$.

Theorem

i) Let $\chi \in C^{\infty}(\mathbb{R})$, supp $\chi \subset \mathbb{R} \setminus [-1,1]$, $\chi \equiv 1$ on $\mathbb{R} \setminus (-2,2)$. Then there exists $\mu_0 > 0$, $C_1 > 0$ such that we have for $\mu \geq \mu_0$

$$\|e^{-it\dot{H}}\chi_{\mu}(\dot{H})u\|_{\dot{\mathcal{E}}} \leq C_1\|\chi_{\mu}(\dot{H})u\|_{\dot{\mathcal{E}}} \quad \forall u \in \dot{\mathcal{E}}, \, \forall t \in \mathbb{R}.$$

ii) Let $\varphi \in C_0^\infty(\mathbb{R} \setminus \dot{\mathcal{T}}_H)$. Then there exists $C_2 > 0$ such that for all $u \in \dot{\mathcal{E}}$ and $t \in \mathbb{R}$ we have

$$\|e^{-it\dot{H}}\varphi(\dot{H})u\|_{\dot{\mathcal{E}}}\leq C_2\|\varphi(\dot{H})u\|_{\dot{\mathcal{E}}}.$$

Remark

The general abstract framework, the work of Dyatlov and an hypoellipticity argument gives the uniform boundedness of the evolution and then the asymptotic completeness result.

Part 4 : Convergence rate for the Hawking radiation in the De Sitter Schwarzschild case

Alexis Drouot, A Quantitative version of Hawking's radiation, Annales Henri Poincaré 18 (2017), 757-806.

4.1 Local energy decay for the wave equation on the De Sitter Schwarzschild spacetime (a=0)

Dsitribution of resonances (Sa Barreto-Zworski '97):

Theorem (Bony-Ha '08)

$$\begin{array}{l} \text{Let } \chi \in \textit{C}_{0}^{\infty}(\mathcal{M}). \text{ There exists } \varepsilon > 0 \text{ such that } \chi e^{-itH} \chi u = \\ \gamma \left(\begin{array}{c} r \chi \langle r, \chi u_{2} \rangle \\ 0 \end{array} \right) + \textit{R}_{2}(t)u, \quad \|\textit{R}_{2}(t)u\|_{\mathcal{E}^{mod}} \lesssim e^{-\varepsilon t} \big\| - \Delta_{\omega} u \big\|_{\mathcal{E}^{mod}}. \end{array}$$

Remark

- 1. No resonance 0 for Klein Gordon equation with positive masse of the field m>0.
- 2. Similar picture in much more general situations, see Vasy '13.

Consequence for asymptotic completeness

Theorem (Alexis Drouot '15)

Consider u solution in \mathcal{M} of (m > 0)

$$(\Box + m^2)u = 0, \ u|_{t=0} = u_0, \ \partial_t u|_{t=0} = u_1$$

with u_0, u_1 in C^1 . There exists C^1 functions (called radiation fields of u) $u_\pm^*: \mathcal{M} \to \mathbb{R}$ and $C \in \mathbb{R}$ (depending only on $\sup (u_0; u_1)$) such that

$$u_{\pm}^*(x,\omega) = 0 \text{ for } x \leq C; \quad u_{\pm}^* = \mathcal{O}_{C^{\infty}}(e^{-\nu_0\langle x \rangle}),$$

and

$$u(t,x,\omega)=u_+^*(-(t+x),\omega)+u_-^*(-t+x,\omega)+\mathcal{O}_{\mathcal{C}^\infty(\mathcal{M}_-)}(e^{ct}),\ c>0.$$

Proof uses results of Bony-H. '08 and Melrose-Sa-Barreto-Vasy '14.

Convergence rate for the Hawking effect

Theorem (Alexis Drouot '15)

There exists $\Lambda_0 > 0$ such that for all $\Lambda < \Lambda_0$ the following is true. Let

$$\mathbb{E}_{\mathcal{T}}(u_0,u_1)=\mathbb{E}^{\mathbb{H}_0,\mathcal{T}_0}(u(0),\partial_t u(0)),$$

where u solves for m > 0

$$\begin{cases}
(\Box_g + m^2) &= 0, \\
u|_{\mathcal{B}} &= 0, \\
u(T) &= u_0, \\
\partial_t u(T) &= u_1
\end{cases}$$

Then

$$\mathbb{E}_{\textit{T}}(\textit{u}_{0}, \textit{u}_{1}) = \mathbb{E}_{+}^{\textit{D}_{\textit{x}}^{2}, \textit{T}_{0}}(\textit{u}_{+}^{*}, \textit{D}_{\textit{x}} \textit{u}_{+}^{*}) + \mathbb{E}_{-}^{\textit{D}_{\textit{x}}^{2}, \textit{T}_{\textit{Haw}}}(\textit{u}_{-}^{*}, \textit{D}_{\textit{x}} \textit{u}_{-}^{*}) + \mathcal{O}(\textit{e}^{-\textit{cT}}), \quad \textit{T} \rightarrow \infty.$$

for some c > 0.

Comments

Scattering theory

- ► The fact that the mixed term has two different limits makes it more complicated than for the Klein-Gordon equation coupled to an electric field. Mourre theory on Krein spaces: Georgescu-Gérard-H. '14.
- Time dependent scattering should depend only on the behavior of the resolvent on the real axis.

Hawking effect

- Proof of a theorem about the Hawking effect for bosons should now work in the same way. Temperature depends on n.
- Highly idealized model.

Thank you for your attention!