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Supersymmetry and supergravity

N supersymmetry J A(x) :Elﬂ(x)
Bosons and fermions P
in one multiplet OY(X)= Vﬂgav A(X)

= commutator gives gener
coordinate transformations

). deN =5y o {QQY=)"P,

—> gauge theory contains gravityupergravity
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Generic infinitesimal

5¢'(x) = e A ¢t (),

(constant parameters).

Transformation of Lagrangian:

0L

58qui oL

Leads to conserved currents
0L
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EXxercises on.chapter 1

m Ex 1.5 Show that the action
S = / dPx L(z) = -3 / APz [ 8,0, ¢ + m>¢i¢|
IS Invariant under the transformation
¢ (z) — ¢ (z) = ¢'(Ax).
Important: fields transform, not the integratiomiables
= Ex.1.6:Compute the commutatofs. 1, Lj,,]

and show that they agree with that for matrix
generators. Show that to first ordenwt

B (ah) — SN Ly 1 (@) = ¢ (2 + NVa,)



PV (x) =W () = mW(z).

[ AYY = AHyY AV AR = 2 g 1
Lorentz transformations generated by
=2 A

which satisfies Lorentz algebra.

For actions we need
U =wig=wliy0,

such that spinor bilinears can be formed tha
are Lorentz invariants:

— . 1 —_—
ow=-Lwrs,v, 0 §0=wos,,




EXxercise on chapter 2

= Show using the fundamental relation of
gamma matrices that

(1Y yP] = 24l P = lig?P — e
= Prove the consistency

oV = —%)\’W/ZMV\U, 5\Tf — %)\MV\TJZMV
m Prove then the invariance of the action

S, W] = —/de\Tf[vl‘@M — m|WV(x)



3. Clifford algebras and spinors

= Determines the properties of
- the spinors Iin the theory
- the supersymmetry algebra

= We should knoy
- how large are the smallest spinors in each
dimension
- what are the reality conditions

- which bispinors are (anti)symmetric
(can occur in superalgebra)
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which satisfies 72 = 1.
E.g. D=4 v = iv717273

Projections







3.2 Supersymmetry and
symmetry of bi-spinors (intro)

m E.g. a supersymmetry on a scalar is a symmetry
transformation depending on a spigor

0(e)p(x) = ey(x)
= For the algebra we should obtain a

[6(e2), 6(e1)] () =S9u¢5(93)

m Then the GCT parameter
should be antisymmetric in the spinor parameters

¢ = €19 eo = —exveq
Thus, to see what is possible, we have to know the
symmetry properties of bi-spinors



3.2 Spinors In general dimensions
3.2.1 Spinors and spinor bilinears

Majorana conjugate
A= \C

C is a matrix such that Cryy...u,. are

all symmetric or antisymmetric,

depending only on D and r.

m with anticommuting
spinors

D (mod 8) |t =-1 t,=+1
0 0,3 2,1
0,1 2,3
0,1 2,3
0,1 2,3
1,2 0,3
1,2 0,3
4 1,2 0,3
2,3 0,1
5 2,3 0,1
§ 2,3 0,1
0,3 1,2
e 0,3 1,2

Since symmetries of spinor bilinears are important
supersymmetry, we use
the Majorana conjugate to define




X =C"g, o=z,

Note that C,3 are components of C~1
and C*? of CT.

(’Yu)aﬁ — (’Yu)ozfycfyﬁ
Have symmetry —t1: (vu)ag = —t1(Vu)ga-



Complex conjugation can be replaced by charge
conjugation, an operation that acts as complexug@tjon
on scalars, and has a simple action on fermiondalis.
For example, it preserves the order of spinor facto
In fact complex conjugation uses

B = itgCH°

()¢ =B 5B = (—tot1)w

It works like this:

(XMN)* = (MM = (—tot1)xC MENC







Majorana:

D=4 mod 4

(Pr)C = Prep, (Prip)© = Pry







3.4 Majorana OR Weyl fields In

D=4
= Any field theory of a Majorana spinor field
can be rewritten in terms of a Wey! fielguP

and its complex conjugate.

m Conversely, any theory involving the chiral fie
x=P, x and its conjugatg“=P5x* can be
rephrased as a Majorana equation Iif one defines
the Majorana field =P, x +Psx ©.

m Supersymmetry theories in D=4 are formulated
In both descriptions in the physics literature.



EXxercise on chapter 3

m Ex. 3.40:Rewrite
S[w] = -1 / dPz W[yH8, — m]W ()

as i
Sly] = -3 / d*e [UAH8, — m] (P, + PR)W

= — [d% [U 0, PV — ImTPLY — SmWPRY]

and prove that the Euler-Lagrange equations are
aPL\U:mPR\U, aPR\U:mPL\U.

Derivel] P g% = m¥ P_g¥ from the equations above



Couple to

W(z) = W (z) = W@y (g).

Due to

Ap(x) = Al(x) = Au(z) + 0,0() .

with covariant derivatives

DV (z) = (0y — iqAu(z))WV(x),

Field strengths couple to currents

auFIJJ/ — —Jy, Fl'“/ = 3,uA1/ — ayA,JJ
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[tAatB] — fAB t




EXxercise on chapter 4

m Ex. 4.1/ Use the Jacobi identity to show that the
matriceq(t,)°: =f e P satisfy[t, ,tz]= f\g © - and
therefore give a representation

m Ex4.27: Show tha

A A A _
Dqup -+ D,,FW -+ DPFW =0
is satisfied identically if-, , #is written in the form
Fi, = 0uA) — 0uAfl + gfpo AR AY






_ 1 _
ﬁEPLX, EépRX,

1 1 _ _
EPL(@Z + F)e, EPR(C%Z + F)e
1 1

cdP = _cgP
\/iaLX QﬁRx

A 1 A
=SV
Prx| = 5617 e20u | Prx
F F

Skin = [ d*z[-01Z8,Z — XdPrx + FF

Sp= [ d*alFW'(2) - SRPLW"(Z)x
S = Skin T O + Sf




0(e)p(x) = ep(x) = " Qag(x)
— Qad(x) = Ya(x)

6(e1)0(e) =

— (5
[6(e1), 6(e2)] = 565 QaQs — ¢565Q5Qa
= ¢t (QuQs + QsQa

__ 1—
= —5€17"ex 0y







= 9,0 + 0“4, fpc”
0N fpo,




Full theory

S = Sgauge + Smatter + Scoupling + Sw + S5 -

Smatter €L [—D“ZD;LZ - )_(’Y“PLDLLX + FF] 5
Scoupling x [_\/i(XAZtAPLX — XPrtAZNY) + i DAZtAZ]
Sy / d*z [FOWa + SR0P Wasx] |
Sp = [ d% [FaW + 50 PR
Modified chiral multiplet

1
57 —_ePrx,
5 LX
1
oPrx EPL(’YHDLLZ + F)e,
1
§F —_EPrY*Dyx — EPRAMAZ

V2




Notation left-right

Qi = PrQ;, Q' = PrQ".

Algebra:

{Qiaa QJ'B} _%55(PL’YM)O£3P‘U’ ’
{Qiaa Q]ﬁ 0,
[M[My]a Qia| = _%('Yw/)aﬁQiBa
[Pﬂn Qza] 0

_%5§(PR’YM)046P"L:

= 0,
— _%(’Yw/)aﬁQ%a

0.
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Exercise on.chapter 6

m EX. 6.11: Consider the theory of.the chiral multiplet
after elimination oF. Show that the action

S = /d% —8“2(’9”2 — X@Ppx — WW' — Zx(PLW" + PRW”)X}

IS Invariant under the transformation rules

0Z = EPLX, 67 = GPRX
% % -
5PLX — \/_PL($Z+F)6, 5PRX — \/—PR(aZ—FF)E
F = —-W(2), F = -W'(2)

Show that the commutator on the scalar is still
[61,62]Z = —5€e17H €20, Z
but is modified on the fermion as follows:
[61, 621 PLx = €172 Pp, | —50ux + 27 (d + W) x|
We find the spacetime translation plus an extra term that vanishes for
any solution of the equations of motion.
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Vikja+Vikia =0,







EXxercise on chapter 7

m EX. (.48 Consider for the Poincaré plad@andZ as the

Independent fields, rather thXrandY, and use the line element
dX?+dYy? dzdZ

ds? = —
. Y? Y2
The metric components are 5
922 =92z =0, 922 =922 = "7 _ 7)2

Show that the only non-vanishing components of the Christoffel
connection ard ;.4 and its complex conjugate. Calculate them and

then show that there are three Killing vectors,
kY =1, k5 = Z, k5 = Z°
each with conjugate. Show that their Lie brackets give a Lie algebra
whose non-vanishing structure constants are
fiot =1, f13° =2, fa3> =1
This Is a standard presentation of the Lie algebra of

su(l,1) =s0(2,1) = sl(2)



ravities

= and how geometry enters in supergravity



Qic @5} = =567 (PLy)apPa.
QioijB} =0, {Q&QJ}







Ta, Qui 1 = (U Qu;

U =-WUa)i=— (WU







12.4 Supergravity.theories:
towards a catalogue

m basic theories and kinetic terms
e pos = SR+ 1AmNap)F,FHE

: L -
— 2(ReNyp)e et Po FLFD — Lg,.0,0 007

= deformations and gauged supersymmetry
- covariant derivatives and field strengths
- potential for the scalars



Strathdee,198










L= /39" (0,0") (v’ g




d 32 24 20 16 12
S{4(3) S#(2) O(2,n)
8 su@ ® U Thxom © O(1,1)
S{(5) O(3,
7 USp(4) USD{E()XRC))(RJ ® O(l’ 1)
0O(5.,5) SO(5,1) O(4,n) O(5.,n)
6 USp(4)xUSp(4) 'SO(5) O(n)x;:}{li) ®O(1,1) O(n)xugpM)
E. SU'(6) Q(5,n)
5 USp(8) USp(6) USp{4)an(n) ® O(1= 1)
4 E; S0*(12) | SU(1,5) su(1,1) ,, _ SO(6.n) SU(3.n)
SuU(8) u(6) u(5) U(1) SU(4)xSO(n) U(3)xSU(n)




Exercise on Chapter 12

m Ex.12.3Consider an arbitrary point in the Poincaré plane
and find the Killing vectoc” k, that vanishes. Check that
the other two Killing vectors in that point are
Independent.

m Ex.12.2Why do the Isotropy generators define a grc
How do you associate the manifold to the coset space

m Ex 12.5Check that the Poincaré plane is a symmetric
space.
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EXxercises on chapter 13

m Ex. 13.14 Show that the metric of the Poincaré plane of
complex dimension 1 is a Kahler metric.
What is the Kahler potential?

m Ex. 13.18 Consider CRwith Killing potential’X = In(1 + 2z)

- Check that there are 3 Killing vectors  ; = —i%(l — 22)83,
Z
. kQ —_ 1(1+22)£7
- that satisfy the su(2) algebra 2, 9
k4, kBl = eapcke ka = —lz—.
B EX. 13.20ApplY sk =04 (140, + £30:) K(2,5) = 04 [ra(2) + 7(D)
to Obta|n re = %lZ ro = %Z r3 = —%I

Note that the Kahler potential is invariant unklgrbut still r; # O.
Its value is fixed by the ‘equivariance relation’
B

ka®go3kB" — kp®g,5k4" = ifap“Pc



14. General actions witNV=1

supersymmetry
14.1 Multiplets

= Multiplets are sets of fields on which the
supersymmetry algebra is realized.

m A chiral multipletis a multiplet in which the

transformation of the lowest (complex scalar)
component involves only,P.

m A real multipletis a multiplet in which the
lowest component is a real scalar.

m Allowing general SUSY transformations with
these requirements determines the multiplet
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