Runge-Kutta schemes as exact schemes
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First we consider standard difference schemes for scalar ordinary initial
value problems @ = f(u), u(0) = uo € R. Traditionally, error expansions
are used to obtain convergence results for all differential equations. We
use these error expansions to find the most general right hand sides f(u)
for which a given numerical scheme is exact, i.e. for which all error terms
vanish [1], [2].

Then we consider given differential equations and ask which schemes are
exact for them. This is the traditional question asked when dealing with
exact schemes [3]. Answering this question is essentially the same as find-
ing explicit solutions to the differential equation and thus not possible in
general. If, however, a low-dimensional function space is known to contain
the solution to be approximated, then a variable-coefficient Runge-Kutta
scheme can be constructed which is exact on this function space. This
approach introduced by Ozawa [4] is generalized and further exploited.
Exact schemes are of interest in applications. Useful nonstandard schemes
for parabolic (Le Roux[5]) and hyperbolic (Kojouharov & Chen [3, chap.2])
PDEs are based on exact schemes for ODEs and for simpler PDEs, re-
spectively.
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